首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Antimicrobial peptides, such as defensins or cathelicidins, are effector substances of the innate immune system and are thought to have antimicrobial properties that contribute to host defense. The evidence that vertebrate antimicrobial peptides contribute to innate immunity in vivo is based on their expression pattern and in vitro activity against microorganisms. The goal of this study was to investigate whether the overexpression of an antimicrobial peptide results in augmented protection against bacterial infection. C57BL/6 mice were given an adenovirus vector containing the cDNA for LL-37/hCAP-18, a human cathelicidin antimicrobial peptide. Mice treated with intratracheal LL-37/hCAP-18 vector had a lower bacterial load and a smaller inflammatory response than did untreated mice following pulmonary challenge with Pseudomonas aeruginosa PAO1. Systemic expression of LL-37/hCAP-18 after intravenous injection of recombinant adenovirus resulted in improved survival rates following intravenous injection of lipopolysaccharide with galactosamine or Escherichia coli CP9. In conclusion, the data demonstrate that expression of an antimicrobial peptide by gene transfer results in augmentation of the innate immune response, providing support for the hypothesis that vertebrate antimicrobial peptides protect against microorganisms in vivo.  相似文献   

2.
Antimicrobial peptides have emerged as promising agents against antibiotic-resistant pathogens. They represent essential components of the innate immunity and permit humans to resist infection by microbes. These gene-encoded peptides are found mainly in phagocytes and epithelial cells, showing a direct activity against a wide range of microorganisms. Their role has now broadened from that of simply endogenous antibiotics to multifunctional mediators, and their antimicrobial activity is probably not the only primary function. Although antimicrobial peptide deficiency, dysregulation, or overproduction is not known to be a direct cause of any single human disease, numerous studies have now provided compelling evidence for their involvement in the complex network of immune responses and inflammatory diseases, thereby influencing diverse processes including cytokine release, chemotaxis, angiogenesis, wound repair, and adaptive immune induction. The purpose of this review is to highlight recent literature, showing that antimicrobial peptides are associated with several human conditions including infectious and inflammatory diseases, and to discuss current clinical development of peptide-based therapeutics for future use.  相似文献   

3.
Antimicrobial peptides form an important component of the innate immune system. The cathelicidin family, a key member of the antimicrobial peptide defenses, has been highly conserved throughout evolution. Though widespread in mammals, there is currently only one identified human example, hCAP-18/LL-37. The cathelicidins have been found to have multiple functions, in addition to their known antimicrobial and lipopolysaccharide-neutralizing effects. As a result, they profoundly affect both innate and adaptive immunity. Currently, antimicrobial peptides are being evaluated as therapeutic drugs in disease states as diverse as oral mucositis, cystic fibrosis, and septic shock. One such peptide, the cathelicidin hCAP-18/LL-37, is reviewed in detail in the context of its role in lung physiology and defense.  相似文献   

4.
Zhou W 《Immunobiology》2012,217(2):225-234
Anaphylatoxins are a group of small peptides (i.e. C3a, C4a and C5a) generated by complement activation and play important roles in innate immunity through the initiation and regulation of inflammatory responses. More recent studies have revealed that, in addition to their traditional roles in inflammation, anaphylatoxins also significantly influence the adaptive immune response. It does so through a number of mechanisms and by targeting various cells. One important mechanism is that anaphylatoxins (C3a, C5a) act on their receptors expressed on innate immune cells such as dendritic cells. This modulates cell activation and their functions in initiating and regulating T cell responses and thus influencing T cell immunity. This review provides an overview of anaphylatoxins in adaptive immune regulation focusing on their roles in modulating dendritic cell and macrophage functions and the importance of local production of complement in this regulation.  相似文献   

5.
Cathelicidins,essential gene-encoded mammalian antibiotics   总被引:8,自引:0,他引:8  
Cathelicidins are a class of gene-encoded antibiotics found exclusively in mammals. In vitro and in vivo studies indicate they are effector molecules of mammalian innate immunity that can provide a first line of defense against an array of micro-organisms. Additional functions are described for some members of this class of antimicrobial peptides including chemotactic activity, mitogenesis, and angiogenesis. Therefore these peptides are considered to be multifunctional effector molecules. This review discusses recent progress in cathelicidin research and the functional properties of cathelicidins. Current work in this field suggests that understanding this component of the mammalian innate immune system and related natural antibiotic peptides offer an opportunity for the development of novel therapeutic agents with which to battle the continued problem of antimicrobial resistance.  相似文献   

6.
The enteric protozoan parasite Entamoeba histolytica is the cause of potentially fatal amebic colitis and liver abscesses. E. histolytica trophozoites colonize the colon, where they induce inflammation, penetrate the mucosa, and disrupt the host immune system. The early establishment of E. histolytica in the colon occurs in the presence of antimicrobial human (LL-37) and murine (CRAMP [cathelin-related antimicrobial peptide]) cathelicidins, essential components of the mammalian innate defense system in the intestine. Studying this early step in the pathogenesis of amebic colitis, we demonstrate that E. histolytica trophozoites or their released proteinases, including cysteine proteinase 1 (EhCP1), induce intestinal cathelicidins in human intestinal epithelial cell lines and in a mouse model of amebic colitis. Despite induction, E. histolytica trophozoites were found to be resistant to killing by these antimicrobial peptides, and LL-37 and CRAMP were rapidly cleaved by released amebic cysteine proteases. The cathelicidin fragments however, did maintain their antimicrobial activity against bacteria. Degradation of intestinal cathelicidins is a novel function of E. histolytica cysteine proteinases in the evasion of the innate immune system in the bowel. Thus, early intestinal epithelial colonization of invasive trophozoites involves a complex interplay in which the ultimate outcome of infection depends in part on the balance between degradation of cathelicidins by amebic released cysteine proteinases and upregulation of proinflammatory mediators which trigger the inflammatory response.  相似文献   

7.
Antimicrobial peptides human beta-defensins (hBD) are mainly produced by epithelia of several organs including skin, and participate in innate immunity by killing invading pathogens. Besides their microbicidal activities, hBD activate several inflammatory and immune cells. Since hBD are generated by tissues where mast cells are present, we hypothesized that these peptides could activate mast cells. In this study, we demonstrated that both hBD-3 and hBD-4 induced mast cell degranulation, prostaglandin D2 production, intracellular Ca2+ mobilization and chemotaxis. Furthermore, hBD-3- and hBD-4-induced activation of mast cells was suppressed by pertussis toxin and U-73122, inhibitors for G protein and phospholipase C, respectively. We further revealed that hBD-3 and hBD-4 increased vascular permeability in the skin, which was dependent on the presence of mast cells, because hBD-3 and hBD-4 failed to enhance vascular permeability in mast cell-deficient Ws/Ws rats. We also demonstrated that hBD-3 and hBD-4 induced phosphorylation of MAPK p38 and ERK1/2, which were further required for hBD-mediated mast cell activation, as evidenced by the inhibitory effects of p38 and ERK1/2 inhibitors on mast cell degranulation. Together, these findings suggest the key role of hBD in inflammatory responses by recruiting and activating mast cells, and increasing vascular permeability.  相似文献   

8.
Cationic host defence peptides (CHDPs), also known as antimicrobial peptides (AMPs), are essential components of the innate immunity with antimicrobial and pleiotropic immunomodulatory properties. In mammals the two major families of CHDPs are defensins and cathelicidins that comprise an arsenal of innate regulators of principal importance in the host tissues. Research in the last decade has demonstrated that defensins are crucial effectors of both innate and adaptive immunity. Defensins can modulate immune responses, either by stimulation or suppression, thereby controlling inflammatory processes and infections. Currently only few data, mostly hypothetical, focus on the role of defensins in central nervous system (CNS) physiopathology and neurodegeneration. Defensins may function as an initial line of defense within the CNS either as an antimicrobial, immunomodulator, or both. A dysregulation of brain expression of specific defensins might either exacerbate or ameliorate the inflammatory response within the CNS depending upon which extracellular conditions predominate. It is proposed that reduction or abnormal elevation of AMP expression by cerebral microglia, astrocytes or choroid plexus epithelium might contribute to loss of AMP-induced regulation of immune responses, thereby promoting neuronal cell injury and death observed in Alzheimer’s disease and possibly in other neurodegenerative disorders. Nevertheless, whether certain AMPs play a crucial role in the onset or promotion of the neuroinflammatory process and neurodegeneration is currently unknown, thereby emphasizing the necessity of further investigation into the regulatory mechanisms that control innate and adaptive immunity within the brain. Recent data indicate that Helicobacter pylori (H. pylori) induces defensins’ release associated with chronic inflammatory tissue damage. However, it remains unclear whether and how H. pylori evades the attack by defensins. Moreover, recent evidence indicates that H. pylori infection might contribute to the pathogenesis of neurodegenerative diseases, by releasing several inflammatory mediators that could induce blood–brain barrier breakdown, thereby being involved in the pathogenesis of neurodegeneration. However, currently there are no data regarding the potential impact of human defensins on H. pylori-related neurodegenerative disorders. We herein propose that human defensins might contribute to the pathophysiology of H. pylori-related neurodegenerative disorders by modulating variably innate and adaptive immune system responses. Better understanding of the mechanisms regarding human defensins’ possible involvement in H. pylori-induced neurodegeneration might help develop novel therapeutic strategies against H. pylori-related neurodegenerative disorders.  相似文献   

9.
《Mucosal immunology》2013,6(2):224-234
A growing body of evidence suggests that non-hematopoietic stromal cells of the intestine have multiple roles in immune responses and inflammation at this mucosal site. Despite this, many still consider gut stromal cells as passive structural entities, with past research focused heavily on their roles in fibrosis, tumor progression, and wound healing, rather than their contributions to immune function. In this review, we discuss our current knowledge of stromal cells in intestinal immunity, highlighting the many immunological axes in which stromal cells have a functional role. We also consider emerging data that broaden the potential scope of their contribution to immunity in the gut and argue that these so-called “non-immune” cells are reclassified in light of their diverse contributions to intestinal innate immunity and the maintenance of mucosal homeostasis.  相似文献   

10.
The bactericidal machinery of mammalian neutrophils is built up of many components with different chemical properties, involving proteins, peptides and oxygen-dependent radicals. All these components work in synergy, leading to destruction and elimination of ingested microbes. During the eighties, it gradually became clear, that cationic peptides are a part of the oxygen-independent bactericidal effectors in phagocytic cells. In mammals, these antimicrobial peptides are represented by two families, the defensins and the cathelicidins. These potent broad spectra peptides are included as immediate effector molecules in innate immunity. The detailed killing mechanism for these effectors is partly known, but nearly all of them have membrane affinity, and permeate bacterial membranes, resulting in lysis of the bacteria. This peptide-membrane interaction includes also eukaryotic membranes, that implicates cytotoxic effects on host cells. Studies in vitro have established that the microenvironment is critical for their activities. In connection to cystic fibrosis, the effects of microenvironment changes are apparent, causing inactivation of peptide defences and leading to repeated serious bacterial infections. Thus, the importance of the microenvironment is also supported in vivo. Additional functions of these peptides such as chemotactic, mitogenic and stimulatory in the wound healing process suggest further important roles for these peptides.  相似文献   

11.
Immune defense at an interface with the external environment reflects the functions of physical and chemical barriers provided by epithelial and immune cells. Resident epithelial cells, such as keratinocytes, produce numerous peptides with direct antimicrobial activity but also provide a physical barrier against invading pathogens and signal the recruitment of circulating immune cells, such as neutrophils. Antimicrobial peptides such as cathelicidin are produced constitutively by neutrophils and are inducible in keratinocytes in response to infection. The multiplicity of antimicrobial peptides and their cellular sources has resulted in an incomplete understanding of the role of cathelicidin production by epithelial cells in cutaneous immune defense. Therefore, this study sought to evaluate keratinocyte antimicrobial activity and the potential contribution of keratinocyte cathelicidin to host protection against two leading human skin pathogens. Wild-type mice and those with a targeted deletion of the cathelicidin gene, Cnlp, were rendered neutropenic prior to cutaneous infection. Interestingly, Cnlp-deficient mice remained more susceptible to group A streptococcus infection than mice with Cnlp intact, suggesting the involvement of epithelial cell-derived cathelicidin in host immune defense. Keratinocytes were then isolated in culture and found to inhibit the growth of Staphylococcus aureus, an effect that was partially dependent on their ability to synthesize and activate cathelicidin. Further, lentivirus-mediated delivery of activated human cathelicidin enhanced keratinocyte antimicrobial activity. Combined, these data illustrate the potential contribution of keratinocyte cathelicidin to the innate immune defense of skin against bacterial pathogens and highlight the need to consider epithelial antimicrobial function in the diagnosis and therapy of skin infection.  相似文献   

12.
Within the last decade, several peptides have been discovered on the basis of their ability to inhibit the growth of potential microbial pathogens. These so-called antimicrobial peptides participate in the innate immune response by providing a rapid first-line defense against infection. Recent advances in this field have shown that peptides belonging to the cathelicidin and defensin gene families are of particular importance to the mammalian immune defense system. This review discusses the biology of these molecules, with emphasis on their structure, processing, expression and function. Current evidence has shown that both cathelicidins and defensins are multifunctional and that they act both as natural antibiotics and as signaling molecules that activate host cell processes involved in immune defense and repair. The abnormal expression of these peptides has also been associated with human disease. Current and future studies are likely to implicate the presence of antimicrobial peptides in several unexplained human inflammatory disorders and to provide novel therapeutic approaches to the treatment of disease.  相似文献   

13.
Toll-like receptors (TLRs) are important pattern-recognition receptors involved in host defense against a variety of pathogenic microorganisms. Activation of TLRs leads to the production of cytokines, chemokines, antimicrobial peptides, and upregulation costimulatory and adhesion molecules involved in innate and adaptive immune responses. TLRs are expressed on a variety of cell types found in the skin, including keratinocytes and Langerhans cells in the epidermis, resident and trafficking immune-system cells such as macrophages, dendritic cells, T and B cells, and mast cells in the dermis, endothelial cells of the skin microvasculature, and skin stromal cells such as fibroblasts and adipocytes. There have been an increasing number of reports demonstrating that TLRs play a key role in cutaneous host defense mechanisms against bacterial, fungal, and viral pathogens. In addition, TLRs have also been implicated in the pathophysiology of various inflammatory skin diseases.  相似文献   

14.
Atopic dermatitis (AD) is a clinically defined, highly pruritic, chronic inflammatory skin disease. In AD patients, the combination of a genetic predisposition for skin barrier dysfunction and dysfunctional innate and adaptive immune responses leads to a higher frequency of bacterial and viral skin infections. The innate immune system quickly mobilizes an unspecific, standardized first-line defense against different pathogens. Defects in this system lead to barrier dysfunction which results in increased protein allergen penetration through the epidermis and predisposes to secondary skin infections. Two loss-of-function mutations in the epidermal filaggrin gene are associated with AD. Also, inducible endogenous antibiotics such as the antimicrobial peptides cathelicidin and the beta-defensins may show defective function in lesional AD skin. Eczema herpeticum is a disseminated viral infection almost exclusively diagnosed in AD patients, which is based on unmasking of the viral entry receptor nectin-1, lack of cathelicidin production by keratinocytes, and depletion of Type I IFN-producing plasmacytoid dendritic cells from AD skin. Future therapeutic approaches to AD may include enhancement of impaired innate in addition to downregulation of dysfunctional adaptive immunity.  相似文献   

15.
Antimicrobial peptides have been identified as key elements in the innate host defense against infection. Recent studies have indicated that the activity of antimicrobial peptides may be decreased in cystic fibrosis, suggesting a major role for these peptides in host defense against infection. One of the most intensively studied classes of antimicrobial peptides are defensins. Defensins comprise a family of cationic peptides that in human subjects can be divided into the alpha- and beta-defensin subfamilies. The alpha-defensins are produced by neutrophils and intestinal Paneth's cells, whereas beta-defensins are mainly produced by epithelial cells. Although studies on beta-defensins have so far focused on their antimicrobial activity, studies on alpha-defensins have suggested a role of these peptides in inflammation, wound repair, and specific immune responses. alpha-Defensins, which accumulate in airway secretions of patients with various chronic inflammatory lung disorders, were shown to be cytotoxic toward airway epithelial cells and to induce chemokine secretion in several cell types. Furthermore, the capacity of alpha-defensins to promote bacterial adherence to epithelial cells in vitro further supports a role for these peptides in the pathogenesis of chronic obstructive pulmonary disease and cystic fibrosis. Increased numbers of neutrophils are also present in the airways of patients with asthma, suggesting that neutrophils are involved in the pathogenesis of this disease. Because defensins are able to induce histamine release by mast cells and increase the airway hyperresponsiveness to histamine, it is tempting to speculate that defensins may also contribute to the inflammatory processes in asthma. Besides these proinflammatory effects, alpha-defensins may also display anti-inflammatory activities, including regulation of complement activation and proteinase inhibitor secretion. Finally, defensins may be involved in wound repair because defensins increase epithelial cell proliferation. Thus recent defensin research has revealed potential links between the innate and acquired immune system.  相似文献   

16.
Defensins and cathelicidins (LL-37) are major antimicrobial peptides (AMPs) of the innate immune system of the human skin. In normal non-inflamed skin these peptides are negligible, but their expression can be markedly increased in inflammatory skin disease such as psoriasis. We designed this study to identify the expressions of LL-37 in normal human keratinocyte (NHK) and HaCaT cells after exposure to stimulants and to investigate difference of LL-37 expression accompanied with cell differentiation status, and come to understand difference of susceptibility to infection in atopic dermatitis and psoriasis. Expressions of LL-37 in NHKs and HaCaT cells were evaluated by using RT-PCR, Western blotting, and immunohistochemical (IHC) staining at 6, 12, and 24 hr post stimulation after exposure to Ultraviolet B irradiation and lipopolysaccharide. And expression of LL-37 in skin biopsy specimens from patients with atopic dermatitis and psoriasis was determined by immunohistochemical analysis. In time-sequential analyses of LL-37 expression revealed that LL-37 was expressed in NHKs, but not in HaCaT cells. IHC analysis confirmed the presence of abundant LL-37 in the epidermis of psoriasis. Therefore we deduced that expression of LL-37 is affected by UV irradiation, bacterial infection, and status of cell differentiation.  相似文献   

17.
18.
Cathelicidins are antimicrobial peptides, well studied in mammals and found to be multifunctional proteins, important in the fight against bacterial invasion. Cathelicidins in fish have only recently been identified and little is known about their function and importance in the immune system of fish. In this study we have identified several novel cathelicidin proteins in far related fish species such as Atlantic cod (Gadus morhua) and Arctic charr (Salvelinus alpinus). Atlantic cod was found to have at least three cathelicidin genes of which two are nearly identical except for a nine-amino acid duplication in the antimicrobial peptide region. The predicted mature peptides of cod were found to be unusual peptides, made mainly of arginine, glycine and serine (RGS) residues and form a novel class of antimicrobial peptides. Cathelicidin in Arctic charr and brook trout (Salvelinus fontinalis) were found to have an exon deletion in the cathelin region of the protein, which would lead to the deletion of the predicted loop 2 of cathelin and its adjacent beta-strands. This is the first report of a deletion of a whole exon in the family of the cathelicidins. Infection of fish with pathogenic bacteria caused an upregulation of the expression of the cathelicidins in Arctic charr and Atlantic cod and indicates a role of these proteins in fish innate immunity.  相似文献   

19.
The skin represents a physical barrier, which is capable of protecting the body from damaging invaders. Moreover, the skin operates as an active immunological organ, harbouring a complex network of dendritic cells (DCs), which serve as a bridge between innate and adaptive immunity. Equipped with specific pattern recognition receptors (PRRs), DCs are able to capture, process and present antigens to naïve T cells in the skin draining lymph nodes, thereby inducing adaptive antigen‐specific immunity. However, the outcome of the immune response is shaped by numerous factors including the DC subtype, maturation state of DCs, composition of PRRs expressed by DCs, type of pathogen as well as factors in the microenvironment. Thus, cutaneous DC subtypes are known to contribute to both, peripheral tolerance and the generation of allergic skin inflammation. Identifying the underlying mechanisms is a challenging task in understanding DC biology. Based on their functional diversity, cutaneous DCs might represent promising therapeutic targets, with the potential of down‐modulating pro‐inflammatory immune responses and inducing tolerogenic pathways, thereby ensuring the maintenance of tissue homeostasis and restoring the balance of dysregulated immune reactions in the context of allergic skin diseases. In this review, we summarize the versatile character of DC subtypes in human skin and highlight their phenotypic characteristics and role in allergic skin inflammation. In addition, we discuss current therapeutic approaches for the management of inflammatory skin diseases such as atopic dermatitis with the main focus on strategies targeting DCs. We point towards potential challenges, benefits, risks and limitations for the treatment of patients.  相似文献   

20.
Several diseases of the airways have a strong component of allergic inflammation in their cause, including allergic rhinitis, asthma, polypoid chronic rhinosinusitis, eosinophilic bronchitis, and others. Although the roles played by antigens and pathogens vary, these diseases have in common a pathology that includes marked activation of epithelial cells in the upper airways, the lower airways, or both. Substantial new evidence indicates an important role of epithelial cells as both mediators and regulators of innate immune responses and adaptive immune responses, as well as the transition from innate immunity to adaptive immunity. The purpose of this review is to discuss recent studies that bear on the molecular and cellular mechanisms by which epithelial cells help to shape the responses of dendritic cells, T cells, and B cells and inflammatory cell recruitment in the context of human disease. Evidence will be discussed that suggests that secreted products of epithelial cells and molecules expressed on their cell surfaces can profoundly influence both immunity and inflammation in the airways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号