首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CarcinogenesisconsistsofmultiplequalitativelydifferentstepsinwhichaccummulationofDNAalterationocursandcriticalevents,involvi...  相似文献   

2.
卵巢癌及宫颈癌中17p13.3的杂合性丢失   总被引:5,自引:0,他引:5  
Zhang GL  Yang H  Xu K 《中华肿瘤杂志》1997,19(6):401-403
目的探讨染色体17p13.3的杂合性丢失(LOH)与卵巢癌、宫颈癌发生及发展之间的相关性。方法采用PYNZ.22探针做Southern印迹技术,检测24例卵巢癌、9例宫颈癌及13例妇科非癌患者手术切除组织染色体17p13.3的LOH。结果12例卵巢癌(包括1例交界性粘液性囊腺癌)和4例宫颈癌发生17p13.3的LOH,丢失频率分别为50.0%和44.4%。13例非癌组织中,仅1例(7.7%)发生丢失,该例经病理证实为宫颈上皮内瘤变Ⅲ级,属癌前期病变(P<0.01)。结论染色体17p13.3的LOH可能与宫颈癌和卵巢癌的发生相关,检测17p13.3的杂合性丢失将有助于深入了解卵巢癌和宫颈癌发生及发展的分子基础。  相似文献   

3.
Ovarian clear cell carcinoma (OCCC) accounts for a small but significant proportion of all ovarian cancers and is a distinct clinical and pathological entity. It tends to be associated with poorer response rates to chemotherapy and with a worse prognosis. Little is known about possible underlying genetic changes. DNA extracted from paraffin-embedded samples of 18 pure OCCC cases was analysed for genetic imbalances using comparative genomic hybridisation (CGH). All of the 18 cases showed genomic alterations. The mean number of alterations detected by CGH was 6 (range 1-15) indicating a moderate level of genetic instability. Chromosome deletions were more common than amplifications. The most prominent change involved chromosome 9 deletions in 10 cases (55%). This correlates with changes seen in other epithelial ovarian cancers. This deletion was confirmed using microsatellite markers to assess loss of heterozygosity (LOH) at four separate loci on chromosome 9. The most distinct region of loss detected was around the IFNA marker at 9p21 with 41% (11 out of 27 cases) LOH. Other frequent deletions involved 1p (five out of 18; 28%); 11q (four out of 18; 22%) and 16 (five out of 18; 28%). Amplification was most common at chromosome 3 (six out of 18; 33%); 13q (four out of 18; 22%) and 15 (three out of 18; 17%). No high-level amplifications were identified. These features may serve as useful prognostic indicators in the management of OCCC.  相似文献   

4.
Loss of heterozygosity (LOH) was examined at 27 loci on chromosomes 3p, 6q, 11p, 13q, 17 and X in 42 human ovarian tumors. LOH was detected in 12 of 26 (46%) and 5 of 12 (42%) informative cases at 2 chromosome 13q loci, D13S32 and D13S34 respectively. On chromosome Xp, tumor-specific allele loss was observed in 9 out of 15 informative cases (60%) at the ornithine transcarbamylase (OTC) gene locus. Examination of 12 additional Xp and 13q loci has mapped the common deletion regions to Xp21.1-->p11.4 and 13q33-->q34. The observation of significant LOH on Xp represents a strong indication of genetic changes in the X chromosome in a human malignancy. The allele losses on 13q which have been reported for other cancers suggest that chromosome 13, in addition to the retinoblastoma gene, may contain other growth-regulating gene(s) important in the development of several tumor types, including ovarian malignancies.  相似文献   

5.
Loss of heterozygosity (LOH) is a common genetic finding in many human neoplasms, including cervical cancer. The detection of LOH at specific loci in the precursor of cervical cancer, cervical intraepithelial neoplasia (CIN) may help in elucidating the evolution of this cancer, which has a clearly defined histological premalignant phase. However, molecular genetic investigation of CIN is difficult because many of the lesions are very small and sometimes ill defined topographically. In this study we analyzed eighteen polymorphic microsatellite repeats on chromosome 3p in CINs using a method of primer extension pre-amplification (PEP) for whole genome amplification combined with microdissection. These markers encompass chromosome region 3pter-3p12. LOH at one or more loci was detected in five (33%) out of the 15 informative cases with low grade CIN (CIN 1), while 22 (92%) out of 24 cases with high grade CIN (CIN 2 and 3) (P<0.01). The highest incidence (41%) of LOH was detected at locus D3S1038 (3p26.1-3p25.2). Frequent LOH (more than 20%) was also found at other loci including D3S1110 (3p25.3-3p25.1) (31%), D3S656 (3p25.1) (24%), D3S1076 (3p21.2-3p21.1) (29%), D3S1300 (3p21.1-3p14.2) (24%), D3S1600 (3p14.2-3p14.1) (24%), and D3S1079 (3p13) (25%). The results from this study taken together with others indicate that the genetic alterations on chromosome 3p are common in high grade of CIN and are probably early events in cervical carcinogenesis. Tumor suppressor gene(s) that play a role in cervical neoplasm may be located on the short arm of chromosome 3, likely at or near 3p26.1-25.1, 3p21.2-21.1, and 3p14.2-13.  相似文献   

6.
7.
BACKGROUND: Despite the increasing frequency of adenocarcinomas of the uterine cervix, little is known regarding inactivation of tumor suppressor genes (TSGs) in this tumor type. The authors analyzed loss of heterozygosity (LOH) in 36 carcinomas of the cervix with glandular differentiation, and 5 adenocarcinoma in situ in 40 patients. METHODS: The authors analyzed samples using laser capture microdissection from archival material and DNA amplified with microsatellite markers on the following loci: 3p14.2 (D3S1234, D3S1300), 3p21.3 (D3S1029, D3S1447), 3p22-24 (D3S1537, D3S1351), 6q21-23.3 (D6S250), 6q25.1 (ESR), 6q25.2 (D6S255), 8p21 (D8S136, D8S1820), 13q12.3 (D13S220, D13S267), 17q21 (D17S579, D17S855). Eight additional markers spanning the short arm of chromosome 3 (3p12-p25) and six spanning the long arm of chromosome 6 (6q11-q27) were studied in the cases showing LOH to further define the deletion intervals. RESULTS: The frequency of allelic loss in cancers was chromosome 3p: 49% (p14.2: 35%, p21.3: 23%, p22-24: 41%), 6q: 48% (q21-23.1: 39%, q25.1: 45%, q25.2: 7%), 13q: 22%, 17q: 6%, and 8p: 18%. On chromosome arm 3p, the authors' data suggest at least two discrete areas of deletion: a proximal area between markers D3S1234 (p12) and D3S1766 (p14.2-14.3), and a second distal interval, telomeric from marker D3S4623 (p21.3). On chromosome 6q, the deletion area is between marker D6S300 (q22) and D6S255 (q25.2). Two of five preneoplastic lesions showed LOH on chromosome arm 3p, and two five showed allelic loss on chromosome arm on 6q, suggesting the genes might be inactivated early in cervical tumorigenesis. CONCLUSIONS: The authors have identified three chromosomal regions that may harbor TSGs involved in the development/progression of adenocarcinomas of the uterine cervix, 3p12-14.2, 3p21.3-pter, and 6q22-25.2. Deletions also were detected in adenocarcinoma in situ, suggesting the genes may be inactivated early in cervical tumorigenesis.  相似文献   

8.
Hemizygosity and homozygosity mapping studies show that many common sporadic cancers including lung, breast, kidney, cervical, ovarian, and head and neck cancer display deletions on the short arm of chromosome 3. For ovarian cancer, monochromosomal transfer suppression studies have identified three candidate regions for chromosome 3p ovarian cancer tumor suppressor genes (OCTSGs). To accurately map OCTSG candidate regions, we analyzed 70 ovarian tumors for loss of heterozygosity (LOH) at 20 loci on chromosome 3p that were selected to target those regions proposed to contain tumor suppressor genes for common sporadic cancers. All samples were informative for at least five markers. In 33 (52%) tumors without microsatellite instability, LOH was observed for at least one 3p marker. Analysis of 27 ovarian tumors demonstrating both loss and retention of 3p markers enabled us to define four nonoverlapping minimal deletion regions (OCLOHRs): (a) OCLOHR-1 mapped distal to D3S3591 at 3p25-26; (b) OCLOHR-2 mapped between D3S1317 and D3S1259 at 3p24-25; (c) OCLOHR-3 mapped between D3S1300 and D3S1284, an area that includes the FHIT locus at 3p14.2; and (d) OCLOHR-4 mapped between D3S1284 and D3S1274 at 3p12-13, a region known to contain overlapping homozygous deletions in lung and breast tumor cell lines. However, microsatellite markers from the chromosome 3p21.3 interval homozygously deleted in lung cancer cell lines did not identify a distinct OCLOHR. The frequency and extent of 3p LOH correlated with tumor stage such that LOH at two or more OCLOHRs was present in 53% (16 of 30) of stage III tumors but only 26% (5 of 19) of stage I/II tumors (P = 0.08). To determine the relationship between the OCLOHRs and the three candidate ovarian cancer suppression regions (OCSRs) identified previously by monochromosome transfer studies, we performed detailed genetic and physical mapping studies to define the extent of the three candidate OCSRs and to establish YAC contigs covering each region. OCSR-A at 3p25-26 and OCSR-B at 3p24 were shown to overlap with OCLOHR-1 and OCLOHR-2, respectively, providing further evidence for OCTSGs in these regions. We also show that OCSR-C overlaps with a locus at 3p21.3 previously implicated in lung and breast cancer.  相似文献   

9.
Cervical carcinomas develop as a result of multiple genetic alterations. As the genetic alterations are the cause of malignant transformation, it is likely that specific genetic alterations lead to specific clinical behaviour. The aim of this study was (i) to localise chromosome arms that harbour likely tumour-suppressor genes, by analysing loss of heterozygosity (LOH) and (ii) to study the association of LOH with clinicopathological parameters. To define the regions of interest, we studied the presence of loss of heterozygosity at all chromosomes in 67 cervical carcinomas (stages IB and IIA) with 81 polymorphic markers. In addition, all frequent allelic imbalances were correlated with HPV status and clinicopathologic parameters including survival, FIGO-stage, lymph-node metastasis, tumour size, number of mitoses, vaso-invasion and histologic type. LOH at a frequency over 25% was observed at sites on 9 chromosome arms: 3p21, 4p16.1-15, 6p, 6q22.3-23.1, 11q22-24, 15q11-21.1, 17p13.3, 18q22-qter and Xq. LOH of chromosome 6q14-16.2, 6p22 and 17p13 correlated marginally with HPV-16 positivity. LOH on chromosome 3p21 was weakly correlated with high mitotic activity, while LOH on chromosomes 11q23.3, 15q21.1 and 17p13 correlated with low mitotic activity. LOH at chromosome 17p13 associated marginally with FIGO stage I, while LOH at chromosome 15q associated weakly with FIGO stage II. When chromosome 18q showed LOH in the tumour, the patients had decreased survival (p = 0.024). We conclude that, in carcinoma of the uterine cervix, a novel tumour-suppressor gene may be present on chromosome 15q21 and that patients with LOH on chromosome 18q have relatively poor survival (p = 0.025). Int. J. Cancer (Pred. Oncol.) 79:411–417, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Loss of heterozygosity (LOH) frequently occurs in squamous cell carcinomas of the uterine cervix and indicates the probable sites of tumour-suppressor genes that play a role in the development of this tumour. To define the localization of these tumour-suppressor genes, we studied loss of heterozygosity in 64 invasive cervical carcinomas (stage IB and IIA) using the polymerase chain reaction with 24 primers for polymorphic repeats of known chromosomal localization. Chromosomes 3, 11, 13, 16 and 17, in particular, were studied. LOH was frequently found on chromosome 11, in particular at 11q22 (46%) and 11q23.3 (43%). LOH on chromosome 11p was not frequent. On chromosome 17p13.3, a marker (D17S513) distal to p53 showed 38% LOH, whereas p53 itself showed only 20% LOH. On the short arm of chromosome 3, LOH was frequently found (41%) at 3p21.1. The beta-catenin gene is located in this chromosomal region. Therefore, expression of beta-catenin protein was studied in 39 cases using immunohistochemistry. Staining of beta-catenin at the plasma membrane of tumour cells was present in 38 cases and completely absent in only one case. The tumour-suppressor gene on chromosome 3p21.1 may be beta-catenin in this one case, but (an)other tumour-suppressor gene(s) must also be present in this region. For the other chromosomes studied, 13q (BRCA-2) and 16q (E-cadherin), only sporadic losses (< 15% of cases) were found. Expression of E-cadherin was found in all of 37 cases but in six cases the staining was very weak. No correlation was found between clinical and histological parameters and losses on chromosome 3p, 11q and 17p. In addition to LOH, microsatellite instability was found in one tumour for almost all loci and in eight tumours for one to three loci. In conclusion, we have identified three loci with frequent LOH, which may harbour new tumour-suppressor genes, and found microsatellite instability in 14% of cervical carcinomas.  相似文献   

11.
BACKGROUND: We have defined 18 chromosomal regions in which allelic losses were frequent among breast cancers. We examined whether specific allelic losses might correlate with any clinicopathological factors. METHODS: We tested DNA from matched normal and tumor tissues for loss of heterozygosity (LOH) at 18 microsatellite loci from a cohort of 504 patients who had undergone surgery for breast cancer. RESULTS: LOH at 3p14.3 correlated with a larger size of tumor (greater than 2 cm). LOH at 1p22, 3p25.1, 3p14.3, or 17q21.1 correlated with loss of estrogen receptors. LOH at as many as eleven regions correlated with loss of progesterone receptor, suggesting that these represent general phenomena associated with progression of cancer. Above all, allelic losses at 11q23-24, 13q12, 17p13.3, or 22q13 significantly correlated with lymph-node metastasis (11q23-24, p= 0.0042; 13q12, p=0.0207; 17p13.3, p=0.0478; 22q13, p=0.0162). CONCLUSION: These results suggest that some clinical characteristics of breast cancers are determined by loss of tumor suppressor genes present at specific chromosome regions. Especially, LOH at 11q23-24, 13q12, 17p13.3, and 22q13 is a significant predictor of lymph-node metastasis for patients who have undergone surgery for breast cancer, and may serve as a negative prognostic indicator.  相似文献   

12.
CDKN2A gene inactivation in epithelial sporadic ovarian cancer.   总被引:4,自引:0,他引:4  
The tumour suppressor gene CDKN2A, located on chromosome 9p21, encodes the cell cycle regulatory protein p16. Inactivation of the CDKN2A gene could lead to uncontrolled cell growth. In order to determine the role of CDKN2A in the development of sporadic ovarian cancer, loss of heterozygosity at 9p21-22, homozygous deletion, mutation and methylation status of the CDKN2A gene as well as CDKN2A expression were examined in a panel of serous papillary ovarian cancer. The frequency of loss of heterozygosity (LOH) for one or more informative markers at 9p21-22 was 65% (15/23). The most common deleted region was located between interferon (IFN)-alpha and D9S171. Homozygous deletions and mutations of the CDKN2A gene were not found. There was no evidence of methylation in exon 1, but methylation in exon 2 of CDKN2A gene was found in 26% (6/23). Absence of CDKN2A gene expression was shown in 27% (6/22) at mRNA level and 21% (4/19) at protein level. These data suggest that the CDKN2A gene is involved in the tumorigenesis of ovarian cancer, but the mechanisms of CDKN2A gene inactivation in serous papillary ovarian cancer remains unclear.  相似文献   

13.
High resolution mapping of chromosome 6 deletions in cervical cancer.   总被引:8,自引:0,他引:8  
Chromosome 6 is frequently affected in different tumors. However, little information exists on chromosome 6 deletions in cervical cancer. We have studied loss of heterozygosity (LOH) and microsatellite instability (MIN) in 62 invasive squamous cell carcinomas of the cervix (CC) using 19 polymorphic microsatellite markers spanning both arms of chromosome 6 and one marker located at 5p15. We found that LOH at chromosome 6 is a common feature of cervical carcinomas: 90% (56/62) of CC had LOH at least at one locus and about 58% (36/62) had LOH on both arms of chromosome 6. The highest LOH incidence was shown in HLA region (6p21.3-6p21.1) with markers D6S273 and D6S276 in 52.7% and 45.2% of informative cases respectively. Frequent LOH on 6q was found at loci D6S311 (6q24-25. 1), D6S305 (6q26) and D6S281 (6q27-6qter) in 37.8%, 33.3% and 39.0% of informative cases respectively. There was no significant correlation observed between clinical parameters of cervical cancer (age, histologic grade, clinical stages and progression) and LOH frequency. Microsatellite instability was found in 3 out of 62 cases (4.8%) at three and more loci out of 20 tested. The study shows that several regions on 6p and 6q may harbour potential tumor-suppressor genes important for cervical cancer progression.  相似文献   

14.
Allele imbalance on chromosome 11 loci in ovarian cancer is a frequent event, suggesting the presence of tumour-suppressor genes for ovarian carcinogenesis on this chromosome. Ten highly polymorphic (CA) repeat microsatellites were used to determine allele imbalance in 60 primary ovarian tumours, including 47 epithelial ovarian cancers (EOCs). Forty EOCs (85%) showed allele imbalance at one or more loci, and in 39 of these (83%) the data suggested subchromosomal deletions: eight of 11p only; six of 11q only; and 25 of both 11p and 11q. Three consensus regions of deletion were indicated at 11p15.5-p15.3, 11q12-q22 and 11q23.3-q24.1. Allele imbalance at the 11q subtelomeric region (D11S912) correlated significantly with adverse survival, while imbalance at 11q14.3 and retention of heterozygosity at 11q22 (close to the site of the progesterone receptor gene) were associated with favourable clinicopathological features. The findings allow development of a preliminary model for the molecular evolution of epithelial ovarian cancer.  相似文献   

15.
Previously we analysed overlapping homozygous deletions in lung and breast tumours/tumour lines and defined a small region of 120 kb (part of LCTSGR1) at 3p21.3 that contained putative lung and breast cancer tumour suppressor gene(s) (TSG). Eight genes including RASSF1 were isolated from the minimal region. However, extensive mutation analysis in lung tumours and tumour lines revealed only rare inactivating mutations. Recently, de novo methylation at a CpG island associated with isoform A of RASSF1 (RASSF1A) was reported in lung tumours and tumour lines. To investigate RASSF1A as a candidate TSG for various cancers, we investigated: (a) RASSF1A methylation status in a large series of primary tumour and tumour lines; (b) chromosome 3p allele loss in lung tumours and (c) RASSF1 mutation analysis in breast tumours. RASSF1A promoter region CpG island methylation was detected in 72% of SCLC, 34% of NSCLC, 9% of breast, 10% of ovarian and 0% of primary cervical tumours and in 72% SCLC, 36% NSCLC, 80% of breast and 40% of ovarian tumour lines. In view of the lower frequency of RASSF1 methylation in primary breast cancers we proceeded to RASSF1 mutation analysis in 40 breast cancers. No mutations were detected, but six single nucleotide polymorphisms were identified. Twenty of 26 SCLC tumours with 3p21.3 allelic loss had RASSF1A methylation, while only six out of 22 NSCLC with 3p21.3 allele loss had RASSF1A methylation (P=0.0012), one out of five ovarian and none out of six cervical tumours with 3p21.3 loss had RASSF1A methylation. These results suggest that (a) RASSF1A inactivation by two hits (methylation and loss) is a critical step in SCLC tumourigenesis and (b) RASSF1A inactivation is of lesser importance in NSCLC, breast, ovarian and cervical cancers in which other genes within LCTSGR1 are likely to be implicated.  相似文献   

16.
Loss of heterozygosity at several chromosomal loci is a common feature of the malignant progression of human tumors. These regions are thought to harbor one or more putative tumor suppressor gene(s) playing a role in tumor development. Allelic losses on the short arm of chromosome 8 (8p) have been reported as frequent events in several cancers, and three commonly deleted regions have been defined at 8p11.2-12, 8p21-22, and 8p23.1. To evaluate the possible involvement of these regions in gastric cancer, we used eight microsatellite markers to perform an extensive analysis of allele loss at 8p21-22 in 52 cases of primary gastric adenocarcinoma. We found that 44% of tumors showed allelic loss for at least one marker at 8p21-22. The critical region of loss was found to be between markers LPL and D8S258, which displayed loss of heterozygosity in 39% and 33% of cases, respectively. This region is centromeric to the LPL locus and centered on the D8S258 locus. We conclude that 8p22 deletion is a frequent event in gastric cancer and suggest the presence of a putative tumor suppressor gene near the D8S258 locus. Initial steps were taken toward the identification of this gene, which is likely to play an important role in the pathogenesis of gastric cancer and of other tumors as well.  相似文献   

17.
鼻咽癌染色体9p21~22区域精细缺失图谱的构建   总被引:14,自引:1,他引:13  
目的 进一步精细限定鼻咽癌9p21-22区域等位基因杂合性丢失的频率和范围,为发现和分离克隆该区域内的鼻咽癌抑瘤提供新线索和依据。方法 应用11个定位于9p-21-22区域的高密度微卫星位点,检测25例低分化鼻咽癌患者的杂合性丢失。结果 25例患者中,有17例存在一个或多个位点的杂合性丢失,占68.0%。  相似文献   

18.
Detailed Deletion Mapping of Chromosome 9p21-22 in Nasopharyngeal Carcinoma   总被引:2,自引:0,他引:2  
Previous studies have showed that Epstein-Barr virus (EBV) infection, certain environmental factors and genetic factors were found to be closely associated with nasopharyngeal carcinoma. The rates of NPC in southern China and southeast Asia are 25 times higher than that of in western countries. The statistic analysis revealed 5%-10% NPC patients have family history, there, genetic susceptibility might be an important factor in the pathogenesis of NPC. Unfortunately the alterations of com…  相似文献   

19.
We examined DNA from 116 female and four male breast cancer patients for loss of heterozygosity (LOH). DNA was analysed by polymerase chain reaction using ten microsatellite markers on chromosome 11. Three distinct regions of LOH were identified: 11p15.5, 11q13 and 11q22-qter with a LOH frequency of 19, 23 and 37-43% respectively. The marker D11S969 showing the highest frequency of LOH (43%) is located at the 11q24.1-q25 region. No previous molecular genetic studies have shown frequent LOH at the region telomeric to q23 on chromosome 11. Southern analysis revealed that LOH at 11q13 was due to amplification, whereas LOH at 11q22qter was due to deletion. LOH at 11p15.5 was associated with paucity of hormone receptor proteins, high S-phase and positive node status. An association was found between LOH at 11q13 and positive node status. LOH at the 11q22-qter region correlated with a high S-phase fraction. A significant association was found between LOH at 11p15 and chromosome regions 17q21 (the BRCA1 region) and 3p.  相似文献   

20.
Loss of heterozygosity (LOH) has been extensively studied on the short arm of chromosome 3, and functional proofs have been obtained defining a tumor-suppressor locus at 3p21-22. We examined 31 paraffin-embedded cervical cancer samples for LOH, using 5 PCR-primer pairs, located around 3p21. Allele loss was found in 19 out of the 27 informative samples (70%) while 13 out of 23 informative samples (56%) had LOH located at 3p2l-22. More of the human papillomavirus (HPV)-positive samples had LOH compared to the HPV-negative samples, giving only a weak association between loss of allele and HPV integration. Modifications of the DNA in the formaldehyde-fixed samples were detected, and further studies will be required to clarify how such artifacts may affect restriction fragment length polymorphism (RFLP) studies on fixed tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号