首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Functional and molecular approaches were used to characterize the beta-AR subtypes mediating relaxation of rat ileal smooth muscle. 2. In functional studies, (-)-isoprenaline relaxation was unchanged by CGP20712A (beta1-AR antagonist) or ICI118551 (beta2-AR antagonist) but shifted by propranolol (pKB=6.69). (+/-)-Cyanopindolol, CGP12177 and ICID7114 did not cause relaxation but antagonized (-)-isoprenaline relaxation. 3. BRL37344 (beta3-AR agonist) caused biphasic relaxation. The high affinity component was shifted with low affinity by propranolol, (+/-)-cyanopindolol, tertatolol and alprenolol. CL316243 (beta3-AR agonist) relaxation was unaffected by CGP20712A or ICI118551 but blocked by SR58894A (beta3-AR antagonist; pA2 = 7.80). Enhanced relaxation after exposure to forskolin and pertussis toxin showed that beta3-AR relaxation can be altered by manipulation of components of the adenylate cyclase signalling pathway. 4. The beta-AR agonist RO363 relaxed the ileum (pEC50=6.18) and was blocked by CGP20712A. Relaxation by the beta2-AR agonist zinterol (pEC50=5.71) was blocked by SR58894A but not by ICI118551. 5. In rat ileum, beta1-, beta2- and beta3-AR mRNA was detected. Comparison of tissues showed that beta3-AR mRNA expression was greatest in WAT>colon=ileum >cerebral cortex>soleus; beta1-AR mRNA was most abundant in cerebral cortex > WAT > ileum = colon > soleus; beta2-AR mRNA was expressed in soleus > WAT > ileum = colon > cerebral cortex. 6. These results show that beta3-ARs are the predominant beta-AR subtype mediating rat ileal relaxation while beta1-ARs may produce a small relaxation. The beta2-AR agonist zinterol produces relaxation through beta3-ARs and there was no evidence for the involvement of beta2-ARs in relaxation despite the detection of beta2-AR mRNA.  相似文献   

2.
1. This study examines beta(1)-, beta(2)- and beta(3)-adrenoceptor (AR)-mediated responses, mRNA levels and radioligand binding in ileum from beta(3)-AR knock-out (-/-) (KO) and wild type (+/+) (FVB) mice. 2. In KO and FVB mice, SR59230A (100 nM) (beta(3)-AR antagonist) antagonized responses to (-)-isoprenaline in both KO and FVB mice. (-)-Isoprenaline mediated relaxation of ileum was antagonized weakly by ICI118551 (100 nM) (beta(2)-AR antagonist). Responses to (-)-isoprenaline were more strongly antagonized by CGP20712A (100 nM) (beta(1)-AR antagonist), propranolol (1 microM) (beta(1)-/beta(2)-AR antagonist), carvedilol (100 nM) (non-specific beta-AR antagonist), and CGP12177A (100 nM) (beta(1)-/beta(2)-AR antagonist) in ileum from KO than in FVB mice. 3. Responses to CL316243 (beta(3)-AR agonist) in ileum from FVB mice were antagonized by SR59230A (100 nM) but not by propranolol (1 microM) or carvedilol (100 nM). CL316243 was ineffective in relaxing ileum from KO mice. 4. CGP12177A had no agonist actions in ileum from either KO or FVB mice. 5. beta(1)-AR mRNA levels were increased 3 fold in ileum from KO compared to FVB mice. This was associated with an increased maximum number of beta(1)-/beta(2)-AR binding sites (B(max)). beta(2)-AR mRNA levels were unaffected while no beta(3)-AR mRNA was detected in KO mice. 6. In mouse ileum, beta(3)-ARs and to a lesser extent beta(1)-ARs are the predominant adrenoceptor subtypes mediating relaxation in ileum from FVB mice. In KO mice beta(1)-ARs functionally compensate for the lack of beta(3)-ARs, and this is associated with increased beta(1)-AR mRNA and levels of binding.  相似文献   

3.
In adult rat ventricular cardiomyocytes alpha1-adrenoceptor (AR) stimulation causes increases in protein synthesis. On the other hand beta1-AR stimulation inhibits protein synthesis, and evokes apoptotic cell death. We studied, in adult rat ventricular cardiomyocytes, effects of noradrenaline (NA), adrenaline (ADR) and phenylephrine (PE) on protein synthesis (assessed by [3H]-phenylalanine incorporation into the cardiomyocytes) in relation to effects on early apoptosis (measured by Annexin V/propidium iodide staining). PE (10(-9)-10(-5) M) induced protein synthesis was not affected by the beta1-AR blocker CGP 20712A (CGP, 300 nM) or beta2-AR blocker ICI 118,551 (ICI, 55 nM). ADR (10(-9)-10(-5) M) induced protein synthesis was enhanced by CGP and decreased by ICI. Pretreatment of the cardiomyocytes with pertussis toxin (PTX) decreased NA- and ADR- induced protein synthesis, but did not affect PE-effects. NA (10(-5) M) and ADR (10(-5) M) caused a significant increase in the number of apoptotic cells; these effects were enhanced by PTX-treatment, abolished by CGP, but not significantly affected by ICI. Furthermore, there was a significant negative correlation between catecholamine-evoked apoptosis and catecholamine-induced hypertrophic effects. We conclude that, in ventricular cardiomyocytes of adult rats, growth-promoting effects of NA and ADR are composed of alpha1A-AR mediated increase in protein synthesis and beta1-AR mediated apoptosis that counteracts increases in protein synthesis. The role of beta2-adrenoceptor appears to be a balance of antiapoptotic effects via a PTX-sensitive pathway and proapoptotic effects via a GS-adenylyl cyclase pathway.  相似文献   

4.
The pharmacological properties of SWR-0315NA, (E,Z)-[4[[1-[2-[(3-phenoxy-2-hydroxy propyl)]amino]ethyl]-1-propenyl]phenoxy]acetic acid sodium, were compared with those of (-)-isoproterenol. In the radioligand binding studies of [(125)I]iodocyanopindolol with COS-7 cell membranes that transiently expressed human beta-adrenoceptor (beta-AR) subtypes, SWR-0315NA exhibited 1-fold and 2-fold greater binding affinities for beta(3)-AR than those for beta(1)- and beta(2)-ARs, respectively. The maximal stimulatory effects of SWR-0315NA on cAMP accumulation in CHO cells expressing all the beta-AR subtypes were 79%, 3% and 93% for beta(1)-, beta(2)- and beta(3)-ARs of those produced by (-)-isoproterenol, respectively. SWR-0315NA has 26.3-fold and more than 630-fold greater selectivity for beta(3)-AR than those for beta(1)- and beta(2)-ARs in potency, respectively. These results indicate that although SWR-0315NA has lower binding selectivity towards beta-AR subtypes, it is a selective agonist with high intrinsic activity for beta(3)-AR as compared with (-)-isoproterenol.  相似文献   

5.

Background

In addition to the regulation of blood pressure, α2- and β-adrenoceptor (AR) subtypes play an important role in the modulation of noradrenergic neurotransmission in the human CNS and PNS. Several studies suggest that the α2-AR responsiveness in cells and tissues after chronic epinephrine (EPI) or norepinephrine (NE) exposure may vary, depending on the β-AR activity present there. Recently, we reported that in BE(2)-C human neuroblastoma cells (endogenously expressing α2A- and β2-AR), chronic EPI treatment (300 nM) produced a dramatic β-adrenoceptor-dependent desensitization of the α2A-AR response. The aim of this study is to determine if stable addition of a β2-AR to a second neuroblastoma cell line (SH-SY5Y), that normally expresses only α2A-ARs that are not sensitive to 300 nM EPI exposure, would suddenly render α2A-ARs in that cell line sensitive to treatment with the same EPI concentration.

Methods

These studies employed RT-PCR, receptor binding and inhibition of cAMP accumulation to confirm α2-AR subtype expression. Stable clones of SH-SY5Y cells transfected to stably express functional β2-ARs (SHβ2AR4) were selected to compare sensitivity of α2-AR to EPI in the presence or absence of β2-ARs.

Results

A series of molecular, biochemical and pharmacological studies indicated that the difference between the cell lines could not be attributed to α2-AR heterogeneity. We now report that after transfection of functional β2-AR into SH-SY5Y cells (SHβ2AR4), chronic treatment with modest levels of EPI desensitizes the α2A-AR. This effect results from a β2-AR dependent down-regulation of native α2A-ARs by EPI accompanied by enhanced translocation of GRK2 and GRK3 to the membrane (required for GRK-mediated phosphorylation of agonist-occupied receptors).

Conclusion

This study further supports the hypothesis that the presence of the β-AR renders the α2A-AR more susceptible to desensitization with physiological levels of EPI.  相似文献   

6.
The molecular mechanism underlying the export from the endoplasmic reticulum (ER) to the cell surface and its role in the regulation of signaling of adrenergic receptors (ARs) remain largely unknown. In this report, we determined the role of Rab1, a Ras-like GTPase that coordinates protein transport specifically from the ER to the Golgi, in the cell surface targeting and function of endogenous beta- and alpha1-ARs in neonatal rat ventricular myocytes. Adenovirus-driven expression of Rab1 into myocytes selectively increased the cell-surface number of alpha1-AR, but not beta-AR, whereas the dominant-negative mutant Rab1N124I significantly reduced the cell-surface expression of beta-AR and alpha1-AR. Brefeldin A inhibited beta-AR and alpha1-AR export and antagonized the Rab1 effect on alpha1-AR expression. Manipulation of Rab1 function similarly influenced the transport of alpha1A- and alpha1B-ARs as well as beta1- and beta2-ARs. Fluorescent microscopy analysis demonstrated that expression of Rab1N124I and Rab1 small interfering RNA induced a marked accumulation of GFP-tagged beta2-AR and alpha1B-AR in the ER. Consistent with the effects on receptor cell-surface targeting, Rab1 selectively enhanced ERK1/2 activation and hypertrophic growth in response to the alpha1-AR agonist phenylephrine but not to the beta-AR agonist isoproterenol. Rab1N124I inhibited both agonist-mediated ERK1/2 activation and hypertrophic growth in neonatal myocytes. These results demonstrate that the cell-surface targeting and signaling of beta- and alpha1-ARs require Rab1 and are differentially modulated by augmentation of Rab1 function. Our data provide strong evidence implicating the ER-to-Golgi traffic as a site for selective manipulation of distinct AR function in cardiac myocytes.  相似文献   

7.
alpha(2)-ARs regulate brain monoaminergic function by inhibiting neuronal firing and release of monoamine neurotransmitters, noradrenaline (NA), serotonin (5-HT) and dopamine (DA). Both alpha(2A)- and alpha(2C)-AR inhibit monoamine release in vitro in brain slices, but the in vivo roles of individual alpha(2)-AR subtypes in modulating monoamine metabolism have not been characterised. Metabolism of brain monoamine neurotransmitters, locomotor activity and body temperature were investigated in mice with targeted inactivation of the gene encoding alpha(2A)-AR (alpha(2A)-knockout, alpha(2A)-KO) and wild-type (WT) mice after treatment with the alpha(2)-AR agonist dexmedetomidine and the antagonist atipamezole. Dexmedetomidine caused profound hypothermia (up to 14.7 degrees C mean reduction in rectal temperature) and locomotor inhibition in WT mice, and inhibited the turnover of NA, 5-HT and DA, but increased NA turnover in alpha(2A)-KO mice. alpha(2)-AR agonist-induced hypothermia and locomotor inhibition were attenuated, but not totally abolished, in alpha(2A)-KO mice. These results suggest that alpha(2A)-ARs are principally responsible for the alpha(2)-AR mediated inhibition of brain monoamine metabolism, but other alpha(2)-ARs, possibly alpha(2C)-ARs, are also involved, especially in the striatum. However, secondary effects of the physiological alterations caused by drug administration, especially hypothermia, may have contributed to the observed neurochemical changes in WT mice.  相似文献   

8.
In the present investigation the identification of beta -adrenoceptor (beta -ARs) subtypes in the Caco-2 cell line was performed using radiometric assays. beta -ARs were measured using increasing concentrations of the highly specific beta -AR antagonist (-)[(3)H]CGP 12177 (0.06-4 nM), whereas the beta(1)- and beta(2)-AR subtypes discriminated through selective binding assays using the highly selective unlabelled antagonists CGP 20712A and ICI 118551. Atypical beta -ARs were measured using an incubation system formed by higher concentrations (0.6-20 nM) of (-)[(3)H]CGP 12177. beta - Atypical binding site concentrations (69 +/- 5 fmol mg ml(-1)of membrane protein) were higher than beta(1)-ARs (7 +/- 1) and beta(2)-ARs (24 +/- 2), respectively. The different beta -AR subtype affinities were characterized by binding inhibition experiments and the adrenergic agonists displaced the radioligand from its specific binding sites in the following order of potency: isoproterenol > clenbuterol > dobutamine > SR 58611A; for antagonists the order of potency was: propranolol approximately = ICI118551 approximately = CGP20712A. For atypical beta -ARs the order was: SR 58611A > clenbuterol > dobutamine > isoproterenol for agonists and propranolol > CGP 20712A > ICI 118551 for antagonists. As far as in vitro functional studies are concerned, beta -AR subtypes were shown to be coupled to adenylyl cyclase as their stimulation produced cAMP in an amount significantly higher than basal values. cAMP production after stimulation with dobutamine, clenbuterol, isoproterenol, and SR 58611A was measured using a cAMP radioassay kit. The order of efficacy suggested that the stimulation of beta(2)-ARs was the most effective in inducing the activation of cell signalling mechanisms. The identification of functional beta -ARs in a cancer cell line represents the first step in the study of the possible adrenergic control of cellular activities (e.g. proliferation and/or differentiation), which could suggest the use of this cancer cell line as a model for the study of cell activity or possibly new therapeutic strategies.  相似文献   

9.
1. The functional coupling of beta(2)-adrenoceptors (beta(2)-ARs) to murine L-type Ca(2+) current (I(Ca(L))) was investigated with two different approaches. The beta(2)-AR signalling cascade was activated either with the beta(2)-AR selective agonist zinterol (myocytes from wild-type mice), or by spontaneously active, unoccupied beta(2)-ARs (myocytes from TG4 mice with 435 fold overexpression of human beta(2)-ARs). Ca(2+) and Ba(2+) currents were recorded in the whole-cell and cell-attached configuration of the patch-clamp technique, respectively. 2. Zinterol (10 microM) significantly increased I(Ca(L)) amplitude of wild-type myocytes by 19+/-5%, and this effect was markedly enhanced after inactivation of Gi-proteins with pertussis-toxin (PTX; 76+/-13% increase). However, the effect of zinterol was entirely mediated by the beta(1)-AR subtype, since it was blocked by the beta(1)-AR selective antagonist CGP 20712A (300 nM). The beta(2)-AR selective antagonist ICI 118,551 (50 nM) did not affect the response of I(Ca(L)) to zinterol. 3. In myocytes with beta(2)-AR overexpression I(Ca(L)) was not stimulated by the activated signalling cascade. On the contrary, I(Ca(L)) was lower in TG4 myocytes and a significant reduction of single-channel activity was identified as a reason for the lower whole-cell I(Ca(L)). The beta(2)-AR inverse agonist ICI 118,551 did not further decrease I(Ca(L)). PTX-treatment increased current amplitude to values found in control myocytes. 4. In conclusion, there is no evidence for beta(2)-AR mediated increases of I(Ca(L)) in wild-type mouse ventricular myocytes. Inactivation of Gi-proteins does not unmask beta(2)-AR responses to zinterol, but augments beta(1)-AR mediated increases of I(Ca(L)). In the mouse model of beta(2)-AR overexpression I(Ca(L)) is reduced due to tonic activation of Gi-proteins.  相似文献   

10.
Excessive levels of catecholamines have long been known to be cardiotoxic, but less well known are their toxic effects on skeletal muscle. By using an antimyosin monoclonal antibody and quantitative methods to measure the extent of myocyte necrosis, and by employing modulators of adrenoceptors (ARs), including clenbuterol, bupranolol, propranolol, bisoprolol, atenolol, ICI-118551, phenoxybenzamine, prazosin, and yohimbine, the involvement of ARs in isoproterenol-induced myotoxicity was characterized. In the myocardium, the toxic effects were predominantly mediated via the beta(1)-ARs. In the soleus muscle, it was almost solely via the beta(2)-ARs. Myotoxicity was also observed in the myocardium when challenged with the beta(2)-AR agonist clenbuterol. This was found to be mediated via sympathetic presynaptic beta(2)-ARs, leading to enhanced release of norepinephrine. This effect was abolished by prior treatment with reserpine. The skeletal muscle was found to be more sensitive to the myotoxic effects than cardiac muscle at lower doses of beta-AR agonists. These experiments introduce a new way of assaying beta-AR antagonists by classifying them according to their ability to prevent catecholamine-induced myotoxicity. Further research along these lines may deepen understanding of which beta-blockers work best in heart failure therapy.  相似文献   

11.
This study was performed to assess the affinities of propranolol, bopindolol, its two metabolites (18-502, 20-785), pindolol, metoprolol, and atenolol to beta(1)- and beta(2)-adrenoceptor (beta(1)- and beta(2)-AR) subtypes using the membranes of COS-7 cells transiently expressing beta(1)- and beta(2)-AR subtypes. Radioligand-binding assays were performed and the results were compared with those (pKi or pA(2) values) obtained from the membrane-enriched fractions from the rat heart, cerebral cortex, bovine heart, tracheal smooth muscle or guinea-pig heart muscle. The pKi values of propranolol, bopindolol, its two metabolites, atenolol, pindolol and metoprolol to beta(1)-AR subtypes obtained from COS-7 cell membranes were 9.02 +/- 0.04, 7.44 +/- 0.12, 9.38 +/- 0.31, 6. 65 +/- 0.16, 5.55 +/- 0.14, 8.17 +/- 0.15 and 5.99 +/- 0.13, respectively. The rank order of pKi values for these agents to beta-(2)-ARs in COS-7 cell membranes was the same as that of beta(1)-ARs. In addition, good correlations were observed between pKi values of homogenates from various tissues and those of transfected COS-7 cell membranes to beta(1)- and beta(2)-ARs. Although good correlations were also observed between pA(2) values obtained from tracheal smooth muscle (beta(2)-ARs) and pKi values obtained from transfected COS-7 cell membranes to beta(2)-ARs, low correlation coefficient values to beta(1)-ARs were observed, however. In conclusion, these results suggested that binding characteristics of (3)H-CGP-12177 to beta-AR subtypes in these membranes from transfected COS-7 cells are similar to those from membrane fractions of various tissues.  相似文献   

12.
The present study was undertaken to determine the effects of catecholamines, agonists, and antagonists of beta-adrenergic receptors (AR) in the LNCaP cell line. Changes in cellular cyclic adenosine-3',5'-monophosphate (cAMP) levels were quantified by the use of a 6 cAMP response element (CRE)-luciferase reporter gene assay. LNCaP cells were transiently transfected with this gene construct, incubated in 96-well microtiter plates for 24 hr, and then treated with beta-AR agonists and/or antagonists for 4 hr. The rank order of potency for catecholamines and known beta-AR agonists was terbutaline(3.31 nM)>isoproterenol(8.31 nM)> or =fenoterol(15 nM)=epinephrine(16.2 nM)>norepinephrine(77.5 nM)>BRL-37344 [(R(*),R(*))-(+/-)4-[2-[(2-(3-chlorophenyl)-2-hydroxyethyl)amino]propyl]phenoxy acetic acid, sodium salt] (1000 nM)>dobutamine(1770 nM)>CGP12177 (4-[3-[(1,1-dimethylethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazole-2-one hydrochloride) (inactive). The non-selective beta(1)-/-beta(2)-AR antagonists; propranolol and CGP 12177, at 10(-7)M, inhibited luciferase activity induced by these agonists by 80-96%. Propranolol blocked isoproterenol-induced luciferase responses in a competitive manner (K(B)=1.4 nM). In addition, isoproterenol-activated luciferase expression was blocked more potently by ICI 118,551 [(+/-)-1-[2,3-(dihydro-7-methyl-1H-inden-4-yl)oxy]-3-[(1-methylethy) amino]-2-butanol], a beta(2)-AR antagonist than by ICI 89,406 [(+/-)-N-[2-[3-(2-cyanophenoxy-)]-2-hydroxypropylamino]ethyl-N-phenylurea], a beta(1)-AR antagonist, giving K(B) values of 1.07 and 161nM, respectively. These results suggest that the beta(2)-AR is the major subtype mediating catecholamine-induced cAMP changes in LNCaP cells.  相似文献   

13.
The cellular localization, agonist-mediated internalization, and desensitization properties of the alpha(1)-adrenoceptor (alpha(1)-AR) subtypes conjugated with green fluorescent protein (alpha(1)-AR/GFP) were assessed using real-time imaging of living, transiently transfected human embryonic kidney (HEK) 293 cells. The alpha(1B)-AR/GFP fluorescence was detected predominantly on the cell surface. Stimulation of the alpha(1B)-AR with phenylephrine led to an increase in extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and promoted rapid alpha(1B)-AR/GFP internalization. Long-term exposure (15 h) to phenylephrine resulted in desensitization of the alpha(1B)-AR-mediated activation of ERK1/2 phosphorylation. Alpha(1A)-AR/GFP fluorescence was detected not only on the cell surface but also intracellularly. The rate of internalization of the cell surface population alpha(1A)-AR/GFPs was slower than that seen for the alpha(1B)-AR. Agonist exposure also resulted in desensitization of the alpha(1A)-AR-mediated increase in ERK1/2 phosphorylation. The alpha(1D)-AR/GFP fluorescence was detected mainly intracellularly, and this localization was unaffected by exposure to phenylephrine. Phenylephrine treatment of alpha(1D)-AR/GFP expressing cells increased ERK1/2 phosphorylation. However, this increase was not significant. Cotransfection with beta-arrestin 1 did not increase the rate or extent of agonist-stimulated alpha(1A)- or alpha(1B)-AR/GFP internalization. However, a dominant-negative form of the beta-arrestin 1, beta-arrestin 1 (319-418), blocked agonist-mediated internalization of both the alpha(1A)- and alpha(1B)-ARs. These data show that transfected alpha(1)-AR/GFP fusion proteins are functional, that there are differences in the cellular distribution and agonist-mediated internalization between the alpha(1)-ARs, and that agonist-mediated alpha(1)-AR internalization is dependent on arrestins and can be desensitized by long-term exposure to an agonist. These differences could contribute to the diversity in physiologic responses regulated by the alpha(1)-ARs.  相似文献   

14.
Catecholamines are major stimulants of adipose tissue metabolism. Norepinephrine and epinephrine act through three subtypes of beta-adrenoceptors (beta-AR) expressed in the adipocytes. The aim of this work was to study the mechanisms of lipid mobilization in beta1/beta2/beta3-AR triple-knockout (beta-less) mice. Glycerol and nonesterified fatty acids released from isolated adipocytes were measured as an index of lipolytic activity. There was no difference between the two genotypes for basal lipolysis and lipolytic response to corticotropin or to agents acting at the adenylyl cyclase and protein kinase A levels. The lipolytic response to norepinephrine and beta-AR agonists was blunted in beta-less mice. However, a residual low-affinity lipolytic effect was observed in the presence of catecholamines and beta3-AR agonists but not of beta1- or beta2-AR agonists. cAMP levels were increased by a beta-AR agonist in white and brown adipocytes of beta-less mice. The residual lipolytic effect was blocked by beta-AR antagonists. It was mediated neither by alpha1- or alpha2-AR nor dopaminergic, serotonergic, and histaminergic by receptors. Bioinformatic analyses do not provide evidence for a fourth beta-AR. We conclude that the residual lipolytic effect observed in beta-less mice can be attributed to an unknown Gs-protein-coupled receptor with low affinity for catecholamines.  相似文献   

15.
In this study, some compounds of phenoxypropanolamine (SWR-0342SA) derivatives were found to possess beta 3-adrenoceptor (beta 3-AR) agonistic activity. Addition and deletion of the substituents on phenoxyacetate, chain length variation between two aromatic rings, conversion of phenoxypropanolamine to phenylethanolamine, insertion of double bonds and another ether group in the side chain between two phenyl rings in SWR-0342SA derivatives resulted in novel phenoxypropanolamine and phenylethanolamine compounds. This study was performed to evaluate the structural modification of the parent SWR-0342SA and their effects on the binding affinities as well as functional activities of these derivatives using COS-7 cells and CHO cells expressing human beta 1, beta 2, beta 3-AR and only beta 3-AR respectively. Compounds SWR-0342SA, SWR-0339SA (S-enantiomer with trans-ethylidene group), SWR-0315NA (non-isomeric with racemic ethylidene group and sodium salt), and SWR-0334NA (non-isomeric with trans-ethylidene group and sodium salt), all belonging to phenoxypropanolamine group, were found to have high binding and functional activities and were supposed to be potent beta 3-AR agonists. Since many of the phenoxypropanolamine compounds acts as antagonists to beta 1- and beta 2-ARs, these derivatives have also been evaluated for their affinity to beta 1- and beta 2-ARs. The pKi values of these derivatives to beta-AR subtypes were also compared. These compounds show little selectivities towards beta 3-AR subtypes.  相似文献   

16.
Cardiomyocyte beta2-adrenergic receptors (beta-ARs) provide a source of inotropic support and influence the evolution of heart failure. Recent studies identify distinct mechanisms for beta2-AR actions in neonatal and adult rat cardiomyocytes. This study examines whether ontogenic changes in cardiac beta2-AR actions can be attributed to altered Gi expression or changes in the spatial organization of the beta2-AR complex in membrane subdomains (caveolae). We show that beta2-ARs increase cAMP, calcium, and contractile amplitude in a pertussis toxin (PTX)-insensitive manner in neonatal cardiomyocytes. This is not caused by lack of Gi; Galphai expression is higher in neonatal cardiomyocytes than in those of adult rats. beta2-ARs provide inotropic support without detectably increasing cAMP, in adult cardiomyocytes. This cannot be attributed to dual coupling of beta2-ARs to Gs and Gi, because beta2-ARs do not promote cAMP accumulation in PTX-pretreated adult cardiomyocytes. Spatial segregation of beta2-ARs, Galphas/Galphai, and adenylyl cyclase to distinct membrane subdomains also is not a factor, because all of these proteins copurify in caveolin-3-enriched vesicles isolated from adult cardiomyocytes. However, these studies demonstrate that enzyme-based protocols routinely used to isolate ventricular cardiomyocytes lead to proteolysis of beta-ARs. The functional consequences of this limited beta-AR proteolysis is uncertain, because truncated beta1-ARs promote cAMP accumulation and truncated beta2-ARs provide inotropic support in adult cardiomyocytes. Collectively, these studies indicate that components of the beta2-AR signaling complex compartmentalize to restricted membrane subdomains in adult rat cardiomyocytes. Neither compartmentalization nor changes in Gi expression fully explain the ontogenic changes in beta2-AR responsiveness in the rat ventricle.  相似文献   

17.
Pharmacological characteristics of beta-adrenoceptors (beta-ARs) mediating noradrenaline-induced relaxation were investigated in guinea-pig tracheal smooth muscle. The inhibitory effects of several types of beta-AR antagonists on noradrenaline-induced relaxation against histamine contraction were scrutinized with Schild plot analysis. The concentration-response curve for noradrenaline obtained in the absence of phentolamine and uptake inhibitors was competitively antagonized by all of the beta-AR antagonists used in this study (propranolol, bupranolol, atenolol, butoxamine and ICI-118,551). However, their pA2 values were markedly less than the expected values for beta1-AR and beta2-AR. On the other hand, pA2 values of ICI-118,551 (6.85) determined in the presence of phentolamine suggested a contribution of a beta1 -AR rather than beta2 -AR. In the presence of phentolamine and uptake inhibitors (desipramine and deoxycorticosterone), the Schild plot for atenolol was a better fit, with two distinct straight lines. The pA2 values of atenolol provided by the regression were: approximately 7.0, which corresponds to the expected beta1-AR value, and approximately 6.5, which was 3 times less than the expected value for beta1 -AR, and thus the possible presence of two classes of beta1 -AR (beta1(Low) and beta1(High)) was suggested. This view was also supported by Schild plot analysis for propranolol, which fit two straight lines each with a slope of 1.0. The present findings indicate that beta1 -ARs contributing to noradrenaline-elicited relaxation in guinea-pig tracheal smooth muscle exhibit diverse pharmacological characteristics and may be subdivided into at least two classes with distinct affinities for atenolol. Under physiological conditions, beta1(Low) rather than beta1(High) seems to play a more significant role in noradrenaline-regulated airway smooth muscle tone.  相似文献   

18.
19.
AIM: To investigate whether stimulation of β-adrenoceptor (AR) and its subtypes augment α1-AR-evoked positive inotropic response and inositol phosphate (InsP) accumulation in isolated rat left atria. METHODS: Inotropic response was determined by contractile function experiment in isolated electrically driven rat left atria. ^3H-InsP accumulations were measured by ^3H-inositol incorporation and column chromatography. RESULTS: (1) Stimula-tion of α1-AR by phenylephrine (PE) or norepinephrine (NE) in the presence of propranolol (Prop) evoked positive inotropic response and ^3H-InsP accumulations, while stimulation of β-AR by isoprenaline (ISO) or NE in the presence of phentolamine (Phen) only evoked positive inotropic response, but not ^3H-InsP accumulations. (2) Simultaneous stimulation of α1- and β-AR by NE or ISO plus PE significantly shifted the concentration-dependent inotropic response curves and ^3H-InsP accumulation curves to the left and upward compared with individual α1-AR stimulation by PE or NE in the presence of Prop. (3) In the presence of ICI118551 (selective β2-AR antagonist) or CGP12177 (selective β1-AR antagonist), stimulation of either β1- or β2-AR did not change α1-AR-evoked inotropic response and ^3H-InsP accumulations. CONCLUSION: Stimulation of β1-AR and β2-AR potentiates α1-AR-mediated positive inotropic response and InsP accumulation in isolated rat left atria.  相似文献   

20.
This study was designed to examine the importance of interaction in the bindings of nonselective beta-blockers to beta1-adrenoceptors (beta1-ARs) as compared with beta2-ARs, using molecular modeling. The beta-blockers used in this study were bopindolol [4-(benzoyloxy-3-t- butylaminopropyl)-2-methylindol hydrogen malomate], its two metabolites [18-502 - hydrolyzed bopindolol or 4-(3-t-butylamino-2-hydroxypropoxy)-2-methyl indole - and 20-785 - 4-(3-t-butylaminopropoxy)-2-carboxyl indole], and propranolol. Molecular modeling was performed on an Indigo2 workstation (Silicon Graphic) using Discover/Insight II (Molecular Simulations) software. Through molecular modeling, possible binding sites for these drugs were suggested to lie between helices 3, 4, 5, and 6 of the beta1-AR. The amine, benzoic acid, indole methyl, t-butyl, phenyl, and indole functional groups of bopindolol possibly interact with Asp138 (transmembrane - TM - 3), Ser190 (TM 4), Ala343 (TM 6), Val137 (TM 3), Pro339 (TM6), Cys336 (TM 4), Leu237 (TM 5), and Pro236 (TM 5) of beta1-AR, respectively, by either hydrogen bonding or hydrophobic interactions. In addition, 18-502, 20-785, and propranolol also interacted with sites at the same positions as those of beta2-ARs. Thus, the results of the present study suggested that although Ala343 and Val137 of beta1-AR among these amino acids were different from those of beta2-AR, the interactions at the same sites between ligands and amino acids of beta1-AR as those of beta2-ARs may occur because these drugs are nonselective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号