首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hereditary hearing loss (HHL) is an extremely common disorder. About 70% of HHL is non-syndromic, with autosomal recessive forms accounting for approximately 85% of the genetic load. Although very heterogeneous, the most common cause of HHL in many different world populations is mutations of GJB2, a gene that encodes the gap junction protein connexin 26 (Cx26). This study investigates the contribution of GJB2 to the autosomal recessive non-syndromic deafness (ARNSD) load in the Iranian population. One hundred sixty eight persons from 83 families were studied. GJB2-related deafness was diagnosed in 9 families (4, 35delG homozygotes; 3, 35delG compound heterozygotes; 1, W24X homozygote; 1, non-35delG compound heterozygote). The carrier frequency of the 35delG allele in this population was approximately 1% (1/83). Because the relative frequency of Cx26 mutations is much less than in the other populations, it is possible that mutations in other genes play a major role in ARNSD in Iran.  相似文献   

2.
Mutations in the CLDN14 gene are known to cause autosomal recessive (AR) non-sydromic hearing loss (NSHL) at the DFNB29 locus on chromosome 21q22.13. As part of an ongoing study to localize and identify NSHL genes, the ARNSHL segregating in four Pakistani consanguineous families were mapped to the 21q22.13 region with either established or suggestive linkage. Given the known involvement of CLDN14 gene in NSHL, DNA samples from hearing-impaired members from the four families were sequenced to potentially identify causal variants within this gene. Three novel CLDN14 mutations, c.167G>A (p.Trp56*), c.242G>A (p.Arg81His), and c.694G>A (p.Gly232Arg), segregate with hearing loss (HL) in three of the families. The previously reported CLDN14 mutation c.254T>A (p.Val85Asp) was observed in the fourth family. None of the mutations were detected in 400 Pakistani control chromosomes and all were deemed damaging based on bioinformatics analyses. The non-sense mutation c.167G>A (p.Trp56*) is the first stop codon mutation in CLDN14 gene to be identified to cause NSHL. The c.242G>A (p.Arg81His) and c.694G>A (p.Gly232Arg) mutations were identified within the first extracellular loop and the carboxyl-tail of claudin-14, respectively, which highlights the importance of the extracellular domains and phosphorylation of cytoplasmic tail residues to claudin function within the inner ear. The HL due to novel CLDN14 mutations is prelingual, severe-to-profound with greater loss in the high frequencies.  相似文献   

3.
4.
5.
6.
Autosomal recessive non-syndromic hearing loss (ARNSHL) is the most common form of prelingual inherited hearing impairment. A small consanguineous family with this disorder was ascertained through the Institute of Basic Medical Sciences in Madras, India. Conditions such as rubella, prematurity, drug use during pregnancy, perinatal trauma, and meningitis were eliminated by history. Audiometry was performed to confirm severe-to-profound hearing impairment in affected persons. After excluding linkage to known DFNB genes, two genomic DNA pools, one from the affected persons and the other from their non-affected siblings and the parents, were used to screen 165 polymorphic markers evenly spaced across the autosomal human genome. Two regions showing homozygosity-by-descent in the affected siblings were identified on chromosomes 3q21.3-q25.2 and 19p13.3-p13.1, identifying one (or possibly both) as the site of a novel ARNSHL gene. Am. J. Med. Genet. 71:467–471, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Background: Allele variants of COL11A2, encoding collagen type XI α2, cause autosomal dominant non-syndromic hearing loss (ARNSHL) at the DFNA13 locus (MIM 601868) and various syndromes that include a deafness phenotype. Objective: To describe a genome-wide scan carried out on a consanguineous Iranian family segregating ARNSHL. Results: Genotyping data identified a novel locus for ARNSHL on chromosome 6p21.3, which was designated DFNB53. Homozygosity for the P621T mutation of COL11A2 was present in all deaf persons in this family; this same variation was absent in 269 Iranian controls. Sequence comparison of collagen type XI α1 and α2 peptides across species shows that the replaced proline is an evolutionarily conserved amino acid. Conclusions: The P621T mutation of COL11A2 affects the Y position of the canonical -Gly-X-Y- repeat in collagens. It lies near the amino-terminus of the triple helical region and causes ARNSHL. This finding suggests that mutation type and location are critical determinants in defining the phenotype of COL11A2 associated diseases.  相似文献   

8.
Hereditary deafness is a genetically heterogeneous phenotype for which more than 100 genomic loci have been identified thus far. By analysis of a consanguineous Palestinian family, GPSM2 was recently discovered to be the cause of autosomal recessive non-syndromic hearing loss DFNB82. Here, we report a second truncating mutation, GPSM2 p.Q562X, identified via autozygosity mapping in a consanguineous Turkish family. This report provides evidence for allelic heterogeneity of GPSM2 and confirms its causative role for non-syndromic deafness.  相似文献   

9.
A gene responsible for autosomal dominant non-syndromic hearing impairment in two families (DFNA8 and DFNA12) has recently been identified as TECTA encoding alpha-tectorin, a major component of the tectorial membrane. In these families, missense mutations within the zona pellucida domain of alpha-tectorin were associated with stable severe mid-frequency hearing loss. The present study reports linkage to DFNA12 in a new family with autosomal dominant high frequency hearing loss progressing from mild to moderate severity. The candidate region refined to 3.8 cM still contained the TECTA gene. A missense mutation (C1619S) was identified in the zonadhesin-like domain. This mutation abolishes the first of the vicinal cysteines (1619Cys-Gly-Leu- 1622Cys) present in the D4 von Willebrand factor (vWf) type D repeat. These results further support the involvement of TECTA mutations in autosomal dominant hearing impairment, and suggest that vicinal cysteines are involved in tectorial membrane matrix assembly.  相似文献   

10.
Four sibs with progressive, bilateral conductive hearing loss are presented. Symmetrical hearing loss averaging 30-60 dB (0.125-8 kHz) became apparent between 8 and 24 years of age. Tympanotomy showed a fixed stapes either through ossified stapedius tendon or through ossified stapedius tendon or through a bony bridge from the stapes to the pyramidal eminence in all patients. After surgical removal of the bony tendon hearing was normal. Both parents, four other sibs, and all grandparents had normal hearing. This family and a further published case suggest a possibly recessive inheritance of this form of conductive hearing loss.  相似文献   

11.
Approximately 80% of hereditary hearing loss is non-syndromic. Non-syndromic deafness is the most genetically heterogeneous trait. The most common and severe form of hereditary hearing impairment is autosomal recessive non-syndromic hearing loss (ARNSHL), accounting for approximately 80% of cases of genetic deafness. To date, 22 genes implicated in ARNSHL have been identified. Recently a gene, DFNB31/WHRN, which encodes a putative PDZ scaffold protein called whirlin, was found to be responsible for the ARNSHL DFNB31. We found evidence for linkage to the DFNB31locus in a consanguineous Tunisian family segregating congenital profound ARNSHL. Mutation screening of DFNB31/WHRNrevealed four nonpathogenic sequence variants and a novel frameshift mutation [c.2423delG] + [c.2423delG] that changed the reading frame and induced a novel stop codon at amino acid 818 ([p.Gly808AspfsX11] + [p.Gly808AspfsX11]). To determine the contribution of the DFNB31locus in the childhood deafness, we performed linkage analysis in 62 unrelated informative families affected with ARNSHL. No linkage was found to this locus. From this study, we concluded that DFNB31/WHRN is most likely to be a rare cause of ARNSHL in the Tunisian population.  相似文献   

12.
Mutations in the GJB3 gene encoding connexin31 (Cx31) can cause a dominant non-syndromic form of hearing loss (DFNA2). To determine whether mutations at this locus can also cause recessive non-syndromic deafness, we screened 25 Chinese families with recessive deafness and identified in two families affected individuals who were compound heterozygotes for Cx31 mutations. The three affected individuals in the two families were born to non-consanguineous parents and had an early onset bilateral sensorineural hearing loss. In both families, differing SSCP patterns were observed in affected and unaffected individuals. Sequence analysis in both families demonstrated an in-frame 3 bp deletion (423-425delATT) in one allele, which leads to the loss of an isoleucine residue at codon 141, and a 423A-->G transversion in the other allele, which creates an Ile-->Val substitution at codon 141 (I141V). Neither of these two mutations was detected in DNA from 100 unrelated control subjects. The altered isoleucine residue lies within the third conserved alpha-helical transmembrane domain (M3), which is critical for the formation of the wall of the gap junction pore. Both the deletion of the isoleucine residue 141 and its substitution to valine in the two families could alter the structure of M3, and impair the function of the gap junction. The present data demonstrate that, like mutations in connexin26, mutations in Cx31 can lead to both recessive and dominant forms of non-syndromic deafness.  相似文献   

13.
Intellectual disability (ID) affects 1–3% of the general population worldwide. Genetic factors play an undeniable role in the etiology of Non-Syndromic Intellectual disability (NS-ID). Nowadays, whole-exome sequencing (WES) technique is used frequently to identify the causative genes in such heterogeneous diseases. Herein, we subjected four patients with initial diagnostics of NS-ID in a consanguineous Iranian family. To find the possible genetic cause(s), Trio-WES was performed on the proband and his both healthy parents. Sanger sequencing was performed to confirm the identified variant by WES and also investigate whether it co-segregates with the patients’ phenotype in the family. Using several online in-silico predictors, the probable impacts of the variant on structure and function of GPT2 protein were predicted. A novel variant, c.266A>G; p.(Glu89Gly), in exon 3 of GPT2 (NM_133443.3) was identified using Trio-WES. The candidate variant was also verified by Sanger sequencing. All affected members showed the common clinical features suffering from a non-progressive mild-to-severe ID. Also, different clinical observations compared to previously reported cases such as no facial features, no obvious structural malformations, ability to speak but with difficulty, and lack of any morphological defects were noted for the first time in this family. The c.266A>G; p.(Glu89Gly) variant reported here is the sixth variant identified up to now in the GPT2 gene, to be associated with NS-ID. Our data support the potential malfunction of the substituted GPT2 protein resulted from the novel variant, however, we strongly suggest confirming this finding more by doing functional analysis.  相似文献   

14.
The Pakistani population has become an important resource for research on autosomal recessive non-syndromic hearing impairment (ARNSHI) due to the availability of large extended and highly consanguineous pedigrees. Here is presented the first report on the prevalence of gap junction beta-2 (GJB2) variants in Pakistan. One hundred and ninety-six unrelated Pakistani families with ARNSHI were recruited for a study on the genetics of NSHI. DNA sequencing of the GJB2 coding region was done on two affected individuals per family. Evolutionary conservation and predicted effect on the protein product were studied in order to hypothesize whether or not a variant was potentially deleterious. Homozygous putatively functional GJB2 variants were identified in 6.1% of families. None of the putatively functional GJB2 variants were observed in the compound heterozygous state. The six putatively causative variants noted were 231G > A(W77X), 71G > A(W24X), 167delT, 95G > A(R32H), 358-360delGAG(delE120), and 269T > C(L90P), with 231G > A(W77X) and 71G > A(W24X) being the most common. In addition, five benign polymorphisms, 380G > A(R127H), 457G > A(V153I), 493C > T(R165W), 79G > A(V27I), and 341 A > G(E114G), were identified within this population. In a few individuals, benign polymorphisms were observed to occur on the same haplotype, namely [457G > A(V153I); 493C > T(R165W)] and [79G > A(V27I); 341 A > G(E114G)]. The spectrum of GJB2 sequence variants in Pakistan may reflect shared origins of hearing impairment alleles within the Indian subcontinent. The high degree of consanguinity within Pakistan may have maintained the GJB2 prevalence at a much lower rate than within India and other populations.  相似文献   

15.
16.
Hereditary hearing impairment (HI) is the most genetically heterogeneous trait known in humans. So far, 54 autosomal recessive non-syndromic hearing impairment (ARNSHI) loci have been mapped, and 21 ARNSHI genes have been identified. Here is reported the mapping of a novel ARNSHI locus, DFNB55, to chromosome 4q12-q13.2 in a consanguineous Pakistani family. A maximum multipoint LOD score of 3.5 was obtained at marker D4S2638. The region of homozygosity and the 3-unit support interval are flanked by markers D4S2978 and D4S2367. The region spans 8.2 cm on the Rutgers combined linkage-physical map and contains 11.5 Mb. DFNB55 represents the third ARNSHI locus mapped to chromosome 4.  相似文献   

17.
Hearing impairment is inherited most frequently as an autosomalrecessive isolated clinical finding (non-syndromic hearing loss,NSHL). Extreme heterogeneity and phenotypic variability in theaudiometric profile preclude pooling of affected families andseverely hamper gene mapping by conventional linkage analysis.However, in instances of consanguinity, homozygosity mappingcan be used to identify disease loci in small nuclear families.This report demonstrates the power of this technique by identifyinga locus for recessive NSHL on 14q (DFNB4).  相似文献   

18.
Several studies have reported that mutations in the GJB2 gene (coding for connexin26) are a common cause of recessive non-syndromic hearing impairment. A GJB2 mutant allele, 35delG, has been found to have a high prevalence in most ethnic groups. Though mutations in the GJB2 gene have been shown to cause autosomal recessive deafness in Indian families, the frequencies of the various mutations are still unknown. In the present study, we analyzed 45 Indian families belonging to three different states, namely, Karnataka, Tamil Nadu, and Delhi with non-syndromic hearing impairment and an apparently autosomal recessive mode of inheritance. All the families were initially screened for three mutations (W24X, W77X, and Q124X) by using allele-specific PCR primers; mutations were confirmed by DNA sequencing. Families that were heterozygous or negative for tested mutations of the GJB2 gene were sequenced directly to identify the complementary mutation and other mutations in GJB2. Four families were homozygous for W24X, constituting around 8.8%. In two families, the affected individuals were compound heterozygotes for W24X; one family (DKB16) carried 35delG with W24X while the other family (DKB7) carried R143W with W24X. We suggest that W24X is a common allele among the mutations screened, causing autosomal recessive non-syndromic hearing impairment (ARNSHI) in the Indian population.  相似文献   

19.
The genetic basis of autosomal recessive mental retardation (ARMR) is extremely heterogeneous, and there is reason to suspect that the number of underlying gene defects may well go beyond 1,000. To date, however, only less than 10 genes have been implicated in non‐specific/non‐syndromic ARMR (NS‐ARMR). As part of an ongoing systematic study aiming to identify further ARMR genes, we investigated a consanguineous family with three patients with NS‐ARMR. By linkage analysis and subsequent mutation screening we identified a novel nonsense mutation (c.163C > T [p.Q55X]) in the second exon of the TUSC3 gene. This is the third MR causing defect in TUSC3 to be described and the second independent mutation in this gene in a cohort of more than 200 ARMR families from the Iranian population. This argues for a more prominent role of TUSC3 in the etiology of this genetically heterogeneous disorder as compared to most of the other so far identified ARMR genes. © 2011 Wiley‐Liss, Inc.  相似文献   

20.
We report a mutation in the connexin 26 gene (Cx26) in a consanguineous Moroccan family linked to the DFNA3/DFNB1 locus on human chromosome 13q11-q12. Affected subjects display congenital, bilateral, sensorineural hearing loss. We have previously identified Cx26 mutations in consanguineous Pakistani families. This current finding indicates that Cx26 mutations are not restricted to ethnically and geographically distinct populations. This is an important observation since it will help to determine the overall contribution of connexin 26 mutations to autosomal deafness in different populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号