首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The release of endothelial relaxing factors has been suggested to be important in modulating the inhibition of the contractile activity caused by the increase in extracellular Ca(2+) concentration in arterial tissue. Since the hypertensive process in spontaneously hypertensive rats (SHR) could be associated with the release of endothelial vasoconstrictor factors (mainly cyclooxygenase-dependent endoperoxides and endothelin-1), we studied the contractile responses to KCl, methoxamine and phenylephrine in different aorta ring preparations (intact, de-endothelized, 10(-5) M indomethacin-treated, 10(-6) M CGS-27830 [meso-1,4-dihydro-5-methoxycarbonyl-2, 6-dimethyl-4-(3-nitrophenyl)-3-pyridine carboxylic acid anhydride]-treated, and treated simultaneously with 10(-5) M indomethacin and 10(-6) M CGS-27830) from SHR and normotensive Wistar Kyoto rats (WKY), at various Ca(2+) concentrations (1.25, 2.5, 5 and 10 mM) in the organ bath. In endothelium-intact preparations from WKY rats we observed a decrease in KCl, methoxamine and phenylephrine contractions with high Ca(2+) concentrations (5 and 10 mM), but in the endothelium-intact preparations from SHR, the increase in extracellular Ca(2+) concentration potentiated methoxamine contractions and caused no change in KCl and phenylephrine contractions. When the endothelium was disrupted in preparations from both WKY rats and SHR, we observed a decrease in KCl and methoxamine contractions with high Ca(2+) concentrations. The decrease in phenylephrine contractions caused by high Ca(2+) concentrations was clear in de-endothelized preparations from WKY rats but slight in de-endothelized preparations from SHR. In all indomethacin- and CGS-27830-treated preparations, and also in the preparations from WKY rats and SHR treated with both drugs, we observed a decrease in all the contractile responses with increased Ca(2+) concentration. Besides, there was a clear reduction in the responses of the alpha(1)-adrenoceptor agonists in the WKY and SHR preparations treated with both drugs. The results indicate that, in the hypertensive arteries, endothelium-derived contractile factors can counteract the relaxing effect of high extracellular Ca(2+) concentrations.  相似文献   

2.
In this study, we report the effects of a non-antioxidant flavonoid flavone on vascular reactivity in Wistar-Kyoto (WKY) rat isolated aortae. Whether flavone directly modulates vascular reactivity in spontaneously hypertensive rat (SHR) and streptozotocin-induced diabetic-WKY rat isolated aortae was also determined. Thoracic aortic rings were mounted in organ chambers and exposed to various drug treatments in the presence of flavone (10 microM) or its vehicle (DMSO), which served as control. Pretreatment with flavone enhanced relaxant effects to endothelium-dependent vasodilator acetylcholine (ACh) and attenuated contractile effects to alpha(1)-receptor agonist phenylephrine (PE) in WKY aortae compared to those observed in control aortic rings. Flavone had no effect on relaxations to ACh in WKY aortae incubated with either L-NAME or methylene blue, but enhanced relaxations to ACh in WKY aortae incubated with indomethacin or partially depolarized with KCl. Relaxations to ACh are totally abolished in both control or flavone pretreated endothelium-denuded WKY aortae. Flavone attenuated the inhibition by beta-NADH of ACh-induced relaxation in WKY aortae, but it had no significant effect on the transient contractions induced by beta-NADH nor the pyrogallol-induced abolishment of ACh-induced relaxation in WKY aortae. Flavone enhanced endothelium-independent relaxation to sodium nitroprusside (SNP) in both endothelium-intact and -denuded WKY aortae. Flavone enhanced relaxation to ACh and SNP as well as attenuated contractile effects to PE in SHR and diabetic aortae, a finding similar to that observed in normal WKY aortae. From these results, we conclude that flavone modulates vascular reactivity in normal as well as hypertensive and diabetic aortae. These effects of flavone results probably through enhanced bioactivity of nitric oxide released from the endothelium.  相似文献   

3.
We investigated the contribution of tyrosine kinase activity to the enhanced vasoreactivity in cardiomyopathic (CM) hamsters. The contractile response of the aorta to phenylephrine was greatly enhanced in CM in comparison to control hamsters. Genistein, a tyrosine kinase inhibitor, did not affect the maximum contractile response to phenylephrine in control aortas, although the sensitivity to phenylephrine was significantly diminished. In contrast, genistein markedly inhibited both the sensitivity and the maximum contractile response to phenylephrine in CM aortas. Daidzein, an inactive form of genistein, also inhibited the sensitivity to phenylephrine in both strains although the maximum contractile response was not altered even in the CM aorta. The Ca2+ sensitivity of tension was significantly augmented in alpha toxin-permeabilized smooth muscle from the mesenteric artery of CM hamsters. Furthermore, phenylephrine enhanced myofilament sensitivity to Ca2+ more in CM than control hamsters. The enhancement of myofilament Ca2+ sensitivity by phenylephrine was markedly inhibited by genistein only in CM hamsters. The inhibition by daidzein of the phenylephrine effect on the Ca2+ sensitivity in CM hamsters was less pronounced. These results suggest that an increase in tyrosine kinase activity may lead to enhanced vascular reactivity in CM hamsters possibly due to an increased Ca2+ sensitivity of the contractile apparatus.  相似文献   

4.
1. Isolated aortic rings (endothelium-intact and -denuded) from spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats were used in this study to examine the vasoactive effects of various adenosine analogues. 2. In phenylephrine contracted aortic rings, concentration-response curves were constructed by cumulative additions (10(-11) - 10(-5) M) of (2S)-N(6)-[2-endo-Norbornyl] adenosine (ENBA), N(6)-cyclopentyladenosine (CPA), R-N(6)-(2-phenylisopropyl) adenosine (R-PIA), 2-p-(-2-carboxyethyl) phenethylamino-5'-N-thylcarboxamido adenosine (CGS-21680). 3. A non-specific adenosine receptor agonist 2-chloroadenosine (CAD) resulted in biphasic response with a small contraction at lower concentrations (10(-9) - 10(-8) M) followed by a significant relaxation at higher concentration in endothelium-intact SHR tissues, suggesting presence of both A(1) and A(2) adenosine receptors in SHR aorta. However, only relaxation was observed in WKY. 4. Contractile response in SHR had the following rank order of potency: ENBA>CPA>R-PIA>CAD. The relaxation response in SHR and WKY had the following rank order of potency: CGS 21680>CAD>R-PIA>CPA>ENBA. 5. Removal of endothelium abolished the adenosine analogue induced contractions in SHR aorta and attenuated the vasorelaxation responses in the WKY and SHR. 6. The contractile response in SHR was abolished by A(1) adenosine receptor antagonist N(6)-endonorbornan-2-yl-9-methyladenine (N-0861). A(2) adenosine receptor antagonist, 3,7-dimethyl-1-proparglyxanthine (DMPX) did not affect the contraction response of adenosine analogues. 7. Endothelium-dependent contractions elicited by A(1) receptor agonists were blocked by indomethacin and by free radical scavengers. 8. These data suggest that the contractile response to adenosine analogues in SHR aorta is probably mediated by free radicals which are generated through the increased cyclo-oxygenase activity occurring in the vascular endothelium of SHR but not the WKY rats.  相似文献   

5.
The present study examined the regulatory effect of tyrosine kinase inhibitors (genistein, tyrphostin, and 2,5-dihydroxycinnamate) on the free radical production, granule enzyme release, and synthesis of interleukin (IL)-8 and granulocyte macrophage-colony stimulating factor (GM-CSF) in murine peritoneal macrophages exposed to different stimulators [10 ng/mL of IL-1, 1 microgram/mL of lipopolysaccharide (LPS), and 1 microM N-formyl-methionyl-leucyl-phenylalanine (fMLP)]. Protein tyrosine kinase (PTK) inhibitors attenuated the stimulated superoxide, hydrogen peroxide, and nitric oxide production in macrophages stimulated with IL-1, LPS, or fMLP. N,N-Dimethylsphingosine (DMS) alone stimulated superoxide and hydrogen peroxide production by intact macrophages, but at 45 microM the stimulatory effect on superoxide production was not found. In contrast, DMS attenuated nitric oxide production by macrophages. High concentrations of DMS, tyrphostin, and 2,5-dihydroxycinnamate showed cytotoxic effects. PTK inhibitors did not exhibit a significant effect on granule enzyme release induced by IL-1, whereas they attenuated the effect of LPS and fMLP on degranulation. Genistein and tyrphostin decreased the production of IL-8 and GM-CSF in macrophages activated by IL-1, whereas 2,5-dihydroxycinnamate did not affect it. The results suggest that tyrosine kinases exposed to IL-1, LPS, and fMLP may exert different modulatory actions on macrophage responses. The IL-1-activated macrophage responses, particularly degranulation, appear to be differently regulated by tyrosine kinases compared with the responses activated by LPS and fMLP.  相似文献   

6.
This study investigates the effects of phorbol dibutyrate (PDB) on protein kinase C (PKC) activation, as assessed by the translocation of PKC activity from the cytosolic to the particulate fraction, in aortas and mesenteric arteries from spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY). The basal distribution of PKC activity between the cytosolic and particulate fractions of SHR and WKY aortas, and mesenteric arteries, was not significantly different. PDB induced a concentration-dependent decrease in cytosolic PKC activity in SHR and WKY aortas. PDB (0.01 microM) decreased cytosolic PKC activity to a greater magnitude in SHR aorta as compared to WKY aorta, while 1.0 microM PDB decreased cytosolic PKC activities to similar magnitudes in SHR and WKY aortas, and mesenteric arteries. These results suggest that the increased sensitivity of SHR vessels to contraction by phorbol esters may be due, at least in part, to the greater sensitivity of PKC in these vessels to phorbol ester activation.  相似文献   

7.
1. The aim of the present study was to investigate the mechanism underlying biochanin A-induced relaxation of the aorta in spontaneously hypertensive rats (SHR). 2. The tension in isolated ring preparations of thoracic aortas from normotensive (Wistar-Kyoto (WKY) rats) and SHR at 5 and 10 weeks of age was measured isometrically. 3. Biochanin A (10(-7) to 10(-4) mol/L) induced a concentration-dependent relaxation in aortic rings from both strains at the age of 5 and 10 weeks and the relaxation was greater in rings from 10-week-old SHR compared with age-matched WKY rats. The vasorelaxation induced by biochanin A was significantly reduced by denudation of the endothelium in aortic rings from SHR, but not WKY rats. Treatment with either indomethacin, a cyclo-oxygenase inhibitor, or N(omega)-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, had little effect on the relaxation induced by biochanin A in aortic rings from either strain. Glibenclamide, a selective inhibitor of ATP-sensitive potassium channels, significantly attenuated the relaxation induced by biochanin A in aortic rings from both strains, although the extent of reduction was greater in WKY rats than SHR. Conversely, treatment with 4-aminopyridine, a selective inhibitor of voltage-dependent potassium channels, or tetraethylammonium, an inhibitor of calcium-activated potassium channels, significantly reduced the vasorelaxation induced by biochanin A in rings from SHR but not WKY rats. 4. The greater vasorelaxation produced by biochanin A in aortic rings from 10-week-old SHR is endothelium dependent. Different mechanisms underlie the relaxant effects of biochanin A in aorta from SHR and WKY rats. The mechanisms of biochanin A-induced vasorelaxation in thoracic aortas from both normotensive and hypertensive rats involve ATP-sensitive potassium channels and, in addition, in rings from the hypertensive strain at 10 weeks of age, an endothelium-derived activation of smooth muscle cell potassium channels contributes to the vasorelaxation observed.  相似文献   

8.
We investigated whether p42/p44 mitogen-activated protein kinase (MAPK) and/or p38 MAPK participates in the regulation of vascular smooth muscle contraction by endothelin-1 (ET-1) in Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). ET-1 (10 nM) induced a sustained contraction in WKY and SHR aortas. PD98059 (100 microM), an inhibitor of p42/p44 MAPK kinase, partially attenuated the ET-1-induced contraction in WKY and SHR. However, SB203580 (10 microM), an inhibitor of p38 MAPK, relaxed the ET-1-induced contraction to the resting levels in SHR, but not in WKY. ET-1 (10 nM) increased phosphorylation of both p42/p44 MAPK and p38 MAPK in WKY and SHR. However, in SHR, p38 MAPK phosphorylation in response to ET-1 stimulation was increased more than in WKY. PD98059 (100 microM) and SB203580 (10 microM) abolished the phosphorylation of p42/p44 MAPK and p38 MAPK in response to ET-1 stimulation in WKY and SHR, respectively. On the other hand, SB203580 (10 microM) did not affect myosin light chain (MLC) phosphorylation in response to ET-1 (10 nM) stimulation in WKY and SHR. From these results, it is concluded that p42/p44 MAPK and/or p38 MAPK partially regulates the ET-1-induced vasoconstriction in WKY. However, p38 MAPK, rather than p42/p44 MAPK, activation plays an important role for the maintenance of ET-1-induced vasoconstriction in SHR through a MLC phosphorylation-independent pathway.  相似文献   

9.
1. The effect of propofol on arterial tone in hypertension is poorly understood. We examined the effect of increasing concentrations of propofol (5.6 x 10-8 to 2.8 x 10-3 mol/L) on isometric tension developed by noradrenaline (10-7 mol/L)-contracted aortic rings from 12-week-old Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). 2. In both WKY rats and SHR, propofol induced a dose-dependent inhibition of contraction induced by noradrenaline, but the amplitude of relaxation was larger in the SHR than in WKY rats. 3. The effects of propofol was endothelium independent in WKY rats, whereas in SHR relaxation induced by propofol was greater in endothelium-intact than in endothelium-denuded rings. 4. In conclusion, we found significant differences in the effect of propofol in hypertensive rats, which may be related to differences in structural and functional properties of the arterial wall observed in hypertension.  相似文献   

10.
1. The effects of endothelium removal and of a number of pharmacological agents known to modify endothelial cell function on the contractile response of rabbit isolated basilar arteries to 5-hydroxytryptamine (5-HT) and other vasoconstrictors were studied. 2. Endothelium removal slightly reduced the contractile response to potassium chloride (40 mM) but markedly augmented and potentiated contractions to 5-HT (1 nM-10 microM). 3. L-NG-nitro-arginine (L-NOARG, 1-30 microM), an inhibitor of nitric oxide formation in vascular endothelial cells, evoked endothelium-dependent contraction, and augmented and potentiated contractions to 5-HT in endothelium-intact but not endothelium-denuded tissues. Prior incubation with L-arginine (1 mM), but not D-arginine (1 mM), abolished these effects of L-NOARG (1 microM). L-NOARG (30 microM) also augmented contractions of endothelium-intact tissues to noradrenaline, prostaglandin F2 alpha, and to a lesser degree endothelin-1. 4. Neither glibenclamide (3 microM) nor N-ethylmaleimide (1 microM), putative inhibitors of the effects of endothelium-derived hyperpolarizing factor (EDHF) and of agonist-stimulated endothelium-derived relaxing factor (EDRF) release respectively, had any effect on either resting tension or the contractile response to 5-HT. In some tissues indomethacin (3 microM), a cyclo-oxygenase inhibitor, produced a small contraction and augmented the contractile response to 5-HT, but in most cases indomethacin was without effect. 5. In endothelium-intact tissues precontracted with uridine 5'-triphosphate (UTP; 100 microM), 5-HT did not evoke relaxation but rather caused further contraction. Under the same conditions acetylcholine (0.01-10 microM) evoked endothelium-dependent relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Effects of diabetes on the responses of aortic rings of normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rat to adenosine analogues were examined. Streptozotocin-induced diabetes caused an increase in blood glucose and plasma levels of cholesterol and triglycerides in normotensive (diabetic-WKY) as well as hypertensive (diabetic-SHR) rats. In diabetic-SHR group, the body weight was significantly low (50%) as compared to SHR (non-diabetic). Diabetic-SHR group showed the largest heart weight-to-body weight ratio indicating cardiac enlargement. The relaxation responses to adenosine analogues were obtained in endothelium-intact and -denuded aortic rings precontracted with phenylephrine. The IC(50) values of adenosine analogues were lower in endothelium-intact aortic rings of WKY as compared to diabetic-WKY and -SHR. Aortic rings from diabetic-SHR showed the greatest attenuation in adenosine analogue-mediated relaxation. Removal of endothelium from the aortic rings inhibited the relaxant response of adenosine analogues and abolished the differences among the groups. Nitric oxide (NO) synthase inhibitor L-monomethylarginine (L-NMMA) caused a significant rightward shift in the concentration-response curves in WKY and diabetic-WKY groups, only a small shift in SHR and no change in diabetic-SHR group indicating that it is primarily the inhibition of NO release which is responsible for attenuation of adenosine receptor responses in SHR and diabetic-WKY and there was absence of NO release in diabetic-SHR. Forskolin and sodium nitroprusside equally relaxed the aortic rings in all the groups. This suggested that there was no abnormality in the relaxant property of vascular smooth muscle due to hypertension and/or diabetes. Therefore, it is concluded that streptozotocin-induced diabetes in SHR aggravates the severity of vascular endothelial dysfunction which led to impairment in adenosine receptor-mediated vascular responses.  相似文献   

12.
1. Vascular contractions induced by K(+)-free solution and relaxation responses following the return of K+ to the organ bath were studied in mesenteric arterial rings from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) with particular focus on the role of vascular adrenergic nerve-endings and endothelium. 2. In endothelium-denuded rings the omission of K+ from the incubation medium resulted in gradual contractions, the rate of which was slower in SHR than WKY. Nifedipine (1 microM) inhibited the contractions more effectively in SHR than WKY. 3. Adrenergic denervation in vitro with 6-hydroxydopamine reduced the contractions induced by the K(+)-free medium in endothelium-denuded rings. The remaining contractions after denervation were markedly greater in SHR than WKY. 4. The presence of intact vascular endothelium attenuated the K(+)-free contractions in both strains, the attenuation being smaller in SHR than WKY. NG-nitro-L-arginine methyl ester (L-NAME, 0.1 mM) and methylene blue (10 microM), but not indomethacin (10 microM), abolished the attenuating effect of endothelium on the K(+)-free contractions. L-Arginine (1 mM) reversed the effect of L-NAME in WKY but not in SHR. 5. The re-addition of K+ after full K(+)-free contractions dose-dependently relaxed the rings. The rate of this K(+)-induced relaxation was significantly slower in SHR than WKY at all K+ concentrations (0.1-5.9 mM) studied, whether the endothelium or functioning adrenergic nerve-endings were present or not. Ouabain (1 mM) totally inhibited the K+ relaxation in SHR but only partially in WKY.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Genistein, a putative tyrosine kinase inhibitor, stimulated human platelet mitogen activated protein kinase (MAPK) activity in a dose- and time-dependent manner. When MAPK was maximally stimulated by phorbol 12-myristate 13-acetate (PMA), genistein still elicited the increase in MAPK activity. Staurosporine (50 nm), significantly decreased the PMA-induced MAPK activity, but had little inhibitory effect on the genistein-induced MAPK activity. Both these observations indicated a protein kinase C (PKC) independent pathway for the genistein-stimulated MAPK activity. When other tyrosine kinase inhibitors (methyl-2,5-dihydroxycinnamate, and tyrphostin) were employed, similar increases in the MAPK activity were observed. Addition of genistein to cytosolic fraction of platelets had no effect on the MAPK activity and indicated that this effect is not due to direct physical interaction between genistein and MAPK and that intact platelets are required for it. MAPK activity of platelets from rabbit and pig was also stimulated by genistein. This effect of genistein was not observed in other cell types tested (BNLCL2, HEL and U937 cells). Forskolin, which increases cyclic AMP had little effect on the basal platelet MAPK activity or the genistein activated MAPK, while it decreased by half the PMA-induced MAPK activity. The inactive analog of genistein, daidzein, which does not inhibit tyrosine kinase had little effect on MAPK. Genistein caused a decrease in basal tyrosine phosphorylation of pp60(c-src) protein as detected with anti-phosphotyrosine (anti-PTyr) Ab. Thus, inhibition of basal tyrosine kinase results in an increase in MAPK activity. This study demonstrates for the first time a novel mechanism for regulation of MAPK in platelets in which inhibition of tyrosine kinase results in activation of MAPK, independent of PKC and cAMP pathways.  相似文献   

14.
We aimed to investigate the mechanisms underlying the vascular effects induced by phylloquinone (Vitamin K1; VK1). Vascular reactivity experiments, using standard muscle bath procedures, showed that VK1 (5 and 50 microM) enhances the contractile response of endothelium-intact, but not denuded, rat carotid rings to phenylephrine. Similarly, maximal contraction induced by phenylephrine was enhanced in the presence of the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME). The combination of L-NAME and VK1 did not produce any further additional effect. Pre-incubation of intact-rings with VK1 reduced both acetylcholine- and bradykinin-induced relaxation. VK1 induced an increment in tension on carotid rings submaximally pre-contracted with phenylephrine. VK1-induced increment in tension was completely abolished by endothelial removal or incubation of intact rings with L-NAME and L-NNA. Conversely, 7-nitroindazole, 1400 W, or indomethacin did not affect VK1-induced contraction. Moreover, VK1 reduced L-arginine-induced relaxation in endothelium-intact rings. Lucigenin-amplified chemiluminescence assays showed that VK1 induced an increase in the level of superoxide anions in endothelium-intact but not denuded rings. Measurement of nitrite and nitrate generation showed that VK1 did not alter nitrate formation but strongly inhibited the generation of nitrite. Finally, the superoxide anions scavenger tiron prevented the endothelial vasomotor dysfunction caused by VK1 on phenyleprine-induced contraction and acetylcholine or bradykinin-induced relaxation. In conclusion, our data show that VK1 disrupts the vasomotor function of rat carotid. Our results suggest that VK1-induced oxidative stress through production of superoxide anion is interfering with the NO pathway, which in turn is responsible for the altered vascular reactivity induced by VK1.  相似文献   

15.
Phorbol esters which activate protein kinase C (PKC) produced concentration-related force development in aorta from spontaneously hypertensive rat (SHR) and Wistar-Kyoto rat (WKY); all were 2-7 x more potent in SHR. However, total PKC activity in aortas, as well as carotid, caudal and renal arteries, was not different, when SHR was compared with WKY. Binding of phorbol dibutyrate to particulate aortic PKC was similar in SHR and WKY (same apparent Kd and Bmax values), as was potency for displacement of phorbol dibutyrate by phorbol myristate acetate. Furthermore, there was no difference in potency with staurosporine, H-7, and calmidazolium in inhibiting SHR and WKY aortic PKC. These data demonstrate enhanced contractile sensitivity to PKC-activating phorbol esters in SHR aortic smooth muscle that is not related to activity, phorbol ester binding, or sensitivity to inhibitors when SHR PKC is compared with WKY PKC. Thus, signal transduction events distal to PKC activation may be responsible for enhanced vascular contractile sensitivity to phorbol esters in SHR.  相似文献   

16.
The purpose of the present investigation was to determine whether there is an association between changes in arterial reactivity to vasoactive agents and the development of hypertension in obese Zucker rats. At 20 weeks of age, obese rats were mildly hypotensive compared to their lean littermate controls. Maximum contractile responses of endothelium-intact mesenteric arteries from these rats to noradrenaline, endothelin-1 and KCl were depressed, although there was no change in relaxation to acetylcholine. By 32 weeks of age, obese rats had developed hypertension compared to their lean littermate controls. Maximum contractile responses of mesenteric arteries from 32-week-old obese rats to noradrenaline and endothelin-1 were no longer significantly different than control, although contractile responses to KCl remained depressed. In addition, there was a small increase in sensitivity to endothelin-1, while endothelium-dependent relaxation to acetylcholine was impaired. In contrast, there were no changes in contractile responses of endothelium-intact aortas from either 20- or 32-week-old obese rats to noradrenaline, endothelin-1 or KCl, while endothelium-dependent relaxation of this artery to acetylcholine was slightly enhanced at both ages. Therefore, changes in the reactivity of the mesenteric artery but not the aorta from obese Zucker rats parallel changes in blood pressure in these animals.  相似文献   

17.
The role of the thromboxane A(2)/prostaglandin H(2) receptor in endothelin-1 contraction was investigated in aortic rings from rats exposed to normoxia (21% O(2)) or hypoxia (10% O(2)) for 12 h. Indomethacin (10 microM) and SQ 29,548 (0.1 microM, thromboxane A(2)/prostaglandin H(2) receptor antagonist) reduced maximum tension and increased EC(50) in endothelium-intact and -denuded rings from normoxic animals. Neither inhibitor had any effect on rings from hypoxic rats. Thromboxane A(2) and/or prostaglandin H(2) contribute to the response to endothelin-1 in aortas from normoxic rats but not from rats exposed to hypoxia. Loss of prostanoid-enhancement of endothelin-1 contraction contributes to impair vascular reactivity after hypoxia.  相似文献   

18.
We investigated the vascular responsiveness to vasoactive agents and the inhibition by H-7 (1-(5-isoquinoline-sulfonyl)-2-methylpiperazine), which inhibits cyclic nucleotide-dependent protein kinases and protein kinase C(PKC) equally potently in helically cut strips of thoracic aortas from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). The susceptibility of norepinephrine (NE)- and angiotensin II (Ang II)-induced contractions to H-7 was significantly higher in the aortas from SHR than in those from WKY. H-7 decreased the contractile responses to KCl to a similar extent in both strains without affecting the high K(+)-stimulated Ca2+ influx. H-7 produced a shift to the right of the dose-response curve for the PKC activator, 12-o-tetradecanoylphorbol-13-acetate (TPA) in the case of SHR aortas, while no such shift was noted in tissues from WKY. Functional alterations in the PKC branch of the Ca2+ messenger system in vascular smooth muscle may play an important role in SHR during the sustained contraction.  相似文献   

19.
1. The role of the endothelium in cerebrovascular responses to 5-hydroxytryptamine (5-HT) was investigated in spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) in vitro. 2. Cumulative addition of 5-HT caused concentration-dependent contractions in ring preparations of SHR basilar arteries; the contractile response was smaller in WKY basilar arteries. 3. Removal of the endothelium enhanced markedly the contractile responses to 5-HT in WKY arteries but had only a slight effect in SHR arteries. The responsiveness to 5-HT in WKY arteries after removal of endothelium was comparable to that in SHR arteries. 4. The endothelium-dependent relaxation induced by acetylcholine in WKY basilar arteries was almost abolished by treatment with 10 microM methylene blue or 10 microM NG-nitro-L-arginine (L-NOARG). However, the response to 5-HT was not affected by treatment with methylene blue, L-NOARG or indomethacin. 5. Application of 10-20 mM K+ or 3.2 mM tetraethylammonium (TEA) did not change significantly, or only increased slightly, the resting tension, but markedly enhanced the contractile response to 5-HT in WKY arteries with endothelium. In contrast, the submaximal response to 5-HT in SHR arteries with endothelium was significantly enhanced by 0.3 mM TEA. 6. In the presence of 1 mM TEA, the application of 10 microM L-NOARG further enhanced the responses of 5-HT in WKY arteries with endothelium. In SHR arteries with endothelium, 10 microM L-NOARG per se enhanced slightly but significantly the responses to 5-HT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
1. The vasoconstrictor effects of endothelin-1 were studied in perfused mesenteric vascular beds (MVB) and aortic rings of 14-16 week-old spontaneously hypertensive rats (SHR) and age-matched Wistar Kyoto rats (WKY). 2. Reactivity to endothelin-1 was increased in MVBs of SHR, as indicated by the maximum perfusion pressure obtained (264 +/- 8 and 141 +/- 9 mmHg respectively) (P less than 0.001), whereas sensitivity was not significantly different between the two strains (EC50 171 +/- 21 and 102 +/- 19, respectively). 3. In aortic rings, in contrast, reactivity to endothelin-1 was reduced in SHR as compared to WKY, whereas sensitivity was similar (EC50 0.78 +/- 0.08 and 0.87 +/- 0.09 nM). 4. As with endothelin-1, reactivity to noradrenaline and potassium chloride was increased in MVBs, but not in aortic rings of SHR. Endothelin-1 was 30 times more potent than noradrenaline in MVBs of SHR, and 15 times more potent than noradrenaline in aortic rings. 5. In both strains, nifedipine and nitrendipine almost completely blocked potassium-induced contractions in MVB and aortic rings, respectively, whereas contractions induced by endothelin-1 or noradrenaline were only partially inhibited. 6. It is concluded that calcium influx via the voltage-operated calcium channel is only partially responsible for the vasoconstrictor action of endothelin-1 in MVBs and aortic rings of SHR and WKY rats. The increased reactivity of the MVB of SHR to endothelin-1 at this stage of the hypertensive process is most likely to be the result of a change in vascular structure rather than due to a primary hypertensive mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号