首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracts of bovine corneal stroma have been shown to activate keratocytes in culture to proliferate. We fractionated stromal extract on a column of Sephacryl S-300 and tested the fractions for mitogenic activity using cell culture and for the presence of IGF-II and its binding protein IGFBP-2 by Western blot. We found that the mitogenic activity in the extract separated into major and minor peaks and that immunologically detectable IGF-II and IGFBP-2 co-eluted with the minor peak. We also compared the effects of 10 ng IGF-II/ml on keratocytes in culture to that of 2 ng TGF-beta/ml over a 7-day culture period. We found that IGF-II and TGF-beta, alone or combined, increased both (3)H-thymidine incorporation and DNA content of the cultures. The phenotype of the cells was determined by using antibodies to alpha-SM (smooth muscle) actin, fibronectin, SPARC, lumican and keratocan in Western blots of cell layers of media. Keratocytes cultured in IGF-II expressed no alpha-SM actin or fibronectin, low levels of SPARC and high levels of lumican and keratocan, indicating a native phenotype. Keratocytes in TGF-beta expressed alpha-SM actin, fibronectin, SPARC and lumican, and expressed no or low levels of keratocan, indicating a myofibroblast phenotype. Keratocytes cultured in IGF-II plus TGF-beta, however, expressed alpha-SM actin, fibronectin, SPARC, lumican, and keratocan by day 7 of culture. The results of this study show that IGF-II to be present in the corneal stroma, to stimulate keratocyte proliferation while maintaining native phenotype and to override the TGF-beta mediated down regulation of keratocan production. The IGF-II in the stroma may serve as a mechanism to immediately activate keratocytes upon wounding and to ameliorate the scarring effects of TGF-beta.  相似文献   

2.
Fibroblast growth factor reversal of the corneal myofibroblast phenotype   总被引:6,自引:0,他引:6  
PURPOSE: Keratocytes give rise to fibroblasts and myofibroblasts in wounded cornea. It is well established that treatment of fibroblasts with transforming growth factor (TGF) beta will induce myofibroblast differentiation. We investigated whether this differentiation could be reversed by the administration of fibroblast growth factor (FGF). METHODS: Cultured corneal myofibroblasts were plated at 200 cells/mm(2), and cells were grown in DMEM/F12 containing (1) 10% FBS or (2) 10% FBS with FGF and heparin or (3) 1% FBS or (4) 1% FBS with TGF-beta. As distinguished from the fibroblast phenotype, the myofibroblast phenotype was identified by the assembly of alpha-smooth muscle (SM) actin protein into the stress fiber cytoskeleton. To further characterize growth factor regulation of the two phenotypes, the phenotypic expression of TGF-beta receptor types I and II, cadherins, and connexin 43 by immunocytochemistry, Western blot analysis, and immunoprecipitation and of alpha-SM actin mRNA in Northern blot analysis were evaluated. RESULTS: Corneal myofibroblasts replated and grown in the presence of FGF-1 or FGF-2 (20 ng/ml) plus heparin (5 microg/ml) in 10% FBS medium had decreased expression of alpha-SM actin protein, TGF-beta receptors, and cadherins. Thus, FGF-heparin decreased the myofibroblast phenotype and promoted the fibroblast phenotype. Administration of either 20 ng/ml FGF or 5 microg/ml heparin alone was not effective. Addition of TGF-beta further enhanced the expression of alpha-SM actin mRNA and protein and cell surface expression of TGF-beta receptors in myofibroblast cultures. CONCLUSIONS: FGF-1 or -2 and heparin promoted the fibroblast phenotype and reversed the myofibroblast phenotype. This finding supports the idea that corneal myofibroblasts and fibroblasts are alternative phenotypes rather than terminally differentiated cell types.  相似文献   

3.
Abe K  Hibino T  Mishima H  Shimomura Y 《Cornea》2004,23(2):172-179
OBJECTIVE: SPARC (osteonectin/BM40) is detected in the corneal stroma during the wound-healing process. To understand the metabolism of SPARC in the cornea, we investigated the effects of cytokines and growth factors on SPARC synthesis by rabbit corneal epithelial cells and fibroblasts. METHODS: Rabbit corneal epithelial cells or fibroblasts were cultured for 3 days with serum-containing minimal essential medium (MEM), then subcultured for 3 days on serum-free MEM with epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-beta), or interleukin-1beta (IL-1beta). SPARC concentration in the medium was measured by the ELISA method using anti-SPARC monoclonal antibody. RESULTS: The concentration of SPARC in the conditioned medium of the epithelial cells depended on either cell numbers or cultivation periods. When EGF was added to the medium, the amount of SPARC in the medium decreased. The addition of IL-1beta, PDGF, or TGF-beta did not affect SPARC synthesis by the epithelial cells. The production of SPARC by rabbit corneal fibroblasts was low compared with that by epithelial cells. However, the synthesis of SPARC by corneal fibroblasts was significantly enhanced by the addition of TGF-beta. The addition of IL-1beta, PDGF, or EGF slightly increased SPARC synthesis by corneal fibroblasts. CONCLUSIONS: Cytokines and growth factors modulate SPARC synthesis by rabbit corneal epithelial cells and fibroblasts. These results suggest that cytokines and growth factors modulate cell-matrix interaction in corneal wound healing, possibly by regulating SPARC synthesis.  相似文献   

4.
5.
PURPOSE: Osteonectin/SPARC is a secreted protein that has been implicated in ocular disease. Deletion of osteonectin/SPARC causes age-onset cataract in mice and the cataractous human lens has increased expression of osteonectin/SPARC. In this study, the expression and localization of osteonectin/SPARC in the monkey retina were determined as was secretion by cultured human retinal pigment epithelial (RPE) cells. METHODS: Adult Rhesus monkey eyes (Macaca mulatta) were dissected, and 5-mm macula and peripheral retina punches were obtained. Supernatants were collected from cultured human RPE cells. Subcellular fractionation of whole monkey retina was also performed. Osteonectin/SPARC expression and/or secretion was monitored by Northern and Western blot analyses, and localization was determined by immunocytochemistry. RESULTS: Outside of the retina osteonectin/SPARC mRNA is broadly expressed in many human tissues. Northern blot analysis shows that in the retina osteonectin/SPARC is expressed almost exclusively by the macular RPE/choroid. Western blot analysis revealed osteonectin/SPARC in both the macula and the peripheral neural retina but only in trace amounts in the RPE/choroid. In subcellular fractions of the whole retina, osteonectin/SPARC was detected, mainly in the soluble fraction but also in the membrane and nuclear fractions. Immunohistochemical analysis localized osteonectin/SPARC specifically to the outer plexiform layer. Western blot analysis of conditioned medium from human RPE cells cultured on porous substrates indicated that osteonectin/SPARC is secreted in large amounts from both the apical and basal sides of the RPE. CONCLUSIONS: Collectively these data provide evidence that osteonectin/SPARC is synthesized in the macular RPE, secreted, and subsequently transported to the outer plexiform layer. The expression pattern of osteonectin/SPARC in the subcellular retinal fractions is consistent with a soluble protein that is transported and internalized.  相似文献   

6.
7.
PURPOSE: Pseudophakic bullous keratopathy (PBK) is a major indication for corneal transplantation. Previous studies showed that PBK corneas had increased levels of insulin-like growth factor-I (IGF-I), bone morphogenetic protein-4 (BMP-4), transforming growth factor-beta (TGF-beta), interleukin-1alpha (IL-1alpha) and IL-8. The PBK corneas also had accumulations of tenascin-C (TN-C), fibrillin-1 (Fib-1), matrix metalloproteinase-2 (MMP-2), inflammatory cells but not myofibroblasts. Our goal is to determine if the growth factors/cytokines that are elevated in PBK corneas alter the expression of extracellular matrix (ECM) and/or degradative enzymes in vitro. METHODS: Stromal cell cultures from normal and PBK human corneas were established and treated for 6 days with IGF-I, BMP-4, IL-1alpha, IL-8 or TGF-beta1/beta2. Immunostaining, Western blot and dot blot analyses for TN-C, Fib-1, alpha-smooth muscle actin (alpha-SMA, a marker for myofibroblasts) or tissue inhibitor of metalloproteinase-1 (TIMP-1) were performed. RNAs were collected and analyzed with Northern blots for TN-C, Fib-1 and beta(2)-microglobulin. Culture media were analyzed using gelatin zymography with or without ethylenediaminetetraacetic acid (EDTA). Some samples were activated with p-aminophenylmercuric acetate (APMA) and reduction/alkylation, and the degradative activities were measured by the MMP-gelatinase activity assay kit. RESULTS: The IGF-I and TGF-beta1/TGF-beta2 increased (a) TN-C protein deposition, and (b) Fib-1 protein and RNA levels, but (c) had no significant affect on TIMP-1, matrix metalloproteinase-2 (MMP-2) or gelatinase activities. TGF-beta1/TGF-beta2 induced alpha-SMA protein (myofibroblasts) while IGF-I did not. BMP-4, IL-1alpha and IL-8 had little affect on the cells. CONCLUSIONS: Based upon our data, the fibrotic markers, TN-C and Fib-1, found in PBK corneas may be accounted for by IGF-I and TGF-beta. These growth factors promote fibrosis and ECM deposition without promoting proteolysis. While the other growth factors/cytokines are elevated in PBK corneas, their role(s) in PBK pathogenesis are not clear. In addition, exogenous IGF-I most closely elicited a response that was most similar to the characteristics of the PBK/ABK corneas, i.e. accumulation of TN-C and Fib-1 proteins in the absence of myofibroblasts.  相似文献   

8.
After corneal injury, keratocytes become activated and transform into repair phenotypes-corneal fibroblasts or myofibroblasts, however, these important cells are difficult to identify histologically, compromising studies of stromal wound healing. Recent studies indicate that expression of the cell surface protein, Thy-1, is induced in fibroblast populations associated with wound healing and fibrosis in other tissues. We investigated whether keratocyte transformation to either repair-associated phenotype induced Thy-1 expression. Human corneal keratocytes were isolated by collagenase digestion. The cells were either processed immediately (i.e. freshly isolated keratocytes) or were cultured in the presence of 10% fetal bovine serum or transforming growth factor-beta to induce transformation to the corneal fibroblast and myofibroblast phenotypes, respectively. Thy-1 mRNA and protein expression by freshly isolated keratocytes and corneal fibroblasts were assessed by RT-PCR and Western blotting. mRNA also was extracted from the whole intact stroma and assessed by RT-PCR. Thy-1 was localised immunocytochemically in cultured human corneal fibroblasts, myofibroblasts, and in keratocytes in normal human corneal tissue sections. Thy-1 mRNA and protein were detectable in cultured human corneal fibroblasts, but not freshly isolated keratocytes. Whole uninjured stroma showed no detectable Thy-1 mRNA expression. Cultured human corneal fibroblasts and myofibroblasts both labelled for Thy-1, but keratocytes in the stroma of normal human cornea did not. We conclude that Thy-1 expression is induced by transformation of keratocytes to corneal fibroblasts and myofibroblasts, suggesting a potential functional role for Thy-1 in stromal wound healing and providing a surface marker to distinguish the normal keratocyte from its repair phenotypes.  相似文献   

9.
PURPOSE: This report presents a novel model for studies of extracellular matrix (ECM) in posterior capsular opacification (PCO) in vitro. Lens epithelial cells (LEC) were cultured with an intraocular lens (IOL) on a surface of type IV collagen in an evaluation of the importance of the ECM-cell interaction in formation of PCO. Abnormal migration, proliferation, and expression of proteins associated with the epithelial-to-mesenchymal transition (EMT) that characterizes PCO were observed in the presence and absence of the matricellular protein SPARC (secreted protein, acidic and rich in cysteine), which regulates matrix-cell interactions. METHODS: The model for PCO in vitro consisted of an IOL placed on a membrane coated with collagen IV, a major constituent of the lens capsule. LECs from the lenses of wild-type (WT) and SPARC-null (SP-null) mice were cultured in the presence or absence of 10 ng/mL TGF-beta2 and 20 mug/mL recombinant human SPARC (rhSP) for up to 6 days. The migration of LECs was quantified. Labeling with BrdU and the measurement of DNA synthesis were assays for cell proliferation. Expression of the EMT markers, collagen type I, fibronectin, and alpha-smooth muscle actin were assessed using immunocytochemistry or Western immunoblots. RESULTS: LEC migration, proliferation, and the synthesis of EMT markers were enhanced in SP-null compared with WT LECs. TGF-beta2 inhibited the migration and proliferation of both WT and SP-null LECs in the presence of rhSP. TGF-beta2 increased the production of collagen type I, fibronectin, and alpha-SMA. The responses of SP-null LECs were rescued by the addition of recombinant human (rh)SP. CONCLUSIONS: A simple IOL culture system was useful for the evaluation of the effects of SPARC and TGF-beta2 on PCO in vitro. The action of TGF-beta2 on LEC migration and proliferation is influenced by SPARC, a regulator of matrix-cell interactions. The results indicate a functional intersection between pathways activated by TGF-beta2 and SPARC in the formation of PCO.  相似文献   

10.
PURPOSE: In nonconfluent cultures, TGF-beta induces differentiation of corneal fibroblasts to myofibroblasts. However, in confluent cultures, few fibroblasts differentiate to myofibroblasts after TGF-beta1 addition. This study investigated the hypothesis that functional TGF-beta receptor expression is greater in low-density cultures and is decreased in confluent cultures. METHODS: Northern and western blot analyses were used to detect smooth muscle (SM) a-actin message and protein. 125I-labeled TGF-beta1 was used in a radioreceptor-binding assay as an index of functional receptors on the cell surface of rabbit corneal fibroblast cultures prepared either at high density (cell-cell contact) or low density (absence of contact). Cell lysates were analyzed by SDS-PAGE and autoradiography. Total TGF-beta receptor expression was evaluated in western blot analysis. Smad2, a downstream effector of TGF-beta receptor activation, was immunodetected. RESULTS: Low-density cultures expressed more SM alpha-actin mRNA and protein than high-density cultures, indicating that the low-density cells were differentiating into myofibroblasts. When 125I-TGF-beta1 was added to low- and high-density fibroblasts, fibroblasts plated at low density bound more than fibroblasts in high density, confluent cultures. Furthermore, after the cells differentiated into myofibroblasts, they continued to bind 125I-TGF-beta1. Specificity of 125I-TGF-beta1 binding was demonstrated by complete inhibition by excess nonradioactive TGF-beta1. Localization of Smad2 was correlated with SM alpha-actin induction: Smad was nuclear in low-density cells and cytoplasmic in high-density cells. After TGF-beta1 treatment, Smad2 remained cytoplasmic in high-density cells but was localized to nuclei in cells that were nonconfluent. CONCLUSIONS: Low cell density is correlated with increased functional expression of TGF-beta receptors and promotion of signal transmission from these receptors. Thus, conditions that decrease cell density such as wounding favor myofibroblast differentiation in response to TGF-beta.  相似文献   

11.
The authors evaluated the effects of stimulation (by serum, wounding, and three peptide growth factors: fibroblast growth factor [FGF], insulin, and transforming growth factor-beta [TGF-beta 1]) on the expression of the protein product of the immediate early gene, c-fos in bovine corneal endothelial (BCE) cells. These results were compared with those of cells which were made quiescent by serum starvation. They also examined the effect of these same growth factors or wounding on DNA synthesis. Quiescent cells expressed low levels of c-fos protein. Serum was the most potent stimulator, whereas FGF and insulin were modest stimulators. TGF-beta 1 did not significantly stimulate c-fos protein production. The results from DNA synthesis were different. Serum and FGF were still the most potent stimulators; insulin and TGF-beta 1 were weak stimulators. These data suggest that growth factors induce c-fos protein in BCE cells and that this may in part regulate the downstream event, cellular proliferation. Further investigation into the regulation of this and other protooncogene products may provide insight into the mechanisms which modulate corneal endothelial cell growth in humans.  相似文献   

12.
PURPOSE: To determine the effect of serum on morphology, growth, and proteoglycan synthesis by primary cultures of collagenase-isolated bovine keratocytes. METHODS: Keratocytes were isolated from bovine corneas using sequential collagenase digestion and cultured in Dulbecco's modified Eagle's medium (DMEM), with and without fetal bovine serum (FBS). Proteoglycans synthesized by the cells in culture and by keratocytes in intact cornea culture were metabolically radiolabeled with 35SO4. The proteoglycans were characterized by their sensitivity to keratanase, chondroitinase ABC, and heparatinase and by their size on Superose 6 HR. Cell number was determined by measuring DNA content of the culture dishes. RESULTS: Keratocytes cultured in 10% FBS proliferated, appeared fibroblastic, and synthesized only 9% of the total glycosaminoglycan as keratan sulfate (KS), whereas cells in serum-free media were quiescent, appeared dendritic, and synthesized 47% KS, a value similar to the 45% KS for corneas radiolabeled overnight in organ culture. This increased proportion of KS synthesis in serum-free media was caused by a moderate increase in KS synthesis combined with a substantial decrease in chondroitin sulfate (CS) synthesis. Fractionation on Superose 6 High Resolution showed the size and relative amounts of the CS- and KS-containing proteoglycans synthesized by keratocytes in serum-free media also more closely resembled that of keratocytes in corneas in organ culture than keratocytes in media containing serum. CONCLUSIONS: A comparison of proteoglycan synthesis and cell morphology between keratocytes in corneas in organ culture and in cell culture indicates that keratocytes maintain a more native biosynthetic phenotype and appearance when cultured in serum-free media. These results also suggest that culturing in the presence of serum fundamentally alters the keratocyte phenotype to an activated cell, mimicking certain changes observed during wound healing.  相似文献   

13.
14.
PURPOSE: The involvement of downstream messengers of transforming growth factor (TGF)-beta in the differentiation of corneal fibroblasts into myofibroblasts was investigated. The effects of insulin-like growth factor (IGF)-I and insulin-like growth factor binding protein (IGFBP)-3 upregulated by TGF-beta were examined in human corneal fibroblasts, and the possible involvement of IGF axis components in corneal wound healing was assessed in a mouse model. METHODS: Human corneal fibroblasts were incubated with TGF-beta2 or IGF-I, to investigate IGF-I, IGF-II, IGFBP-3, type I collagen, and alpha-smooth muscle actin (alpha-SMA) mRNA, as well as IGFBP-3 protein expression, during myofibroblast differentiation. DNA synthesis was evaluated with a 5-bromo-2'-deoxyuridine (BrdU) incorporation assay. IGFBP-3 mRNA expression, protein expression, and immunolocalization were investigated in mouse corneas after photorefractive keratectomy (PRK). RESULTS: TGF-beta2 treatment induced expression of IGF-I and IGFBP-3 mRNA and of IGFBP-3 protein in human corneal fibroblasts. TGF-beta2 and IGF-I both stimulated expression of type I collagen. TGF-beta2 but not IGF-I potently stimulated alpha-SMA mRNA expression. IGF-I potently stimulated basal DNA synthesis, whereas IGFBP-3 inhibited it. IGF-I potently stimulated proliferation of TGF-beta2-activated myofibroblasts without reversing the activated fibrogenic phenotype, whereas IGFBP-3 suppressed IGF-I-induced proliferation of corneal fibroblasts. IGFBP-3 mRNA and protein increased in mouse corneas soon after PRK, when in vivo immunostaining of the corneas showed expression of IGFBP-3 in the deep layer of the corneal stroma. CONCLUSIONS: These results suggest that during corneal wound healing, TGF-beta stimulates IGF axis components, whereas IGFBP-3 may modulate IGF-I-induced myofibroblast proliferation to suppress corneal mesenchymal overgrowth.  相似文献   

15.
PURPOSE: Extensive remodeling of the lamina cribrosa extracellular matrix occurs in primary open angle glaucoma. The transforming growth factor-beta (TGF-beta) and matrix metalloproteinase (MMP) protein families are implicated in this process. The authors investigated (a). the effect of cyclical mechanical stretch on TGF-beta1 mRNA synthesis, TGF-beta1 protein secretion, MMP-2 protein activity and (b). the effect of exogenous TGF-beta1 on MMP-2 protein activity in human lamina cribrosa cells in vitro. METHODS: Primary human lamina cribrosa cells grown on flexible and rigid plates were exposed to cyclical stretch (1Hz, 15%) or static conditions for 12 and 24 hours. Cells grown on 100-mm plates were exposed to human TGF-beta1 (10 ng/ml) or vehicle (4 mM HCl/1% BSA) for 24 hours. TGF-beta1 mRNA synthesis in stretched and static cells was measured using real-time polymerase chain reaction. TGF-beta1 protein secretion in stretched and static cell media was measured using enzyme linked immunosorbent assay. Gelatin zymography measured MMP-2 activity in stretched, static, TGF-beta1- treated and vehicle-treated cell media. RESULTS: Cyclical stretch induced significant increases in TGF-beta1 mRNA synthesis after 12 hours (**P < 0.01) and TGF-beta1 protein secretion after 24 hours (*P < 0.05). Cyclical stretch significantly (*P < 0.05) increased MMP-2 activity in cell media after 24 hours. Exogenous TGF-beta 1 induced a significant (**P < 0.01) increase in cell media MMP-2 activity after 24 hours. CONCLUSIONS: These results suggest that cyclical stretch and TGF-beta1 modulate MMP-2 activity in human lamina cribrosa cells. TGF-beta 1 and MMP-2 release from lamina cribrosa cells may facilitate matrix remodeling of the optic nerve head in primary open angle glaucoma.  相似文献   

16.
Using Western immunoblotting, the extractable proteins of the bovine zonular fibers were examined for reactivity with two zonular antisera known to have strong affinity for zonular fibers in tissues, in order to identify the antigenic components. The extracts were also tested with antisera to several matrix proteins that have been reported to be associated with zonular fibers. Proteins reactive with antisera to bovine serum albumin, serum immunoglobulins and fibronectin were present. No bands reactive with antisera to a-elastin, prealbumin, amyloid P component, collagen VI, lysyl oxidase or monoclonal antibody to fibrillin were demonstrated. The major nonserum protein band identified by both antisera was a 32kD polypeptide. An equally strong 250kD polypeptide was shown by the antiserum to guanidine-dithiothreitol extracted zonular fibers. Both of these proteins were PAS-positive and were demonstrated also by the antisera in extracts of bovine elastic neck ligament. Whether the two glycoproteins are related to each other, with the higher molecular weight protein either a precursor or aggregate form, is not yet clear. They appear to bear a close relationship to the elusive core microfibrillar protein.  相似文献   

17.
ABSTRACT: BACKGROUND: Heat shock protein 47 (Hsp47) is a well-known molecular chaperone in collagen synthesis and maturation. The aim of this study is to investigate its putative role in the transdifferentiation of Tenon's fibroblasts to myofibroblasts. METHODS: Primary cultured human Tenon's fibroblasts were exposed to transforming growth factor-beta1 (TGF-beta1) for up to 48 hours. The mRNA levels of Hsp47 and alpha smooth muscle actin (alphaSMA) were determined by quantitative real time RT-PCR. After delivery of small interfering RNA (siRNA) molecules targeting Hsp47 into the cells, the expression of Hsp47 and alphaSMA proteins was determined by western immunoblotting. RESULTS: TGF-beta1 increased the mRNA expressions of both Hsp47 and alphaSMA in human Tenon's fibroblasts, as determined by quantitative real time RT-PCR. However, it induced the protein expression of only alphaSMA but not Hsp47, as determined by western immunoblots. When siRNAs specific for Hsp47 were introduced into those cells, the TGF-beta1-induced expression of alphaSMA was significantly attenuated on western immunoblots; after 48 hours of exposure to TGF-beta1, the relative densities of immunobands were 11.58 for the TGF-beta1 only group and 2.75 for the siRNA treatment group, compared with the no treatment control group (p < 0.001). CONCLUSIONS: Our data suggest that Hsp47 may be related to the TGF-beta1-induced transdifferentiation of human Tenon's fibroblasts to myofibroblasts.  相似文献   

18.
PURPOSE: To establish CD34 as a cell surface marker for human keratocytes and to demonstrate its downregulation during TGF-beta1-induced myofibroblast differentiation. METHODS: Collagenase-isolated keratocytes were seeded and subcultured on plastic or amniotic membrane matrix (AM) in DMEM, with or without 10% FBS, in serum-free DMEM containing insulin-transferrin-sodium selenite (ITS) with 10, 100, and 1000 pg/mL TGF-beta1 or in DMEM with 1% FBS and 10 ng/mL TGF-beta1. Protein expression of CD34 and alpha-smooth muscle actin (alpha-SMA) was measured by Western blot and immunostaining. RESULTS: Keratocytes, expressing CD34 in normal human corneas, continued to express CD34 when cultured on AM in serum-containing medium and on plastic in serum-free medium, but expression was lost on plastic in serum-containing medium. In serum-containing medium, expression of CD34, but not alpha-SMA, was maintained by cells continuously passaged on AM. In contrast, cells expressed alpha-SMA without CD34 when continuously passaged on plastic. Expression of alpha-SMA by cells on plastic was downregulated without CD34 when subcultured on AM. CD34 expression by cells on AM was downregulated, whereas alpha-SMA expression was upregulated when cells were subcultured on plastic. In serum-free medium, CD34 expression was maintained by cells treated with 10 pg/mL TGF-beta1, but was lost when treated with a higher concentration on plastic for 5 days. In 1% FBS, AM-expanded keratocytes rapidly became alpha-SMA-expressing myofibroblasts if subpassaged on plastic and treated with 10 ng/mL TGF-beta1, but failed to do so if cultured on AM, even for 7 days. CONCLUSIONS: These findings indicate that CD34 is expressed by human keratocytes in vivo and in vitro. Myofibroblast differentiation promoted by TGF-beta1 downregulates CD34 expression. Maintenance of CD34 expression by AM is consistent with a reported effect of AM on suppressing TGF-beta signaling.  相似文献   

19.
SPARC (secreted protein, acidic and rich in cysteine) is a matricellular glycoprotein that regulates morphogenesis, cellular proliferation, and differentiation. SPARC is a critical factor in the development and maintenance of lens transparency in mice. SPARC-null mice develop lenticular opacity at an early age that progresses gradually to mature cataract. Despite the high level of homology between the mouse and human genes, little is known about SPARC in the human lens. We have studied the expression of SPARC protein in human lens and surrounding ocular tissues from normal human donors (60-70 years old). Immunohistochemical and immunoblot analyses were conducted on lens, aqueous humor, vitreous, ciliary epithelium, pigment epithelium, cornea and retina. The epithelia and capsule of the lens contained SPARC, whereas the cortical and nuclear fibers did not. In contrast, the aqueous humor and vitreous, which provide nutrients to the lens and regulate its development and function, contained significant amounts of SPARC. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of extracts of various ocular tissues revealed bands of 43 and 29 kD after disulfide bond reduction that were reactive with anti-SPARC IgG. Despite the presence of protease inhibitors during sample preparation, we observed cleavage of intact SPARC to a 29 kD fragment, a peptide reported in other tissues and attributed to endogenous proteolysis. In addition, bands of molecular mass 150 and 200 kD were present that appeared to be disulfide-bonded complexes of SPARC monomers. Human cornea, ciliary epithelium, pigment epithelium and retina also contained SPARC. The presence of SPARC in the aqueous humor and vitreous, as well as in the lens, indicates a functional importance of SPARC in adult human eye as well as in lens development.  相似文献   

20.
BACKGROUND: Growth factors circulating with the aqueous may play an important role in the pathogenesis of exfoliation syndrome (XFS), which is characterized by excessive synthesis and accumulation of abnormal extracellular material. METHODS: We investigated the concentration of three ubiquitous growth factors (TGF-beta1, TGF-beta2 and IGF-1) in the aqueous humour of 50 patients with XFS (27 from Erlangen, 23 from Thessaloniki) and 54 age-matched controls (27 from Erlangen, 27 from Thessaloniki). This study was performed in two centres, independently of each other, using different assay systems. RESULTS: In the aqueous humour samples collected in Erlangen, both the levels of total TGF-beta1 (P<0.001) and mature TGF-beta1 (P<0.05) were significantly increased in XFS patients compared with controls. Specifically, for total TGF-beta1 patients with XFS exhibited higher a mean value (90.5 +/- 37.4 pg/ml) than controls (30.2 +/- 8.3 pg/ml). The mean level of mature TGF-beta1 was also higher in XFS (14.2 +/- 2.8 pg/ml) than in controls (4.9 +/- 5.5 pg/ml). No difference was found between XFS and controls in the levels of total or mature TGF beta2 in the aqueous or in the level of these two growth factors in the serum. In aqueous humour samples collected in Thessaloniki a significant difference between XFS and controls was also observed for mature TGF-beta1 (XFS 17.06 +/- 11.02 pg/ml vs controls 9.01 +/- 5.69 pg/ml; P=0.006). No difference was observed in TGF-beta2 concentration or IGF-1 concentration in the aqueous. No correlation could be established between protein concentration and the levels of the three growth factors measured. A significant correlation was found between age and protein concentration in XFS, but not in the controls. CONCLUSION: Since TGF-beta1 induces the synthesis and accumulation of extracellular matrix, it is hypothesized that TGF-beta1 plays an important role in the pathogenesis of XFS. Our data suggest that the increased levels of TGF-beta1 are most likely due to enhanced local synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号