首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inflammatory response following cerebral ischemia/reperfusion plays a key pathogenic role in ischemic cerebral damage. Nitric oxide (NO), cyclooxygenase-2 (COX-2) and myeloperoxidase (MPO) are important inflammatory mediators. Neuronal NO synthase (nNOS) is a major initial source of excessive NO during ischemia/reperfusion. Induction of COX-2 and infiltration of polymorphonuclear cells expressing MPO are critical factors in delayed inflammatory damage. Previously, we demonstrated that administration of melatonin before ischemia significantly reduced the infarct volume in a rat middle cerebral artery occlusion (MCAO) stroke model. In this study, we examined the effect of pretreatment with melatonin at 5 mg/kg on the immunoreactivity (ir) for nNOS, COX-2, MPO, and glial fibrillary acidic protein (GFAP) at 24, 48, and 72 hr after right-sided endovascular MCAO for 1 hr in adult male Sprague-Dawley rats. Melatonin did not affect the hemodynamic parameters. When compared with rats with sham MCAO, ischemia/reperfusion led to an ipsilateral increase in cells with positive ir for nNOS (similar at all times) and in ir-GFAP (similar at all times). Ischemia/reperfusion led to appearance of cells with positive ir for COX-2 (greatest at 24 hr with a tendency to increase again at 72 hr) or MPO (greatest at 24 hr). A single dose of melatonin significantly lessened the ipsilateral increase in cells with positive ir for nNOS, COX-2 or MPO, but did not influence the ipsilateral change in ir-GFAP. Our results suggest that melatonin treatment mediates neuroprotection against ischemia/reperfusion injury partly via inhibition of the consequential inflammatory response.  相似文献   

2.
Objectives: It has been reported that nitric oxide (NO) mainly contributes to prostate or urethral smooth muscles relaxation, and that nitrergic innervation and neuronal NO synthase (nNOS) levels are decreased in benign prostatic hyperplasia. The purpose of the present study was to evaluate the feasibility to gene therapy for benign prostatic hyperplasia by transferring nNOS gene into the rat prostate with in vivo electroporation (EP) procedure. Methods: Male Sprague–Dawley rats were divided into four groups (sham, only EP, only nNOS injection, and nNOS gene injection with EP groups). Fifty micrograms of luciferase gene and nNOS expression vectors in 50 µL of K‐PBS (potassium‐phosphate buffered saline) were injected into the prostate. Immediately after the injection of these vectors, the vector injection points were electroporated by the two‐square parallel electrodes. Two days after gene transfer, luciferase analysis and an immunohistochemical staining for nNOS were performed, and NO2?/NO3? (NOX) release was measured using high‐performance liquid chromatography coupled with the microdialysis procedure. Results: The optimal electric pulse conditions were 50 V, 1 Hz and 10 msec. In vivo EP with these conditions showed the increase in the luciferase gene expression approximately 300‐fold of the control group. In the nNOS gene injection with EP group, the marked nNOS immunoreactivity was observed, and NOX release was significantly higher, as compared to other groups. Conclusion: The results suggest that EP is a feasible technique for in vivo gene transfer into the rat prostate, and that the transferred nNOS gene functionally expresses and contributes to NO production.  相似文献   

3.
AIM: To investigate the dynamic change and role of neuronal nitric oxide synthase (nNOS) and inducible nitric oxide synthase (iNOS) in neonatal rat with intestinal injury and to define whether necrotizing enterocolitis (NEC) is associated with the levels of nitric oxide synthase (NOS) in the mucosa of the affected intestine tissue. METHODS: Wistar rats less than 24 h in age received an intraperitoneal injection with 5 mg/kg lipopolysaccharide (IPS). Ileum tissues were collected at 1, 3, 6, 12 and 24 h following LPS challenge for histological evaluation of NEC and for measurements of nNOS and iNOS. The correlation between the degree of intestinal injury and levels of NOS was determined. RESULTS: The LPS-injected pups showed a significant increase in injury scores versus the control. The expression of nNOS protein and mRNA was diminished after LPS injection. There was a negative significant correlation between the nNOS protein and the grade of median intestinal injury within 24 h. The expression of iNOS protein and mRNA was significantly increased in the peak of intestinal injury. CONCLUSION: nNOS and iNOS play different roles in LPS-induced intestinal injury. Caution should be exerted concerning potential therapeutic uses of NOS inhibitors in NEC.  相似文献   

4.
Hyperactivation of glutamatergic N-methyl-D-aspartate (NMDA) receptors has been implicated in the excitotoxicity and pathophysiology of Parkinson's disease (PD). NMDA receptor blockers have been used clinically to treat dementia, but their efficacy is controversial. Modulation of NMDA receptors might improve neuroinflammation and cognitive deficits in PD. D-cycloserine (DCS), a partial agonist binding to the glycine binding site of NMDA receptors, has been demonstrated to improve cognitive function in primates and rodents. Our previous study showed that DCS can reduce motor, emotional, and cognitive dysfunctions, as well as neuroinflammation and neurodegeneration in a PD animal model and may therefore have potential for the treatment of neuroinflammation and cognitive dysfunction in patients with PD. In addition, increased expression of cyclooxygenase type-2 (COX-2) has been observed in dopaminergic neurons and activated microglia in the brain of both PD patients and PD animal models. COX-2 inhibitors can suppress activation of microglia and protect dopaminergic neurons from degeneration. Thus, a combination of DCS and COX-2 inhibitors might prove useful in suppressing neuroinflammation and cognitive deficits in PD.  相似文献   

5.
OBJECTIVE: To test the hypothesis that acupuncture on stomach 36 point (ST-36) reduces hypertension by activating nitric oxide synthase signaling mechanisms. METHODS: The authors used the two-kidney, one-clip renal hypertension (2K1C) hamster model with electroacupuncture treatment. RESULTS: Thirty-minute daily electroacupuncture treatment for 5 days reduced mean arterial pressure from 160.0 +/- 7.6 to 128.0 +/- 4.3 mmHg (mean +/- SEM), compared to 115.0 +/- 7.2 mmHg in sham-operated hamsters. Electroacupuncture increased periarteriolar NO concentration from 309.0 +/- 21.7 nM to 417.9 +/- 20.9 nM in the 2K1C hamster cheek pouch microcirculation when measured with NO-sensitive microelectrodes. Hypertension reduced endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) proteins relative to the sham-operated control, as measured by Western blotting. Electroacupuncture prevented the reduction of eNOS and nNOS associated with hypertension and showed even higher eNOS and nNOS expressions than sham-operated control in stomach and cheek pouch tissues, which are on the stomach meridian. Analysis of liver tissue, a non-stomach-meridian organ, indicated that electroacupuncture did not have a significant benefit in terms of enhanced expressions of eNOS and nNOS in the treated 2K1C hypertensive group. CONCLUSIONS: Activation of eNOS and nNOS is one of the mechanisms through which ST-36 electroacupuncture reduces blood pressure; this reduction works through the stomach meridian.  相似文献   

6.
Splanchnic arterial vasodilation represents the pathophysiological hallmark of the hemodynamic dysfunction observed in portal hypertensive states. The role of neuronal nitric oxide synthase (nNOS) in the splanchnic arterial vasodilation remains to be elucidated. We therefore investigated: (i) if nNOS is involved in the splanchnic arterial vasodilation; and (ii) the possible interaction of nNOS with soluble guanylate cyclase (sGC) in superior mesenteric arterial (SMA) beds in portal hypertensive rats. Portal hypertension was induced by partial portal vein ligation (PVL). To determine the role of nNOS, we removed endothelial layer and measured contractile response and nitric oxide (NO) release in the presence or absence of 7-nitroindazole (7-NI, 10 muM), an nNOS-specific inhibitor. In endothelium-removed vessels, nNOS inhibitor significantly increased the contractile response to methoxamine in SMA beds isolated from the portal hypertensive rats, compared to non-treated SMA beds (106.8 +/- 10.7 vs 86.8 +/- 7.2 mmHg, P = 0.003). This effect of nNOS inhibitor was accompanied with decreased NO production in SMA of portal hypertensive rats (321.3 +/- 18.6 vs 139.5 +/- 16.9 pmol/mL/min, P = 0.0001). Unlike endothelial NOS that is located in endothelial cells, nNOS protein is highly expressed in smooth muscle layers of SMA. Furthermore, there was a significant increase in ~90 kDa nNOS protein in the portal hypertensive group, compared to the sham-operated group (P < 0.01). Interestingly, this 90 kDa nNOS was coimmunoprecipitated with sGC. In conclusion, increased nNOS expression in smooth muscle layers of arteries in the splanchnic circulation may be an additional and more efficient pathway for the activation of sGC by NO, which sustains arterial vasodilation.  相似文献   

7.
While it is accepted that the high production of nitric oxide (NO˙) by the inducible nitric oxide synthase (iNOS) impairs cardiac mitochondrial function during sepsis, the role of neuronal nitric oxide synthase (nNOS) may be protective. During sepsis, there is a significantly increase in the expression and activity of mitochondrial iNOS (i‐mtNOS), which parallels the changes in cytosolic iNOS. The existence of a constitutive NOS form (c‐mtNOS) in heart mitochondria has been also described, but its role in the heart failure during sepsis remains unclear. Herein, we analyzed the changes in mitochondrial oxidative stress and bioenergetics in wild‐type and nNOS‐deficient mice during sepsis, and the role of melatonin, a known antioxidant, in these changes. Sepsis was induced by cecal ligation and puncture, and heart mitochondria were analyzed for NOS expression and activity, nitrites, lipid peroxidation, glutathione and glutathione redox enzymes, oxidized proteins, and respiratory chain activity in vehicle‐ and melatonin‐treated mice. Our data show that sepsis produced a similar induction of iNOS/i‐mtNOS and comparable inhibition of the respiratory chain activity in wild‐type and in nNOS‐deficient mice. Sepsis also increased mitochondrial oxidative/nitrosative stress to a similar extent in both mice strains. Melatonin administration inhibited iNOS/i‐mtNOS induction, restored mitochondrial homeostasis in septic mice, and preserved the activity of nNOS/c‐mtNOS. The effects of melatonin were unrelated to the presence or the absence of nNOS. Our observations show a lack of effect of nNOS on heart bioenergetic impairment during sepsis and further support the beneficial actions of melatonin in sepsis.  相似文献   

8.
应激对大鼠结肠神经系统nNOS表达的影响   总被引:1,自引:0,他引:1  
目的:探讨应激对大鼠结肠神经系统nNOS表达的影响. 方法:SD大鼠30只随机分为对照组,应激组和L-NAME 组,采用水浸-束缚应激(WRS)动物模型,用免疫组织化学ABC法检测nNOS在大鼠结肠黏膜下神经丛和肌间神经丛的表达,应用计算机图像分析系统对其表达进行定量分析.结果:与对照组比较,应激组黏膜下神经丛和肌间神经丛的nNOS阳性神经元的灰度值明显减少(P=0.02或P =0.005),阳性神经元细胞数的平均密度增加(P=0.04 或P=0.01),表达增强,且在黏膜上皮细胞、固有层淋巴细胞也有nNOS表达.L-NAME组黏膜下神经丛和肌间神经丛的nNOS阳性神经元的灰度值较应激组增加 (P=0.04),平均密度下降(P=0.04或P=0.03),表达减弱,而与对照组比较均无明显差异(P>0.05).结论:应激可引起大鼠结肠神经系统nNOS表达增强, 提示一氧化氮(NO)在应激所致的结肠功能失调中可能起重要作用.  相似文献   

9.
Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) are synthesized within cardiac myocytes and play key roles in modulating cardiovascular signaling. Cardiac myocytes contain both the endothelial (eNOS) and neuronal (nNOS) NO synthases, but the differential roles of these NOS isoforms and the interplay of reactive oxygen species and reactive nitrogen species in cardiac signaling pathways are poorly understood. Using a recently developed NO chemical sensor [Cu(2)(FL2E)] to study adult cardiac myocytes from wild-type, eNOS(null), and nNOS(null) mice, we discovered that physiological concentrations of H(2)O(2) activate eNOS but not nNOS. H(2)O(2)-stimulated eNOS activation depends on phosphorylation of both the AMP-activated protein kinase and kinase Akt, and leads to the robust phosphorylation of eNOS. Cardiac myocytes isolated from mice infected with lentivirus expressing the recently developed H(2)O(2) biosensor HyPer2 show marked H(2)O(2) synthesis when stimulated by angiotensin II, but not following β-adrenergic receptor activation. We discovered that the angiotensin-II-promoted increase in cardiac myocyte contractility is dependent on H(2)O(2), whereas β-adrenergic contractile responses occur independently of H(2)O(2) signaling. These studies establish differential roles for H(2)O(2) in control of cardiac contractility and receptor-dependent NOS activation in the heart, and they identify new points for modulation of NO signaling responses by oxidant stress.  相似文献   

10.
Cx40-deficient mice (Cx40-/-) are hypertensive due to increased renin secretion. We evaluated the renal expression of neuronal nitric oxide synthase (nNOS) and cyclooxygenases COX-1 and COX-2, three macula densa enzymes. The levels of nNOS were increased in kidneys of Cx40-/- mice, as well as in those of wild-type (WT) mice subjected to the two-kidney one-clip model of hypertension. In contrast, the levels of COX-2 expression were only increased in the hypoperfused kidney of Cx40-/- mice. Treatment with indomethacin lowered blood pressure and renin mRNA in Cx40-/- mice without affecting renin levels, indicating that changes in COX-2 do not cause the altered secretion of renin. Suppression of NOS activity by N(G)-nitro-L-arginine methyl ester (L-NAME) decreased renin levels in Cx40-/- animals, indicating that NO regulates renin expression in the absence of Cx40. Treatment with candesartan normalized blood pressure in Cx40-/- mice, and decreased the levels of both COX-2 and nNOS. After a treatment combining candesartan and L-NAME, the blood pressure of Cx40-/- mice was higher than that of WT mice, showing that NO may counterbalance the vasoconstrictor effects of angiotensin II in Cx40-/- mice. These data document that renal COX-2 and nNOS are differentially regulated due to the elevation of renin-dependent blood pressure in mice lacking Cx40.  相似文献   

11.
目的:检测新生大鼠缺血缺氧后神经元型一氧化氮合酶(nNOS)和c-Fos免疫活性表达改变及脉络宁对其的影响。方法:结扎7d龄大鼠右侧颈总动脉1h,然后暴露在8%氧和92%氮的混合气体中2h,建立缺氧缺血脑损伤模型。用免疫组织化学方法检测并比较缺血缺氧后和脉络宁处理后c-Fos和nNOS的免疫活性。结果:缺血缺氧6h后c-Fos表达达高峰;与缺氧缺血组相比,脉络宁处理组c-Fos阳性神经元数量增加,表达c-Fos的时间延长;与假手术组相比,缺氧缺血组nNOS表达水平增高,脉络宁处理组则下降。结论:脉络宁可抑制nNOS表达,增强c-Fos表达,可能对缺血缺氧性脑损伤有保护作用。  相似文献   

12.
The infarct-sparing effect of the late phase of ischemic preconditioning (late PC) lasts for 72 hours. Upregulation of both cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) has been shown to be essential to the protection in the initial stage of late PC (24 hours after PC); however, the mechanisms underlying the protection in the final stage of late PC (48 to 72 hours after PC) are unknown. Conscious rabbits were preconditioned with six cycles of 4-minute coronary occlusion/4-minute reperfusion. At 72 hours after PC, powerful protection against infarction was associated with increased myocardial levels of COX-2 mRNA, protein, and cardioprotective prostaglandins (PGI2 and PGE2). The COX-2-selective inhibitor NS-398 completely blocked the protection. Surprisingly, iNOS expression was not increased at 72 hours; instead, upregulation of neuronal NO synthase (nNOS) was evident at both the mRNA (+266+/-20%, P<0.005) and the protein levels (+195+/-66%, P<0.005), which was accompanied by an increase in myocardial nitrite/nitrate (+20+/-4%, P<0.05). The nNOS-selective inhibitors N-propyl-l-arginine or S-ethyl N-[4-(trifluoromethyl)phenyl]isothiourea completely blocked the protection of late PC at 72 hours, whereas the iNOS-selective inhibitor S-methylisothiourea had no effect. In line with these findings, the disappearance of protection at 120 hours after PC was associated with the return of nNOS mRNA, protein, and activity to control levels. Although expression of COX-2 protein was still elevated at 120 hours, only a marginal increase in PGI2 and PGE2 levels was detected. In contrast to 72 hour after PC, nNOS was not upregulated at 24 hour after PC. We conclude that (1) the cardioprotection observed in the final stage of late PC (72 hour) is mediated by nNOS, not by iNOS, in concert with COX-2, and (2) nNOS-derived NO is required to drive COX-2 activity. These data identify, for the first time, a cardioprotective role of nNOS and demonstrate, surprisingly, that the mechanism of late PC differs at 72 hours (nNOS) versus 24 hours (iNOS).  相似文献   

13.
Nitric oxide (NO) deficiency contributes to hypertension. We previously showed that neuronal nitric oxide synthase (nNOS) was involved in hypertension and kidney damage in spontaneously hypertensive rats (SHRs). The protein inhibitor of nNOS (PIN) has been reported to inhibit activity of nNOS.Thus, we tested whether increased PIN in the kidney results in hypertension and whether small interfering RNA (siRNA) targeting PIN attenuates hypertension in SHRs. Four-week-old male SHRs were assigned into three groups (n = 6-7/group): SHR; SHR + PIN, SHR that received siRNA targeting PIN; and SHR + NC, SHR treated with random negative control siRNA. Rats were sacrificed at 12 weeks of age. PIN protein expression was inhibited considerably when PIN siRNA was transfected into NRK52E cells (90% siRNA at 1 nM). The increases of BP were attenuated by siRNA targeting PIN in12-week-old SHRs. Immunostaining of nNOS-α and total nNOS was greater in SHR + PIN group than SHR. Moreover, renal superoxide production and 8-hydroxydeoxyguanosine (8-OHdG) staining were more decreased in the SHR + PIN group than SHRs. We conclude that PIN siRNA reduced PIN expression in vitro and in vivo. PIN siRNA therapy attenuates hypertension in SHRs at 12 weeks of age. Our results suggest that PIN is involved in the development of hypertension.  相似文献   

14.
Excessive production of nitric oxide (NO) may play a detrimental role in the process of hypoxia-related neuropathology. This study explored whether treatment with melatonin would attenuate the neuropathological changes in the vagal ganglia following a severe hypoxic insult. Thirty minutes prior to hypoxia treatment, young adult rats were pre-treated with melatonin at 5. 25 or 100 mg/kg injected intraperitoneally. Hypoxia was achieved by subjecting the rats to a barometric pressure of 0.2 atm (PO2 = 43 Torr) for 4 hr in an altitude chamber. Nicotinamine adenine dinucleotide phosphatediaphorase (NADPH-d) histochemistry combined with the neuronal nitric oxide synthase (nNOS) immunohistochemistry were used to detect the NADPH-d/nNOS reactivity in the nodose ganglion (NG) at various time points following the hypoxic exposure. In normal untreated rats, about 43% of the neurons in the NG displayed NADPH-d/nNOS reactivity. Following hypoxic exposure, both the percentage and the staining intensity of NADPH-d/nNOS positive neurons in the NG were markedly increased, but these were reduced in longer surviving animals. Quantitative analysis of cell counts revealed that about 17% of the neurons died at 14 days after hypoxia treatment. However, in hypoxic rats given different doses of melatonin pretreatment, neuronal death as well as the frequency and staining intensity of NADPH-d/nNOS reactivity of the nodose neurons were significantly decreased. The effect of melatonin on neuronal survival and NADPH-d/ nNOS expression was dose-dependent. It is therefore suggested that melatonin exerts a neuroprotective effect and may serve as a potential therapeutic strategy for prevention and/or reducing the susceptibility of nodose neurons to NO-mediated hypoxic neuropathy.  相似文献   

15.
AIM:To study the cell-type specific subcellular distribution of the three isoforms of nitric oxide synthase(NOS) in the rat duodenum.METHODS:Postembedding immunoelectronmicroscopy was performed,in which primary antibodies for neuronal NOS(nNOS),endothelial NOS(eNOS),and inducible NOS(iNOS),were visualized with protein A-gold-conjugated secondary antibodies.Stained ultrathin sections were examined and photographed with a Philips CM10 electron microscope equipped with a MEGAVIEW II camera.The specificity of t...  相似文献   

16.
Low Plasma Nitrite in Infantile Hypertrophic Pyloric Stenosis Patients   总被引:1,自引:0,他引:1  
There is now substantial evidence that reduced expression of neuronal nitric oxide synthase (nNOS) is implicated in the pathogenesis of infantile hypertrophic pyloric stenosis (IHPS). This study aimed to investigate the role of plasma nitric oxide (NO) in patients with IHPS. Blood and pylorous biopsies of 13 IHPS patients were examined. The control group consisted of 19 age-matched healthy infants and 22 age-matched acute gastroenteritis patients. Plasma nitrite (NO2 ) and nitrate (NO3 ) levels were detected with an NO analyzer. Pylorus biopsies of 13 IHPS patients were examined for nitric oxide synthase isoform expression. Plasma nitrite levels in the 13 IHPS patients were significantly lower than in the age-matched healthy controls (0.97 ± 0.19 vs. 3.53 ± 0.79μ M; P < 0.001) and the acute gastroenteritis controls (0.97 ± 0.19 vs.1.39 ± 0.45μ M; P = 0.006). Decreased expression of nNOS in the nerve fibers of the pylorus circular muscle was found in the 13 IHPS patients. The decreased plasma nitrite levels rose to the normal range (3.27 ± 0.77 M) after pyloromyotomy. There was no significant correlation between plasma nitrite levels and muscle wall thickness in IHPS patients. We conclude that NO is implicated in the occurrence of IHPS and the plasma nitrite level is valuable for the diagnosis of IHPS.  相似文献   

17.
AIMS: The role of neuronal nitric oxide synthase (nNOS) in regulating contractile function remains controversial, and in regulating myocardial perfusion is uninvestigated. We used magnetic resonance imaging (MRI) to phenotype nNOS(-/-) and wild-type (WT) mice regarding left ventricular (LV) structure, baseline function, beta-adrenergic responsiveness, and perfusion reserve. METHODS AND RESULTS: Cine MRI showed higher LV mass to end-diastolic volume ratio (2.3 +/- 0.2 mg/microL nNOS(-/-) vs. 1.7 +/- 0.1 mg/microL WT; P=0.032) and LV ejection fraction (64.9 +/- 2.1% nNOS(-/-) vs. 55.8 +/- 1.1% WT; P = 0.003) in nNOS(-/-). Myocardial tagging demonstrated similar baseline systolic circumferential strain (Ecc) in nNOS(-/-) and WT. With dobutamine, the normal change in Ecc was nearly absent in nNOS(-/-) (-0.5 +/- 0.3% nNOS(-/-) vs. -2.2 +/- 0.3% WT; P = 0.001), and the systolic strain rate (dEcc/dt) response to dobutamine seen in WT was reduced in nNOS(-/-) (-29 +/- 13%/s nNOS(-/-) vs. -106+/-16%/s WT; P = 0.001). Diastolic strain rate increased significantly with dobutamine only in WT. Arterial spin labelling showed that baseline perfusion and perfusion reserve with either dobutamine or an adenosine receptor agonist are normal in nNOS(-/-). CONCLUSION: MRI provides non-invasive in vivo evidence that nNOS does not play a role in basal contractile function or myocardial perfusion, but is required for increasing cardiac inotropy and lusitropy upon beta-adrenergic stimulation.  相似文献   

18.
Erectile dysfunction (ED) is a major public health problem that seriously affects the quality of life of patients and their partners. ED is mainly associated with vascular disease, diabetes, smoking, and radical prostatectomy, and its prevalence increases significantly with aging. Vasculogenic ED, specifically corporal veno-occlusive dysfunction (CVOD), is caused by the impairment of the relaxation of the smooth muscle in the penile corpora cavernosa and occurs in 2/3 of cases, whereas the less common neurogenic ED is due to a defective nitrergic neurotransmission triggered by the sexual stimulus, either at the central hypothalamic and spinal levels or at the penile nerves. Based on animal and cell studies, neurogenic ED is assumed to be caused mainly by: (a) an insufficient synthesis of nitric oxide (NO) due to a decrease in the levels of the penile neuronal nitric oxide synthase (PnNOS) or the impairment of its regulation by protein effectors (NMDA receptor, protein inhibitor of nNOS: PIN), occurring in the neuronal bodies or nerve terminals, or (b) a loss of the cells themselves by apoptosis caused by the induction of inducible NOS (iNOS) and the production of peroxynitrite. In contrast vasculogenic ED, although may involve endothelial damage and down-regulation of endothelial NOS (eNOS), appears to be mainly caused by the relative loss of smooth muscle cells and replacement by collagen fibers (fibrosis) that impairs tissue compliance. In this case, iNOS induction may not be deleterious, but a defense mechanism preventing excessive collagen deposition. Gene therapy to the penile corpora cavernosa of cDNAs expressing PnNOS or eNOS, or counteracting PIN, has been effective in ameliorating ED in the aging rat model that exhibits both neurogenic ED and CVOD. cDNA constructs for other genes involved in the control of penile erection have also been successfully tested. Gene transfer into the penis may soon translate to the clinic as a therapy aimed to cure the underlying conditions in ED, including fibrosis, as opposed to the facilitation of erection on demand offered by the current oral therapies.  相似文献   

19.
OBJECTIVE: The mechanism of neuronal nitric oxide synthase (nNOS)-dependent reduction in arteriolar conducted vasoconstriction in sepsis, and the possible protection by antioxidants, are unknown. The authors hypothesized that ascorbate inhibits the conduction deficit by reducing nNOS-derived NO production. METHODS: Using intravital microscopy and the cecal ligation and perforation (CLP) model of sepsis (24 h), arterioles in the cremaster muscle of male C57BL/6 wild-type mice were locally stimulated with KCl to initiate conducted vasoconstriction. The authors used the ratio of conducted constriction (500 microm upstream) to local constriction as an index of conduction (CR500). Cremaster muscle NOS enzymatic activity and protein expression, and plasma nitrite/nitrate levels were determined in control and septic mice. Intravenous ascorbate bolus (200 mg/kg in 0.1 ml of saline) was given early (0 h) or delayed at 23 h post CLP. RESULTS: Sepsis reduced CR500 from 0.73 +/- 0.03 to 0.21 +/- 0.03, increased nNOS activity from 87 +/- 9 to 220 +/- 29 pmol/mg/h and nitrite/nitrate from 16 +/- 1 to 39 +/- 3 microM, without affecting nNOS protein expression. Ascorbate at 0 and 23 h prevented/reversed the conduction deficit and the increases in nNOS activity and nitrite/nitrate level. NO donor SNAP (S-nitroso-N-acetylpenicillamine) reestablished the conduction deficit in ascorbate-treated septic mice. Superoxide scavenger MnTBAP (Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) did not affect this deficit. CONCLUSION: These data indicate that early and delayed intravenous boluses of ascorbate prevent/reverse sepsis-induced deficit in arteriolar conducted vasoconstriction in the cremaster muscle by inhibiting nNOS-derived NO production.  相似文献   

20.
The aim of this study was to evaluate the effect of ibuprofen on gastric mucosa and enzymes involved in gastroprotection in healthy volunteers. Twenty-four Helicobacter pylori-negative subjects were randomized to treatment with ibuprofen or ibuprofen-arginate (each 600 mg/6 hr during 3 days). Endoscopies were performed 1 week before and after treatment. Biopsies were taken from the gastric antrum and corpus for determination of prostaglandin E2 (PGE2) by ELISA and cyclooxygenase (COX-1 and COX-2) and nitric oxide synthase (eNOS and iNOS) by western blot. All subjects had at least one gastric lesion except for two individuals taking ibuprofen-arginate. Ibuprofen-arginate caused a lower rate of clinical adverse reactions than ibuprofen. Subjects with gastric lesions or adverse reactions had lower PGE2 levels. COX-1, COX-2, eNOS, and iNOS were detectable in all subjects. The constitutive enzymes (COX-1 and eNOS) did not change after treatment. COX-2 was higher in corpus than antrum and it increased after ibuprofen treatment. iNOS tended to increase mildly in the corpus in subjects with adverse reactions or endoscopic lesions. There were no significant differences between ibuprofen and ibuprofen-arginate in PGE2, or enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号