首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acupuncture at Baihui (GV20) and Dazhui (GV14) reduces neuronal loss and attenuates ultra- structural damage in cerebral ischemic rats. However, whether acupuncture can treat addiction and prevent readdiction through changes to brain cell ultrastructure remains unknown. In this study, cell apoptosis was observed in the hippocampus and frontal lobe of heroin readdicted rats by electron microscopy. Immunohistochemical staining displayed a reduction in Bcl-2 ex- pression and an increase in Bax expression in the hippocampus and frontal lobe. After rats were given acupuncture at Baihui and Dazhui, the pathological damage in the hippocampus and frontal lobe was significantly reduced, Bcl-2 expression was upregulated and Bax expression was downregulated. Acupuncture exerted a similar effect with methadone, a commonly used drug for clinical treatment of drug addiction. Experimental findings suggest that acupuncture at Dazhui and Baihui can prevent brain cell apoptosis in heroin readdicted rats.  相似文献   

2.
3.
Preliminary basic research and clinical findings have demonstrated that electroacupuncture ther- apy exhibits positive effects in ameliorating depression. However, most studies of the underlying mechanism are at the single gene level; there are few reports regarding the mechanism at the whole-genome level. Using a rat genomic gene-chip, we profiled hippocampal gene expression changes in rats after electroacupuncture therapy. Electroacupuncture therapy alleviated depres- sion-related manifestations in the model rats. Using gene-chip analysis, we demonstrated that electroacupuncture at Baihui (DU20) and Yintang (EX-HN3) regulates the expression of 21 genes. Real-time PCR showed that the genes Vgf, lgf2, Trnp32, Loc500373, Hifla, Folrl, Nrnb, and Rtn were upregulated or downregulated in depression and that their expression tended to nor- malize after electroacupuncture therapy. These results indicate that electroacupuncture at Baihui and Yintang modulates depression by regulating the expression of particular genes.  相似文献   

4.
The present study co-cultured human embryonic olfactory ensheathing cells, human Schwann cells, human amniotic epithelial cells and human vascular endothelial cells in complete culture medium- containing cerebrospinal fluid. Enzyme linked immunosorbent assay was used to detect nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor secretion in the supernatant of co-cultured cells. Results showed that the number of all cell types reached a peak at 7-10 days, and the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor peaked at 9 days. Levels of secreted nerve growth factor were four-fold higher than brain-derived neurotrophic factor, which was three-fold higher than glial cell line-derived neurotrophic factor. Increasing concentrations of cerebrospinal fluid (10%, 20% and 30%) in the growth medium caused a decrease of neurotrophic factor secretion Results indicated co-culture of human embryonic olfactory ensheathing cells, human Schwann cells human amniotic epithelial cells and human vascular endothelial cells improved the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor. The reduction of cerebrospinal fluid extravasation at the transplant site after spinal cord injury is beneficial for the survival and secretion of neurotrophic factors from transplanted cells.  相似文献   

5.
The present study determined the topographical distribution profile for [125I]-glial cell line-derived neurotrophic factor in unlesioned and MPTP-lesioned (unilateral intracarotid injection) rhesus monkeys following an intraventricular injection. Autoradiographic analysis showed that following a bolus intraventricular injection, there was widespread distribution of [125I]-glial cell line-derived neurotrophic factor throughout the ventricular system (walls of lateral, third, and fourth ventricles and aqueduct), with some accumulation at the lateral ventricle injection site, possibly associated with the ependymal cell layer. In both unlesioned and MPTP-lesioned monkeys, there was labelling of the cerebral cortex, substantia nigra/ventral tegmental area and sequestration of [125I]-glial cell line-derived neurotrophic factor adjacent to the hippocampal formation, globus pallidus, ventral to and in the substantia nigra. However, [125I]-glial cell line-derived neurotrophic factor did not appear to diffuse readily or accumulate in the caudate–putamen even though there was some penetration away from the ventricular walls. Throughout the brain, there was also substantial non-parenchymal labelling of [125I]-glial cell line-derived neurotrophic factor, possibly associated with extracellular matrix components, meninges and vasculature due to the heparin binding properties of glial cell line-derived neurotrophic factor. In addition to the extensive loss of tyrosine hydroxylase immunoreactivity within the substantia nigra, there was also decreased accumulation of [125I]-glial cell line-derived neurotrophic factor and reduced glial cell line-derived neurotrophic factor immunoreactivity ipsilateral to the lesion. Microscopic analysis showed that glial cell line-derived neurotrophic factor immunoreactivity was associated with upper cortical layers including a high density of immunoreactivity at the surface of the cortex (meningeal, pial layer, vasculature) and around the ventricular walls (with some cellular labelling and labelling of vasculature). Moderate staining was observed in nigral cells contralateral to the MPTP-lesion, whereas only minimal levels of that glial cell line-derived neurotrophic factor immunoreactivity were detected ipsilateral to the lesion. This study shows that intraventricularly injected glial cell line-derived neurotrophic factor accumulates not only around the ventricular walls, but also in specific brain regions in which sub-populations of cells are more readily accessible than others. The presence of cells labelled with [125I] and immunopositive for glial cell line-derived neurotrophic factor in the substantia nigra indicates that these cells are a target for the trophic factor following intraventricular administration. Thus, the behavioral improvement observed in MPTP-lesioned monkeys following an intraventricular injection of glial cell line-derived neurotrophic factor is likely the result of activation of nigral cells.  相似文献   

6.
Apomorphine, the catechol-derived dopamine D1/D2 receptor agonist, is currently in use as an antiparkinsonian drug. It has previously been reported that apomorphine was able to elicit expression of the enzyme tyrosine hydroxylase, a marker for DA neurons, in the fetal rat cerebrocortical cultures whilst in the presence of brain-derived neurotrophic factor. The present study demonstrated that treatment of fetal rat ventral mesencephalic cultures with apomorphine caused a marked increase in the number of dopaminergic neurons. The action of apomorphine can be mimicked by dopamine receptor (D1 and D2) agonists or blocked by preincubation with D1/D2 receptor antagonists. Incubation of recipient mesencephalic cultures with the conditioned medium derived from apomorphine-stimulated donor mesencephalic cultures elicited a 3.72-fold increase in the number of TH-positive neurons. Increased mRNA expression levels of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor were also found in the apomorphine-treated mesencephalic cells along with concomitant protein expression increases in the conditioned medium. Moreover, the trophic activity observed could be partially neutralized by antibodies against either brain-derived neurotrophic factor or glial cell line-derived neurotrophic factor. Cultured fetal striatal cells, but not hippocampal cells, also responded to apomorphine treatment. The membrane filtration studies revealed that both <30 kDa and >50 kDa fractions contained trophic activities. The latter characterization distinguishes them from most known neurotrophic factors. These results suggest that the apomorphine-modulated development of dopaminergic neurons may be mediated by activation of the dopamine receptor subtypes D1 and D2 thereby increasing the production of multiple growth factors.  相似文献   

7.
8.
Chen ZY  Chai YF  Cao L  Lu CL  He C 《Brain research》2001,902(2):363-276
Adult rat sciatic nerve was transected and sutured with an entubulation technique. The nerve interstump gap was filled with either collagen gel (COL) or collagen gel mixed with glial cell line-derived neurotrophic factor (COL/GDNF). Four weeks after nerve transection, horseradish peroxidase (HRP)-labelled spinal cord motoneurons and the myelinated distal stump axons were quantified. Compared with the COL group, the percentages of labeled spinal somas and axon number were significantly increased after topically applied glial cell line-derived neurotrophic factor (GDNF). The functional recovery of the transected nerve was improved in COL/GDNF group. GAP-43 expression was also significantly higher in COL/GDNF group 1 and 2 weeks after sciatic nerve axotomy vs. COL group. These data provide strong evidence that GDNF could promote axonal regeneration in adult rats, suggesting the potential use of GDNF in therapeutic approaches to peripheral nerve injury and neuropathies.  相似文献   

9.
Glial cell line-derived neurotrophic factor recombinant adenovirus vector-transfected bone marrow mesenchymal stem cells were induced to differentiate into neuron-like cells using inductive medium containing retinoic acid and epidermal growth factor. Cell viability, micro- tubule-associated protein 2-positive cell ratio, and the expression levels of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43 protein in the su- pernatant were significantly higher in glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells compared with empty virus plasmid-transfected bone marrow mes- enchymal stem cells. Furthermore, microtubule-associated protein 2, glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein743 mRNA levels in cell pellets were statistically higher in glial cell line-derived neurotrophic factor/bone marrow mesen- chymal stem cells compared with empty virus plasmid-transfected bone marrow mesenchymal stem cells. These results suggest that glial cell line-derived neurotrophic factor/bone marrow mesenchymal stem cells have a higher rate of induction into neuron-like cells, and this enhanced differentiation into neuron-like cells may be associated with up-regulated expression of glial cell line-derived neurotrophic factor, nerve growth factor and growth-associated protein-43.  相似文献   

10.
To evaluate the effects of glial cell line-derived neurotrophic factor transplantation combined with adipose-derived stem cells-transdifferentiated motoneuron delivery on spinal cord con-tusion injury, we developed rat models of spinal cord contusion injury, 7 days later, injected adipose-derived stem cells-transdifferentiated motoneurons into the epicenter, rostral and caudal regions of the impact site and simultaneously transplanted glial cell line-derived neuro-trophic factor-gelfoam complex into the myelin sheath. Motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery reduced cavity formations and increased cell density in the transplantation site. The combined therapy exhibited superior promoting effects on recovery of motor function to transplantation of glial cell line-derived neurotrophic factor, adipose-derived stem cells or motoneurons alone. These ifndings suggest that motoneuron-like cell transplantation combined with glial cell line-derived neurotrophic factor delivery holds a great promise for repair of spinal cord injury.  相似文献   

11.
Studies of the trophic activities of brain-derived neurotrophic factor and neurotrophin-3 indicate that both molecules support the survival of a number of different embryonic cell types in culture. We have shown that mRNAs for brain-derived neurotrophic factor and neurotrophin-3 are localized to specific ventral mesencephalic regions containing dopaminergic cell bodies, including the substantia nigra and ventral tegmental area. In the present study, in situ hybridization with 35S-labeled cRNA probes for the neurotrophin mRNAs was combined with neurotoxin lesions or with immunocytochemistry for the catecholamine-synthesizing enzyme tyrosine hydroxylase to determine whether the dopaminergic neurons, themselves, synthesize the neurotrophins in adult rat midbrain. Following unilateral destruction of the midbrain dopamine cells with 6-hydroxydopamine, a substantial, but incomplete, depletion of brain-derived neurotrophic factor and neurotrophin-3 mRNA-containing cells was observed in the ipsilateral substantia nigra pars compacta and ventral tegmental area. In other rats, combined in situ hybridization and tyrosine hydroxylase immunocytochemistry demonstrated that the vast majority of the neurotrophin mRNA-containing neurons in the substantia nigra and ventral tegmental area were tyrosine hydroxylase immunoreactive. Of the total population of tyrosine hydroxylase-positive cells, double-labeled neurons constituted 25–50% in the ventral tegmental area and 10–30% in the substantia nigra pars compacta, with the proportion being greater in medial pars compacta. In addition, tyrosine hydroxylase/neurotrophin mRNA coexistence was observed in neurons in other mesencephalic regions including the retrorubral field, interfascicular nucleus, rostral and central linear nuclei, dorsal raphe nucleus, and supramammillary region. The present results demonstrate brain-derived neurotrophic factor and neurotrophin-3 expression by adult midbrain dopamine neurons and support the suggestion that these neurotrophins influence dopamine neurons via autocrine or paracrine mechanisms. These data raise the additional possibility that inappropriate expression of the neurotrophins by dopaminergic neurons could contribute to the neuropathology of disease states such as Parkinson's disease and schizophrenia. © 1994 Wiley-Liss, Inc.  相似文献   

12.
Notch pathway activation maintains neural stem cells in a proliferating state and increases nerve repair capacity. To date, studies have rarely focused on changes or damage to signal transduction pathways during cerebral hemorrhage. Here, we examined the effect of acupuncture in a rat model of cerebral hemorrhage. We examined four groups: in the control group, rats received no treatment. In the model group, cerebral hemorrhage models were established by infusing non-heparinized blood into the brain. In the acupuncture group, modeled rats had Baihui(DU20) and Qubin(GB7) acupoints treated once a day for 30 minutes. In the DAPT group, modeled rats had 0.15 μg/m L DAPT solution(10 m L) infused into the brain. Immunohistochemistry and western blot results showed that acupuncture effectively inhibits Notch1 and Hes1 protein expression in rat basal ganglia. These inhibitory effects were identical to DAPT, a Notch signaling pathway inhibitor. Our results suggest that acupuncture has a neuroprotective effect on cerebral hemorrhage by inhibiting Notch-Hes signaling pathway transduction in rat basal ganglia after cerebral hemorrhage.  相似文献   

13.
Wefstaedt P  Scheper V  Lenarz T  Stöver T 《Neuroreport》2005,16(18):2011-2014
Cochlear implant performance depends on the number of surviving excitable auditory neurons and prevention of degradation of nerve-electrode interaction caused by adverse tissue reactions. Glucocorticoids and neurotrophic factors are promising options for a possible therapeutic intervention. Neurons dissociated from the spiral ganglion of rats (3-5 days old) were cultivated with addition of brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and the corticosteroid dexamethasone in various concentrations (25, 50, 100 ng/ml) and in combination with each other (100 ng/ml). The results suggest that a combination of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor does not enhance spiral ganglion cell survival significantly when compared with single brain-derived neurotrophic factor treatment (100 ng/ml). In addition, dexamethasone application did not interfere with the survival-promoting effects of brain-derived neurotrophic factor or glial cell line-derived neurotrophic factor.  相似文献   

14.
When intracisternally injected to rat brain, aluminum induced apoptosis as assessed by DNA fragmentation and activation of caspase-3 and caspase-12. Co-administration of glial cell line-derived neurotrophic factor (GDNF) effectively prevented aluminum-induced cell death through reduced apoptosis whereas brain-derived neurotrophic factor (BDNF) accelerated aluminum-induced apoptosis, suggesting that the extent of aluminum neurotoxicity in vivo may depend on the biological activity of the neurotrophic factors.  相似文献   

15.
Acupuncture is widely used in the treatment of cerebral hemorrhage,and it improves outcomes in experimental animal models and patients.However,the mechanisms underlying the effectiveness of acupuncture treatment for cerebral hemorrhage are still unclear.In this study,a model of intracerebral hemorrhage was produced by injecting 50μL autologous blood into the caudate nucleus in Wistar rats.Acupuncture at Baihui(DU20)and Qubin(GB7)acupoints was performed at a depth of 1.0 inch,12 hours after blood injection,once every 24 hours.The needle was rotated at 200 r/min for 5 minutes,For each 30-minute session,needling at 200 r/min was performed for three sessions,each lasting 5 minutes.For the positive control group,at 6 hours,and 1,2,3 and 7 days after induction of hemorrhage,the rats were intraperitoneally injected with 1 mL aniracetam(0.75 mg/mL),three times a day.The Bederson behavioral test was used to assess palsy in the contralateral limbs.Western blot assay was used to examine the expression levels of Nestin and basic fibroblast growth factor in the basal ganglia.Immunohistochemistry was performed to count the number of Nestin-and glial cell line-derived neurotrophic factor-positive cells in the basal ganglia.Acupuncture effectively reduced hemorrhage and brain edema,elevated the expression levels of Nestin and basic fibroblast growth factor in the basal ganglia,and increased the number of Nestin-and glial cell line-derived neurotrophic factor-positive cells in the basal ganglia.Together,these findings suggest that acupuncture promotes functional recovery after cerebral hemorrhage by increasing the expression of neurotrophic factors.The study was approved by the Committee for Experimental Animals of Heilongjiang Medical Laboratory Animal Center(approval No.2017061001)on June 10,2017.  相似文献   

16.
Reimplantation of avulsed rat lumbar spinal ventral roots results in poor recovery of function of the denervated hind limb muscles. In contrast, reimplantation of cervical or sacral ventral roots is a successful repair strategy that results in a significant degree of regeneration. A possible explanation for this difference could be that following lumbar root avulsion, axons have to travel longer distances towards their target muscles, resulting in prolonged denervation of the distal nerve and a diminished capacity to support regeneration. Here we present a detailed spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression following unilateral avulsion and implantation of lumbar ventral roots L3, L4, and L5. Reimplantation prolongs the survival of motoneurons up to one month post-lesion. The first regenerating motor axons entered the reimplanted ventral roots during the first week and large numbers of fibers gradually enter the lumbar plexus between 2 and 4 weeks, indicating that axons enter the reimplanted roots and plexus over an extended period of time. However, motor axon counts show that relatively few axons reach the distal sciatic nerve in the 16 week post-lesion period. The observed initial increase and subsequent decline in expression of glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor correlate with the apparent spatio-temporal decline in the regenerative capacity of motor axons, indicating that the distal nerve is losing its capacity to support regenerating motor axons following prolonged denervation. These findings have important implications for future strategies to promote long-distance regeneration through distal, chronically denervated peripheral nerves.  相似文献   

17.
To examine the possible correlation of aberrant Wnt signaling and pathological changes in Alzheimer's disease, we established a rat model of Alzheimer's disease and measured axin and β-catenin expression in the hippocampus. Rats were pretreated with moxibustion or electroacu-puncture, or both, at Baihui(GV20) and Shenshu(BL23). Axin expression was lower, β-catenin expression was greater, and neuronal cytoplasmic edema was visibly prevented in the rats that had received the pretreatments. Our results suggest that the mechanism underlying the neuro-protective effect of acupuncture and moxibustion in Alzheimer's disease is associated with axin and β-catenin expression in the Wnt signal transduction pathway.  相似文献   

18.
Wistar rats were intragastrical y perfused with Chinese medicines used for tonifying the kidney. These included 0.180 g/mL of Herba Epimedi (Epimedium), Semen Cuscutae (Dodder Seed), or Herba Cistanches (Desertliving Cistanche), 0.04 mg/mL monoamine oxidase-B inhibitor selegiline, or distil ed water for 14 consecutive days to prepare drug-containing serum or blank serum. MES23.5 cells in the logarithmic phase were cultured in media supplemented with 15%drug-containing serum for 24 hours, fol owed by incubation in culture solution containing 100μmol/L H2O2 for 3 hours. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow tometry results showed that al drug-containing serums improved the survival rate of H 2 O 2-injured MES23.5 cells, inhibited pro-apoptotic FasL and caspase-3 expression, promoted anti-apoptotic Bcl-2 expression. However, drug-containing serums had little influence on Fas expression in H 2 O 2-injured MES23.5 cells. Enzyme-linked immunosorbent assay results showed that serum containing Herba Cistanches or Herba Epimedi increased the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cellline-derived neurotrophic factor in injured MES23.5 cells;serum containing Semen Cuscutae only increased brain-derived neurotrophic factor expres-sion; while expression of the above neurotrophic factors remained the same in cells treated with serum containing selegiline. These findings indicate that Chinese medicines used to tonify the kid-ney can protect nerve cells by regulating the expression of apoptosis-related factors and neuro-trophic factors in MES23.5 cells.  相似文献   

19.
Shuganjieyu capsule has been approved for clinical treatment by the State Food and Drug Ad-ministration of China since 2008. In the clinic, Shuganjieyu capsule is often used to treat mild to moderate depression. In the rat model of depression established in this study, Shuganjieyu capsule was administered intragastrically daily before stress. Behavioral results conifrmed that depressive symptoms lessened after treatment with high-dose (150 mg/kg) Shuganjieyu capsule. Immunohistochemistry results showed that high-dose Shuganjieyu capsule signiifcantly increased phosphorylation levels of phosphorylation cyclic adenosine monophosphate response element binding protein and brain-derived neurotrophic factor expression in the medial prefrontal cortex and hippocampal CA3 area. Overall, our results suggest that in rats, Shuganjieyu capsule effec-tively reverses depressive-like behaviors by increasing expression levels of neurotrophic factors in the brain.  相似文献   

20.
Kindling, a phenomenon in which repeated electrical stimulation of certain forebrain structures leads to an increase in the evoked epileptogenic response, is widely used to investigate the mechanisms of epilepsy. Kindling also results in sprouting of the dentate gyrus mossy fiber pathway and triggers astrocyte hypertrophy and increased volume of the hilus of the dentate gyrus. Our previous studies showed that infusion of the neurotrophin nerve growth factor accelerated the behavioral progression of amygdala kindling and affected kindling-induced structural changes in the brain, whereas intrahilar infusion of another neurotrophin, brain-derived neurotrophic factor, delayed amygdala kindling-induced seizure development and reduced the growth in afterdischarge duration, but had little effect on kindling-induced structural changes. In this paper, we report the effects of infusion of glial cell line-derived neurotrophic factor, a neurotrophic factor of the TGF-beta superfamily having similar central nervous system neuronal targets as brain-derived neurotrophic factor. We show that continuous intraventricular infusion of glial cell line-derived neurotrophic factor inhibits the behavioral progression of perforant path kindling-induced seizures without affecting afterdischarge duration. In addition, we demonstrate that intraventricular administration of glial cell line-derived neurotrophic factor prevents kindling-induced increases in hilar area and blocks mossy fiber sprouting in the CA3 region of the hippocampus. Glial cell line-derived neurotrophic factor did not have a statistically significant effect on the mossy fiber density in the inner molecular layer. Our results raise the possibility that glial cell line-derived neurotrophic factor plays a role in kindling and activation-induced neural growth via mechanisms distinct from those of the neurotrophins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号