首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autosomal dominant polycystic kidney disease (ADPKD) is a common human genetic disease characterized by cyst formation in kidney tubules and other ductular epithelia. Cells lining the cysts have abnormalities in cell proliferation and cell polarity. The majority of ADPKD cases are caused by mutations in the PKD1 gene, which codes for polycystin-1, a large integral membrane protein of unknown function that is expressed on the plasma membrane of renal tubular epithelial cells in fetal kidneys. Because signaling from cell-cell and cell-matrix adhesion complexes regulates cell proliferation and polarity, we speculated that polycystin-1 might interact with these complexes. We show here that polycystin-1 colocalized with the cell adhesion molecules E-cadherin and alpha-, beta-, and gamma-catenin. Polycystin-1 coprecipitated with these proteins and comigrated with them on sucrose density gradients, but it did not colocalize, coprecipitate, or comigrate with focal adhesion kinase, a component of the focal adhesion. We conclude that polycystin-1 is in a complex containing E-cadherin and alpha-, beta-, and gamma-catenin. These observations raise the question of whether the defects in cell proliferation and cell polarity observed in ADPKD are mediated by E-cadherin or the catenins.  相似文献   

2.
Autosomal dominant polycystic kidney disease (ADPKD) is a very common inherited disease caused by mutations in PKD1 or PKD2 genes characterized by progressive enlargement of fluid-filled cysts and loss of renal function [1]. Previous studies proposed a role for human polycystin-1 in renal morphogenesis acting as a matrix receptor in focal adhesions and for polycystin-2 as a putative calcium channel [2, 3]. The genome of Caenorhabditis elegans contains 2 new members of the polycystin family: lov-1, the homolog for PKD1; and pkd-2, the homolog for PKD2 [4; this paper]. Mutation analysis in C. elegans showed similarly compromised male mating behaviors in all single and double lov-1 and pkd-2 mutants, indicating their participation in a single genetic pathway. Expression analysis localized LOV-1 and PKD-2 to the ends of sensory neurons in male tails and to the tips of CEM neurons in the head, consistent with functions as chemo- or mechanosensors. Human and C. elegans PKD1 and PKD2 homologs, transfected into mammalian renal epithelial cells, co-localized with paxillin in focal adhesions suggesting function in a single biological pathway. Based on the role of polycystins in C. elegans sensory neuron function and the conservation of PKD pathways we suggest that polycystins act as sensors of the extracellular environment, initiating, via focal adhesion assembly, intracellular transduction events in neuronal or morphogenetic processes.  相似文献   

3.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common mendelian disorder of the kidney and accounts for ~5% of end-stage renal disease in North America. It is characterized by focal development of renal cysts which increase in number and size with age. Mutations of PKD1 and PKD2 account for most cases. Although the clinical manifestations of both gene types overlap completely, PKD1 is associated with more severe disease than PKD2, with larger kidneys and earlier onset of end-stage renal disease. Furthermore, marked within-family renal disease variability is well documented in ADPKD and suggests a strong modifier effect from as yet unknown genetic and environmental factors. In turn, the significant inter- and intra-familial renal disease variability poses a challenge for diagnosis and genetic counseling. In general, renal ultrasonography is commonly used for the diagnosis, and age-dependent criteria have been defined for subjects at risk of PKD1. However, the utility of the PKD1 ultrasound criteria in the clinical setting is unclear since their performance characteristics have not been defined for the milder PKD2 and the gene type for most test subjects is unknown. Recently, highly predictive ultrasound diagnostic criteria have been derived for at-risk subjects of unknown gene type. Additionally, both DNA linkage and gene-based direct sequencing are available for the diagnosis of ADPKD, especially in subjects with equivocal imaging results, a negative or indeterminate family history, or in younger at-risk individuals being evaluated as potential living related kidney donor. This review will highlight the utility and limitations of clinical predictors of gene types, imaging- and molecular-based diagnostic tests, and present an integrated approach for evaluating individuals suspected to have ADPKD.  相似文献   

4.
常染色体显性多囊肾病(autosomal dominant polycystic kidney disease, ADPKD)患病率为1‰~2‰, 属于罕见病, 临床主要表现为双侧肾囊肿且逐渐发展, 肾脏体积进行性增大, 肾功能逐步降低。PKD1基因突变约占81%, PKD2基因突变约占10.5%~22%。血管加压素(arginine vasopressin, AVP)和环磷酸腺苷(cyclic adenosine monophosphate, cAMP)信号通路在ADPKD囊肿发展过程中发挥重要作用。近年来发表的梅奥风险评估模型和PROPKD(predicting renal outcome in polycystic kidney disease)评分是ADPKD较好的预后评估模型, 已成为临床医生决策的重要依据。通过拮抗AVP受体, 抑制cAMP通路的托伐普坦已成为ADPKD首个特异治疗药物, 可有效抑制总肾脏体积的增长和保护肾功能。药物的长期安全性仍需进一步研究。  相似文献   

5.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common congenital kidney disorder, generally caused by mutations in the PKD1 and PKD2 genes, coding for polycystins 1 and 2. Its pathogenesis is accompanied by alterations of the cAMP, mTOR, MAPK/ERK, and JAK/STAT pathways. ADPKD is clinically characterized by the formation of many growing cysts with kidney enlargement and a progressive damage to the parenchyma, up to its complete loss of function, and the onset of end-stage renal disease (ESRD). The current aim of ADPKD therapy is the inhibition of cyst development and retardation of chronic kidney disease progression. Several drugs have been recently included as potential therapies for ADPKD including metformin, the drug of choice for the treatment of type 2 diabetes mellitus, according to its potential inhibitory effects on cystogenesis. In this review, we summarize preclinical and clinical evidence endorsing or rejecting metformin administration in ADPKD evolution and pathological mechanisms. We explored the biology of APDKD and the role of metformin in slowing down cystogenesis searching PubMed and Clinical Trials to identify relevant data from the database inception to December 2020. From our research analysis, evidence for metformin as emerging cure for ADPKD mainly arise from preclinical studies. In fact, clinical studies are still scanty and stronger evidence is awaited. Its effects are likely mediated by inhibition of the ERK pathway and increase of AMPK levels, which are both linked to ADPKD pathogenesis.  相似文献   

6.
Masengu A  Courtney AE 《The Practitioner》2012,256(1748):17-20, 2-3
Polycystic kidney disease and Alport's syndrome are the most common causes of inherited renal disease in the UK. An average GP practice is likely to have at least six patients with autosomal dominant polycystic kidney disease (ADPKD). The disorder is characterised by the formation of fluid-filled cysts in the kidneys resulting in progressive renal impairment. Mutations in two genes have been identified. The PKD1 gene abnormality is responsible for 85% of cases of ADPKD, patients with PKD2 mutations typically present later and progress more slowly. Patients with ADPKD can present with a positive family history, hypertension, flank pain, haematuria, renal insufficiency or proteinuria. The diagnosis has traditionally been based on ultrasound imaging. Screening will reduce the incidence of a late diagnosis when renal disease is advanced but a normal ultrasound scan in those under 30 years old is not conclusive. It is not recommended that children are screened. The key to minimising the rate of progressive disease is tight BP control. ACE inhibitors are recommended as the initial antihypertensive agent unless contraindicated. Alport's syndrome is a disorder characterised by abnormal type IV collagen which is found in the kidney, eyes, skin and ears. Around one in ten practices are likely to have a patient with Alport's syndrome. Eighty per cent of patients have the X-linked form of the disease. All first-degree relatives of a patient with confirmed Alport's syndrome should be offered screening. The combination of reduced hearing and urinary abnormalities in a young boy should alert GPs to consider this as a possible diagnosis and initiate referral. Diagnosis can be confirmed by renal or skin biopsy.  相似文献   

7.
Molecular genetics of autosomal dominant polycystic kidney disease   总被引:1,自引:0,他引:1  
Autosomal dominant polycystic kidney disease (ADPKD) is a common Mendelian disorder, occurring in approximately 1 in 1000 births and accounting for 8% to 10% of cases of end-stage renal disease (ESRD). Mutations of 2 genes, PKD1 and PKD2, account for the disease in approximately 80% to 85% and 10% to 15% of families respectively. The gene products (polycystin 1 and 2) of PKD1 and PKD2 are plasma membrane proteins and components of a novel signalling pathway that regulates epithelial cell growth and differentiation. Significant inter- and intrafamilial renal disease variability in ADPKD has been well documented and is influenced by both germline and somatic genetic events. Specifically, genetic locus heterogeneity and 2 rare Mendelian syndromes have been shown to strongly influence the variability of interfamilial renal disease, and as-yet-unknown genetic and environmental factors likely modify both inter- and intrafamilial renal disease severity. Furthermore, individual cyst formation in ADPKD represents an aberration of monoclonal growth triggered by somatic PKD1 or PKD2 mutations within individual epithelial cells. Current studies are in progress to identify major genetic and environmental modifiers of renal disease variability. A thorough knowledge of these determinants will allow better patient risk assessment and development of mechanism-based therapy in ADPKD.  相似文献   

8.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common human monogenic genetic disorder and is characterized by progressive bilateral renal cysts and the development of renal insufficiency. The cystogenesis of ADPKD is believed to be a monoclonal proliferation of PKD-deficient (PKD(-/-)) renal tubular epithelial cells. To define the function of Pkd1, we generated chimeric mice by aggregation of Pkd1(-/-) ES cells and Pkd1(+/+) morulae from ROSA26 mice. As occurs in humans with ADPKD, these mice developed cysts in the kidney, liver, and pancreas. Surprisingly, the cyst epithelia of the kidney were composed of both Pkd1(-/-) and Pkd1(+/+) renal tubular epithelial cells in the early stages of cystogenesis. Pkd1(-/-) cyst epithelial cells changed in shape from cuboidal to flat and replaced Pkd1(+/+) cyst epithelial cells lost by JNK-mediated apoptosis in intermediate stages. In late-stage cysts, Pkd1(-/-) cells continued immortalized proliferation with downregulation of p53. These results provide a novel understanding of the cystogenesis of ADPKD patients. Furthermore, immortalized proliferation without induction of p53 was frequently observed in 3T3-type culture of mouse embryonic fibroblasts from Pkd1(-/-) mice. Thus, Pkd1 plays a role in preventing immortalized proliferation of renal tubular epithelial cells through the induction of p53 and activation of JNK.  相似文献   

9.
Mutations of either PKD1 or PKD2 cause autosomal dominant polycystic kidney disease, a syndrome characterized by extensive formation of renal cysts and progressive renal failure. Homozygous deletion of Pkd1 or Pkd2, the genes encoding polycystin-1 and polycystin-2, disrupt normal renal tubular differentiation in mice but do not affect the early steps of renal development. Here, we show that expression of the C-terminal 112 amino acids of human polycystin-1 triggers branching morphogenesis and migration of inner medullary collecting duct (IMCD) cells, and support in vitro tubule formation. The integrity of the polycystin-2-binding region is necessary but not sufficient to induce branching of IMCD cells. The C-terminal domain of polycystin-1 stimulated protein kinase C-alpha (PKC-alpha), but not the extracellular signal-regulated kinases ERK1 or ERK2. Accordingly, inhibition of PKC, but not ERK, prevented polycystin-1-mediated IMCD cell morphogenesis. In contrast, HGF-mediated morphogenesis required ERK activation but was not dependent on PKC. Our findings demonstrate that the C-terminal domain of polycystin-1, acting in a ligand-independent fashion, triggers unique signaling pathways for morphogenesis, and likely plays a central role in polycystin-1 function.  相似文献   

10.
11.
目的 用杂交瘤技术制备抗多囊蛋白-1 LRR-WSC区单克隆抗体,检测多囊蛋白-1在肾组织和肾细胞株中的分布和定位。方法 用多囊蛋白-1 LRR-WSC区融合蛋白PCI-e免疫BALB/c小鼠,将其脾细胞与骨髓瘤细胞株SP2/0进行细胞融合,间接酶联免疫吸附试验(ELISA)筛选出阳性克隆,有限稀释法将杂交瘤细胞株单克隆化,间接ELISA法和免疫印迹法(WB)鉴定抗体的特异性。用制备的抗多囊蛋白-1 LRR-WSC区单克隆抗体,免疫组织化学和免疫细胞化学法检测多囊蛋白-1在不同肾组织和肾细胞株中的分布。结果 细胞融合后经筛选和克隆得到的杂交瘤细胞株经WB分析表明,该细胞株分泌的单克隆抗体能特异地与多囊蛋白-1 LRR-WSC区结合。免疫组织化学显示,多囊蛋白-1主要分布于正常肾组织的远端肾小管和集合管,在胎肾囊肿组织中表达于近端肾小管,在人常染色体显性多囊肾病(ADPKD)肾囊肿组织中,表达于囊肿衬里上皮细胞,同时在ADPKD肾囊肿衬里上皮细胞系和猪近端肾小管细胞株(LLC-PK1)中也发现了多囊蛋白-1的表达。结论 本实验成功制备了抗多囊蛋白-1 LRR-WSC区的单克隆抗体,该抗体对深入研究ADPKD的发病机制具有重要意义。多囊蛋白-1在肾组织中的表达模式对肾小管的形态发生、维持肾小管结构的完整性非常重要。  相似文献   

12.
Abdominal sonographic study of autosomal dominant polycystic kidney disease   总被引:7,自引:0,他引:7  
PURPOSE: The purpose of this study was to determine whether kidney size in patients who have autosomal dominant polycystic kidney disease (ADPKD) is related to renal function, hypertension, or extrarenal manifestations of the disease and to sonographically evaluate the abdominal manifestations of ADPKD. METHODS: Between 1994 and 1998, 400 individuals from 85 families with a history of ADPKD were examined. There were 213 persons with ADPKD and 187 unaffected family members; there were 182 males and 218 females, 1-82 years old (mean, 39.3 years). We obtained a complete medical history, performed a physical examination, measured the arterial blood pressure and serum creatinine levels, and performed abdominal sonography on each subject. The sonographic features that were studied were renal length and the presence and number of cysts on the kidneys, liver, and pancreas. RESULTS: There was a relationship between kidney size and age (p < 0.05), kidney size and renal function (p < 0.001), and kidney size and hypertension (p < 0.001). The overall prevalence of hepatic cysts in patients with ADPKD was 67%, and the prevalence increased with age. The presence of hepatic cysts was related to the severity of renal disease. Females had more severe polycystic liver disease, and massive polycystic liver disease (ie, hepatomegaly with innumerable cysts) was seen only in females. The prevalence of pancreatic cysts in the 187 persons in whom the pancreas was well evaluated sonographically was 5%. CONCLUSIONS: Kidney size in patients with ADPKD is related to renal function, hypertension, and extrarenal involvement and can be used to predict the outcome of the disease. Hepatic cysts are very common in patients with ADPKD and are related to age and renal function; pancreatic cysts are infrequent in these patients.  相似文献   

13.
Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disorder that is caused by mutations at two loci, polycystin 1 (PKD1) and polycystin 2 (PKD2). It is characterized by the formation of multiple cysts in the kidneys that can lead to chronic renal failure. Previous studies have suggested a role for hyperactivation of mammalian target of rapamycin (mTOR) in cystogenesis, but the etiology of mTOR hyperactivation has not been fully elucidated. In this report we have shown that mTOR is hyperactivated in Pkd1-null mouse cells due to failure of the HGF receptor c-Met to be properly ubiquitinated and subsequently degraded after stimulation by HGF. In Pkd1-null cells, Casitas B-lineage lymphoma (c-Cbl), an E3-ubiquitin ligase for c-Met, was sequestered in the Golgi apparatus with α3β1 integrin, resulting in the inability to ubiquitinate c-Met. Treatment of mouse Pkd1-null cystic kidneys in organ culture with a c-Met pharmacological inhibitor resulted in inhibition of mTOR activity and blocked cystogenesis in this mouse model of ADPKD. We therefore suggest that blockade of c-Met is a potential novel therapeutic approach to the treatment of ADPKD.  相似文献   

14.
The most severe form of autosomal dominant polycystic kidney disease occurs in patients with mutations in the gene (PKD1) encoding polycystin-1 (PC1). PC1 is a complex polytopic membrane protein expressed in cilia that undergoes autoproteolytic cleavage at a G protein–coupled receptor proteolytic site (GPS). A quarter of PKD1 mutations are missense variants, though it is not clear how these mutations promote disease. Here, we established a cell-based system to evaluate these mutations and determined that GPS cleavage is required for PC1 trafficking to cilia. A common feature among a subset of pathogenic missense mutations is a resulting failure of PC1 to traffic to cilia regardless of GPS cleavage. The application of our system also identified a missense mutation in the gene encoding polycystin-2 (PC2) that prevented this protein from properly trafficking to cilia. Using a Pkd1-BAC recombineering approach, we developed murine models to study the effects of these mutations and confirmed that only the cleaved form of PC1 exits the ER and can rescue the embryonically lethal Pkd1-null mutation. Additionally, steady-state expression levels of the intramembranous COOH-terminal fragment of cleaved PC1 required an intact interaction with PC2. The results of this study demonstrate that PC1 trafficking and expression require GPS cleavage and PC2 interaction, respectively, and provide a framework for functional assays to categorize the effects of missense mutations in polycystins.  相似文献   

15.
There have been remarkable advances in research on polycystic liver and kidney diseases recently, covering cloning of new genes, refining disease classifications, and advances in understanding more about the molecular pathology of these diseases. Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary disease affecting kidneys. It affects 1/400 to 1/1000 live births and accounts for 5% of the end stage renal disease in the United States and Europe, and is caused by gene defects in the PKD1 or PKD2 genes. Compared to ADPKD, polycystic liver disease (PCLD) is a milder disease and does not lower life expectancy. Both diseases are usually adult-onset diseases. Defects in genes, which code the hepatocystin and SEC63 proteins, have just recently been found to cause PCLD. It now seems that ADPKD is caused by malfunction of the primary cilia, a cell organ sensing fluid movement, and that PCLD is a sequel from defects in protein processing. Autosomal recessive polycystic kidney disease (ARPKD) belongs to a group of congenital hepatorenal fibrocystic syndromes. All ARPKD patients have a gene defect in a gene called PKHD1, the protein product of which localizes to primary cilia. We summarize the present clinical and molecular knowledge of these diseases in this review.  相似文献   

16.
Chang MY  Ong AC 《Nephron. Clinical practice》2012,120(1):c25-34; discussion c35
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, accounting for up to 10% of patients on renal replacement therapy. There are presently no proven treatments for ADPKD and an effective disease-modifying drug would have significant implications for patients and their families. Since the identification of PKD1 and PKD2, there has been an explosion in knowledge identifying new disease mechanisms and testing new drugs. Currently, the three major treatment strategies are to: (1) reduce cAMP levels; (2) inhibit cell proliferation, and (3) reduce fluid secretion. Several compounds shown to be effective in preclinical models have already undergone clinical trials and more are planned. In addition, a whole raft of other compounds have been developed from preclinical studies. The purpose of this paper is to evaluate the results of recent published trials, review current trials and highlight the most promising compounds in the pipeline. There appears to be no shortage of potential candidates, but several key issues need to be addressed to facilitate clinical translation.  相似文献   

17.
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common hereditary diseases. Mutations of two known genetic loci (PKD1: 16p13.3 and PKD2: 4q21.2) can lead to bilateral renal cysts. The PKD1 locus is the more common (~85%), with a more severe phenotype. Because of the genetic complexity of ADPKD and the size and complexity of the PKD1 gene, pedigree-based linkage analysis is a useful tool for the genetic diagnosis in families with more than one subject affected. We tested linkage or non-linkage to the closely linked DNA markers flanking the PKD1 (D16S663 and D16S291) and one intragenic D16S3252 and PKD2 (D4S1563 and D4S2462) in 30 ADPKD-affected families, to determine the distributions of alleles and the degree of microsatellite polymorphisms (in 91 patients and 125 healthy subjects). To characterize the markers, used heterozygosity levels, polymorphism information content and LOD scores were calculated. The D16S663 marker included 12 kinds of alleles, while D16S291 had 10 alleles and D16S3252 had 8. D4S1563 had 12 alleles and D4S2462 had 11. In a search for a common ancestral relationship, we considered the patients’ alleles with the same repeat number. Only one haplotype was detected in more than one (2) unrelated families. The calculated two-point LOD scores indicated a linkage to PKD1 in 22 families (74%). In four families (13%) with a linkage to PKD2, the patients reached the end-stage renal disease after the age of 65 years. One family was linked to neither gene (3%), and in three families (10%) a linkage to both genes was possible. In the latter three families, the numbers of analyzed subjects were small (4–5), and/or some markers were only partially or non-informative. However, the elderly affected family members exhibited the clinical signs of the PKD1 form in these cases. The new Hungarian population genetic information was compared with available data on other populations.  相似文献   

18.
19.
Autosomal dominant polycystic kidney disease (ADPKD) is one of common single gene disorders. The development of molecular genetic techniques has shown that mutant PKD1 gene assigned to ADPKD was closely linked to alpha-globin on the short arm of chromosome 16. This location was established when genetic linkage was found between ADPKD and a highly polymorphic region at the 3' end of the alpha-globin cluster (3' HVR). The discover of genetic linkage markers such as 3' HVR probe has provided a diagnostic test in presymptomatic stage. We performed this diagnostic test using DNA probes in 3 patients with ADPKD of one Japanese family. They also showed PKD1 gene linkage as previously described by Reeders et al. Linkage analysis of the PKD1 gene might be available to diagnostic test of ADPKD. DNA diagnosis of ADPKD however has to be performed carefully because of an ethical standpoint.  相似文献   

20.
Autosomal-dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2 and is characterized by the development of multiple bilateral renal cysts that replace normal kidney tissue. Here, we used Pkd1 mutant mouse models to demonstrate that the nicotinamide adenine dinucleotide–dependent (NAD-dependent) protein deacetylase sirtuin 1 (SIRT1) is involved in the pathophysiology of ADPKD. SIRT1 was upregulated through c-MYC in embryonic and postnatal Pkd1-mutant mouse renal epithelial cells and tissues and could be induced by TNF-α, which is present in cyst fluid during cyst development. Double conditional knockouts of Pkd1 and Sirt1 demonstrated delayed renal cyst formation in postnatal mouse kidneys compared with mice with single conditional knockout of Pkd1. Furthermore, treatment with a pan-sirtuin inhibitor (nicotinamide) or a SIRT1-specific inhibitor (EX-527) delayed cyst growth in Pkd1 knockout mouse embryonic kidneys, Pkd1 conditional knockout postnatal kidneys, and Pkd1 hypomorphic kidneys. Increased SIRT1 expression in Pkd1 mutant renal epithelial cells regulated cystic epithelial cell proliferation through deacetylation and phosphorylation of Rb and regulated cystic epithelial cell death through deacetylation of p53. This newly identified role of SIRT1 signaling in cystic renal epithelial cells provides the opportunity to develop unique therapeutic strategies for ADPKD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号