首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The vesicular stomatitis virus (VSV) L polymerase protein possesses two methyltransferase (MTase) activities, which catalyze the methylation of viral mRNA cap structures at the guanine-N7 and 2'-O-adenosine positions. To identify L sequences required for the MTase activities, we analyzed a host range (hr) and temperature-sensitive (ts) mutant of VSV, hr8, which was defective in mRNA cap methylation. Sequencing hr8 identified five amino acid substitutions, all residing in the L protein. Recombinant VSV were generated with each of the identified L mutations, and the presence of a single G1481R substitution in L, located between conserved domains V and VI, was sufficient to produce a dramatic reduction (about 90%) in overall mRNA methylation. Cap analysis showed residual guanine-N7 methylation and reduced 2'-O-adenosine methylation, identical to that of the original hr8 virus. When recombinant viruses were tested for virus growth under conditions that were permissive and nonpermissive for the hr8 mutant, the same single L mutation, G1481R, was solely responsible for both the hr and ts phenotypes. A spontaneous suppressor mutant of the rG1481R virus that restored both growth on nonpermissive cells and cap methylation was identified and mapped to a single change, L1450I, in L. Site-directed mutagenesis of the region between domains V and VI, amino acids 1419-1672 of L, followed by the rescue of recombinant viruses identified five additional virus mutants, K1468A, R1478A/D1479A, G1481A, G1481N, and G1672A, that were all hr and defective in mRNA cap methylation. Thus, in addition to the previously characterized domain VI [Grdzelishvili, V.Z., Smallwood, S., Tower, D., Hall, R.L., Hunt, D.M., Moyer, S.A., 2005. A single amino acid change in the L-polymerase protein of vesicular stomatitis virus completely abolishes viral mRNA cap methylation. J. Virol. 79, 7327-7337; Li, J., Fontaine-Rodriguez, E.C., Whelan, S.P., 2005. Amino acid residues within conserved domain VI of the vesicular stomatitis virus large polymerase protein essential for mRNA cap methyltransferase activity. J. Virol. 79, 13373-13384], a new region between L amino acids 1450-1481 was identified which is critical for mRNA cap methylation.  相似文献   

6.
7.
We have previously described the isolation of a RNA- temperature-sensitive (ts) mutant of poliovirus type 1, ts035, after chemical mutagenesis by 5-fluorouracil. The ts defect of ts035 correlated with defective RNA replication, since the two characters corevert in the case of spontaneous revertants. The alteration of a trans-acting replication function of ts035 was suggested by significant rescue following mixed infection with another ts mutant, ts221, or with wild-type virus. Protein synthesis appeared normal at 39 degrees (nonpermissive temperature) in shift-up experiments and no defect of RNA elongation was evidenced when the activity of replication complexes or purified polymerase was measured at 39 degrees. These results provide circumstantial evidence that the initiation of ts035 RNA synthesis at 39 degrees is impaired. Molecular cloning of the ts035 genome allowed us to construct a recombinant virus with the same ts phenotype as ts035, by the transfer of a fragment of the mutant polymerase gene into the wild-type genome. Two mutations were present in this region of the ts035 genome but the determination of nucleotide sequences in the case of ts035 revertants indicated that only the substitution from A to G at nucleotide 7256 was necessary for the ts phenotype. This mutation replaces Asn 426 by an Asp in polypeptide 3D, the viral polymerase.  相似文献   

8.
9.
Redistributive properties of the vesicular stomatitis virus polymerase   总被引:1,自引:0,他引:1  
W B Helfman  J Perrault 《Virology》1989,171(2):319-330
  相似文献   

10.
11.
12.
13.
14.
15.
16.
Decay of vesicular stomatitis virus mRNAs in vivo.   总被引:6,自引:0,他引:6  
  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号