首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

PET/MR has the potential to become a powerful tool in clinical oncological imaging. The purpose of this prospective study was to evaluate the performance of a single T1-weighted (T1w) fat-suppressed unenhanced MR pulse sequence of the abdomen in comparison with unenhanced low-dose CT images to characterize PET-positive lesions.

Methods

A total of 100 oncological patients underwent sequential whole-body 18F-FDG PET with CT-based attenuation correction (AC), 40?mAs low-dose CT and two-point Dixon-based T1w 3D MRI of the abdomen in a trimodality PET/CT-MR system. PET-positive lesions were assessed by CT and MRI with regard to their anatomical location, conspicuity and additional relevant information for characterization.

Results

From among 66 patients with at least one PET-positive lesion, 147 lesions were evaluated. No significant difference between MRI and CT was found regarding anatomical lesion localization. The MR pulse sequence used performed significantly better than CT regarding conspicuity of liver lesions (p?<?0.001, Wilcoxon signed ranks test), whereas no difference was noted for extrahepatic lesions. For overall lesion characterization, MRI was considered superior to CT in 40?% of lesions, equal to CT in 49?%, and inferior to CT in 11?%.

Conclusion

Fast Dixon-based T1w MRI outperformed low-dose CT in terms of conspicuity and characterization of PET-positive liver lesions and performed similarly in extrahepatic tumour manifestations. Hence, under the assumption that the technical issue of MR AC for whole-body PET examinations is solved, in abdominal PET/MR imaging the replacement of low-dose CT by a single Dixon-based MR pulse sequence for anatomical lesion correlation appears to be valid and robust.  相似文献   

2.

Purpose

To evaluate the performance of conventional [11C]choline PET/CT in comparison to that of simultaneous whole-body PET/MR.

Methods

The study population comprised 32 patients with prostate cancer who underwent a single-injection dual-imaging protocol with PET/CT and subsequent PET/MR. PET/CT scans were performed applying standard clinical protocols (5 min after injection of 793?±?69 MBq [11C]choline, 3 min per bed position, intravenous contrast agent). Subsequently (52?±?15 min after injection) PET/MR was performed (4 min per bed position). PET images were reconstructed iteratively (OSEM 3D), scatter and attenuation correction of emission data and regional allocation of [11C]choline foci were performed using CT data for PET/CT and segmented Dixon MR, T1 and T2 sequences for PET/MR. Image quality of the respective PET scans and PET alignment with the respective morphological imaging modality were compared using a four point scale (0–3). Furthermore, number, location and conspicuity of the detected lesions were evaluated. SUVs for suspicious lesions, lung, liver, spleen, vertebral bone and muscle were compared.

Results

Overall 80 lesions were scored visually in 29 of the 32 patients. There was no significant difference between the two PET scans concerning number or conspicuity of the detected lesions (p not significant). PET/MR with T1 and T2 sequences performed better than PET/CT in anatomical allocation of lesions (2.87?±?0.3 vs. 2.72?±?0.5; p?=?0.005). The quality of PET/CT images (2.97?±?0.2) was better than that of the respective PET scan of the PET/MR (2.69?±?0.5; p?=?0.007). Overall the maximum and mean lesional SUVs exhibited high correlations between PET/CT and PET/MR (ρ?=?0.87 and ρ?=?0.86, respectively; both p?<?0.001).

Conclusion

Despite a substantially later imaging time-point, the performance of simultaneous PET/MR was comparable to that of PET/CT in detecting lesions with increased [11C]choline uptake in patients with prostate cancer. Anatomical allocation of lesions was better with simultaneous PET/MR than with PET/CT, especially in the bone and pelvis. These promising findings suggest that [11C]choline PET/MR might have a diagnostic benefit compared to PET/CT in patients with prostate cancer, and now needs to be further evaluated in prospective trials.  相似文献   

3.

Purpose

PET/MR hybrid scanners have recently been introduced, but not yet validated. The aim of this study was to compare the PET components of a PET/CT hybrid system and of a simultaneous whole-body PET/MR hybrid system with regard to reproducibility of lesion detection and quantitation of tracer uptake.

Methods

A total of 46 patients underwent a whole-body PET/CT scan 1?h after injection and an average of 88?min later a second scan using a hybrid PET/MR system. The radioactive tracers used were 18F-deoxyglucose (FDG), 18F-ethylcholine (FEC) and 68Ga-DOTATATE (Ga-DOTATATE). The PET images from PET/CT (PETCT) and from PET/MR (PETMR) were analysed for tracer-positive lesions. Regional tracer uptake in these foci was quantified using volumes of interest, and maximal and average standardized uptake values (SUVmax and SUVavg, respectively) were calculated.

Results

Of the 46 patients, 43 were eligible for comparison and statistical analysis. All lesions except one identified by PETCT were identified by PETMR (99.2?%). In 38 patients (88.4?%), the same number of foci were identified by PETCT and by PETMR. In four patients, more lesions were identified by PETMR than by PETCT, in one patient PETCT revealed an additional focus compared to PETMR. The mean SUVmax and SUVavg of all lesions determined by PETMR were by 21?% and 11?% lower, respectively, than the values determined by PETCT (p?<?0.05), and a strong correlation between these variables was identified (Spearman rho 0.835; p?<?0.01).

Conclusion

PET/MR showed equivalent performance in terms of qualitative lesion detection to PET/CT. The differences demonstrated in quantitation of tracer uptake between PETCT and PETMR were minor, but statistically significant. Nevertheless, a more detailed study of the quantitative accuracy of PETMR and the factors governing it is needed to ultimately assess its accuracy in measuring tissue tracer concentrations.  相似文献   

4.

Purpose

Our objectives were to assess the quality of PET images and coregistered anatomic images obtained with PET/MR, to evaluate the detection of focal uptake and SUV, and to compare these findings with those of PET/CT in patients with head and neck tumours.

Methods

The study group comprised 32 consecutive patients with malignant head and neck tumours who underwent whole-body 18F-FDG PET/MR and PET/CT. PET images were reconstructed using the attenuation correction sequence for PET/MR and CT for PET/CT. Two experienced observers evaluated the anonymized data. They evaluated image and fusion quality, lesion conspicuity, anatomic location, number and size of categorized (benign versus assumed malignant) lesions with focal uptake. Region of interest (ROI) analysis was performed to determine SUVs of lesions and organs for both modalities. Statistical analysis considered data clustering due to multiple lesions per patient.

Results

PET/MR coregistration and image fusion was feasible in all patients. The analysis included 66 malignant lesions (tumours, metastatic lymph nodes and distant metastases), 136 benign lesions and 470 organ ROIs. There was no statistically significant difference between PET/MR and PET/CT regarding rating scores for image quality, fusion quality, lesion conspicuity or anatomic location, number of detected lesions and number of patients with and without malignant lesions. A high correlation was observed for SUVmean and SUVmax measured on PET/MR and PET/CT for malignant lesions, benign lesions and organs (ρ?=?0.787 to 0.877, p?<?0.001). SUVmean and SUVmax measured on PET/MR were significantly lower than on PET/CT for malignant tumours, metastatic neck nodes, benign lesions, bone marrow, and liver (p?<?0.05). The main factor affecting the difference between SUVs in malignant lesions was tumour size (p?<?0.01).

Conclusion

In patients with head and neck tumours, PET/MR showed equivalent performance to PET/CT in terms of qualitative results. Comparison of SUVs revealed an excellent correlation for measurements on both modalities, but underestimation of SUVs measured on PET/MR as compared to PET/CT.  相似文献   

5.

Purpose

The combination of positron emission tomography (PET) and magnetic resonance (MR) tomography in a single device is anticipated to be the next step following PET/CT for future molecular imaging application. Compared to CT, the main advantages of MR are versatile soft tissue contrast and its capability to acquire functional information without ionizing radiation. However, MR is not capable of measuring a physical quantity that would allow a direct derivation of the attenuation values for high-energy photons.

Methods

To overcome this problem, we propose a fully automated approach that uses a dedicated T1-weighted MR sequence in combination with a customized image processing technique to derive attenuation maps for whole-body PET. The algorithm automatically identifies the outer contour of the body and the lungs using region-growing techniques in combination with an intensity analysis for automatic threshold estimation. No user interaction is required to generate the attenuation map.

Results

The accuracy of the proposed MR-based attenuation correction (AC) approach was evaluated in a clinical study using whole-body PET/CT and MR images of the same patients (n?=?15). The segmentation of the body and lung contour (L-R directions) was evaluated via a four-point scale in comparison to the original MR image (mean values >3.8). PET images were reconstructed using elastically registered MR-based and CT-based (segmented and non-segmented) attenuation maps. The MR-based AC showed similar behaviour as CT-based AC and similar accuracy as offered by segmented CT-based AC. Standardized uptake value (SUV) comparisons with reference to CT-based AC using predefined attenuation coefficients showed the largest difference for bone lesions (mean value ± standard variation of SUVmax: ?3.0%?±?3.9% for MR; ?6.5%?±?4.1% for segmented CT). A blind comparison of PET images corrected with segmented MR-based, CT-based and segmented CT-based AC afforded identical lesion detectability, but slight differences in image quality were found.

Conclusion

Our MR?\based attenuation correction method offers similar correction accuracy as offered by segmented CT. According to the specialists involved in the blind study, these differences do not affect the diagnostic value of the PET images.  相似文献   

6.

Purpose

Since meningiomas show a high expression of somatostatin receptor subtype 2, PET with 68Ga-DOTATOC was proposed as an additional imaging modality beside CT and MRI for planning radiotherapy. We investigated the input of 68Ga-DOTATOC-PET/CT on the definition of the “gross tumour volume” (GTV) in meningiomas, in order to assess the potential value of this method.

Methods

Prior to radiotherapy, 42 patients with meningiomas (26 f, 16 m, mean age 55) underwent MRI and 68Ga-DOTATOC-PET/CT examinations. History: operated n?=?24, radiotherapy n?=?1, operation and radiotherapy n?=?8, no treatment n?=?9. PET/CT and MRI data were co-registered using a BrainLAB workstation. For comparison, the GTV was defined first under consideration of CT and MRI data, then using PET data.

Results

3/42 patients were excluded from the analysis (two with negative PET results, one with an extensive tumour, not precisely delineable by MRI or PET/CT). The average GTVCT/MRI was 22(±19)cm³; GTVPET was 23(±20)cm³. Additional GTV, obtained as a result of PET was 9(±10)cm³ and was observed in patients with osseous infiltration. In some pre-treated patients there were intratumoural areas (as identified in CT/MRI) without SR-expression (7(±11)cm³). Common GTV as obtained by both CT/MRI and PET was 15(±14)cm³. The mean bi-directional difference between the GTVCT/MRI and GTVPET accounted to 16(±15)cm³ (93%, p?<?0.001). In a subgroup of seven patients with multiple meningiomas, PET showed a total of 19 lesions; nine of them were not recognizable by CT or MRI.

Conclusion

68Ga-DOTATOC-PET enables delineation of SR-positive meningiomas and delivers additional information to both CT and MRI regarding the planning of stereotactic radiotherapy. The acquisition on a PET/CT scanner helps to estimate the relation of PET findings to anatomical structures and is especially useful for detection of osseous infiltration. 68Ga-DOTATOC-PET also allows detection of additional lesions in patients with multiple meningiomas.  相似文献   

7.

Purpose

Clinical PET/MR acquisition protocols entail the use of MR contrast agents (MRCA) that could potentially affect PET quantification following MR-based attenuation correction (AC). We assessed the effect of oral and intravenous (IV) MRCA on PET quantification in PET/MR imaging.

Methods

We employed two MRCA: Lumirem? (oral) and Gadovist? (IV). First, we determined their reference PET attenuation values using a PET transmission scan (ECAT-EXACT HR+, Siemens) and a CT scan (PET/CT Biograph 16 HI-REZ, Siemens). Second, we evaluated the attenuation of PET signals in the presence of MRCA. Phantoms were filled with clinically relevant concentrations of MRCA in a background of water and 18F-fluoride, and imaged using a PET/CT scanner (Biograph 16 HI-REZ, Siemens) and a PET/MR scanner (Biograph mMR, Siemens). Third, we investigated the effect of clinically relevant volumes of MRCA on MR-based AC using human pilot data: a patient study employing Gadovist? (IV) and a volunteer study employing two different oral MRCA (Lumirem? and pineapple juice). MR-based attenuation maps were calculated following Dixon-based fat–water segmentation and an external atlas-based and pattern recognition (AT&PR) algorithm.

Results

IV and oral MRCA in clinically relevant concentrations were found to have PET attenuation values similar to those of water. The phantom experiments showed that under clinical conditions IV and oral MRCA did not yield additional attenuation of PET emission signals. Patient scans showed that PET attenuation maps are not biased after the administration of IV MRCA but may be biased, however, after ingestion of iron oxide-based oral MRCA when segmentation-based AC algorithms are used. Alternative AC algorithms, such as AT&PR, or alternative oral contrast agents, such as pineapple juice, can yield unbiased attenuation maps.

Conclusion

In clinical PET/MR scenarios MRCA are not expected to lead to markedly increased attenuation of the PET emission signals. MR-based attenuation maps may be biased by oral iron oxide-based MRCA unless advanced AC algorithms are used.  相似文献   

8.

Purpose

The aim of this study was to evaluate the positron emission tomography (PET) component of [18F]choline PET/MRI and compare it with the PET component of [18F]choline PET/CT in patients with histologically proven prostate cancer and suspected recurrent prostate cancer.

Methods

Thirty-six patients were examined with simultaneous [18F]choline PET/MRI following combined [18F]choline PET/CT. Fifty-eight PET-positive lesions in PET/CT and PET/MRI were evaluated by measuring the maximum and mean standardized uptake values (SUVmax and SUVmean) using volume of interest (VOI) analysis. A scoring system was applied to determine the quality of the PET images of both PET/CT and PET/MRI. Agreement between PET/CT and PET/MRI regarding SUVmax and SUVmean was tested using Pearson’s product-moment correlation and Bland-Altman analysis.

Results

All PET-positive lesions that were visible on PET/CT were also detectable on PET/MRI. The quality of the PET images was comparable in both groups. Median SUVmax and SUVmean of all lesions were significantly lower in PET/MRI than in PET/CT (5.2 vs 6.1, p?<?0.05 and 2.0 vs 2.6, p?<?0.001, respectively). Pearson’s product-moment correlation indicated highly significant correlations between SUVmax of PET/CT and PET/MRI (R?=?0.86, p?<?0.001) as well as between SUVmean of PET/CT and PET/MRI (R?=?0.81, p?<?0.001). Bland-Altman analysis revealed lower and upper limits of agreement of ?2.77 to 3.64 between SUVmax of PET/CT vs PET/MRI and ?1.12 to +2.23 between SUVmean of PET/CT vs PET/MRI.

Conclusion

PET image quality of PET/MRI was comparable to that of PET/CT. A highly significant correlation between SUVmax and SUVmean was found. Both SUVmax and SUVmean were significantly lower in [18F]choline PET/MRI than in [18F]choline PET/CT. Differences of SUVmax and SUVmean might be caused by different techniques of attenuation correction. Furthermore, differences in biodistribution and biokinetics of [18F]choline between the subsequent examinations and in the respective organ systems have to be taken into account.  相似文献   

9.

Objective

To quantitatively analyze bone metastases from prostate cancer and correlate the apparent diffusion coefficients (ADCs) and standardized uptake values (SUVs).

Methods

Fifty-five patients with biopsy-proven prostate cancer or suspected recurrent prostate cancer were examined with simultaneous [18F] choline Positron emission tomography (PET)/MRI at 3 T. In 11 patients, thirty-two PET-positive bone lesions could be identified that were located in the field-of-view of the Diffusion weighted imaging-sequence. Region-of-interest and volume-of-interest analyses were performed to measure the mean and minimal ADCs and to assess maximum and mean SUVs of every bone lesion. Correlations between maximum and mean SUVs and mean and minimal ADCs were calculated.

Results

The SUVmax of all lesions was 5.5 ± 3.1 (mean ± SD). The SUVmean was 1.8 ± 0.9. The mean ADC (ADCmean) of all lesions was 0.67 ± 0.13 × 10?3 mm2/s. The minimal ADC (ADCmin) of all lesions was 0.56 ± 0.14 × 10?3 mm2/s. There was a moderate but significant inverse correlation of SUVmax vs. ADCmean with a correlation coefficient of ?0.4 (p = 0.02). There was also a significant inverse correlation of SUVmax vs. ADCmin with r = ?0.41 (p = 0.02).

Conclusion

Our initial results demonstrate a moderate but significant inverse correlation between increased choline metabolism and ADC values of bone metastases from prostate cancer. Further research on a multimodality approach using simultaneous PET/MRI in bone metastasis of prostate cancer seems to be justified.  相似文献   

10.

Purpose

To assess the quantitative accuracy of current MR attenuation correction (AC) methods in neurological PET, in comparison to data derived using CT AC.

Methods

This retrospective study included 25 patients who were referred for a neurological FDG PET examination and were imaged sequentially by PET/CT and simultaneous PET/MR. Differences between activity concentrations derived using Dixon and ultrashort echo time (UTE) MR-based AC and those derived from CT AC were compared using volume of interest and voxel-based approaches. The same comparisons were also made using PET data represented as SUV ratios (SUVr) using grey matter cerebellum as the reference region.

Results

Extensive and statistically significant regional underestimations of activity concentrations were found with both Dixon AC (P?<?0.001) and UTE AC (P?<?0.001) in all brain regions when compared to CT AC. The greatest differences were found in the cortical grey matter (Dixon AC 21.3 %, UTE AC 15.7 %) and cerebellum (Dixon AC 19.8 %, UTE AC 17.3 %). The underestimation using UTE AC was significantly less than with Dixon AC (P?<?0.001) in most regions. Voxel-based comparisons showed that all cortical grey matter and cerebellum uptake was underestimated with Dixon AC compared to CT AC. Using UTE AC the extent and significance of these differences were reduced. Inaccuracies in cerebellar activity concentrations led to a mixture of predominantly cortical underestimation and subcortical overestimation in SUVr PET data for both MR AC methodologies.

Conclusion

MR-based AC results in significant underestimation of activity concentrations throughout the brain, which makes the use of SUVr data difficult. These effects limit the quantitative accuracy of neurological PET/MR.  相似文献   

11.

Objectives

To quantify the muscle fat-content (MFC) in phantoms, volunteers and patients with achillodynia using two-point Dixon-based magnetic resonance imaging (2pt-MRIDIXON) in comparison to MR spectroscopy (MRS) and visual assessment of MFC.

Methods

Two-point Dixon-based MRI was used to measure the MFC of 15 phantoms containing 0-100 % fat-content and calf muscles in 30 patients (13 women; 57?±?15 years) with achillodynia and in 20 volunteers (10 women; 30?±?14 years) at 1.5 T. The accuracy of 2pt-MRIDIXON in quantification of MFC was assessed in vitro using phantoms and in vivo using MRS as the standard of reference. Fat-fractions derived from 2pt-MRIDIXON (FFDIXON) and MRS (FFMRS) were related to visual assessment of MFC (Goutallier grades 0–4) and Achilles-tendon quality (grade 0-4).

Results

Excellent linear correlation was demonstrated for FFDIXON with phantoms and with FFMRS in patients (p c?=?0.997/0.995; p?<?0.001). FFDIXON of the gastrocnemius muscle was significantly higher (p?=?0.002) in patients (7.0 %?±?4.7 %) compared with volunteers (3.6 %?±?0.7 %), whereas visual-grading showed no difference between both groups (p?>?0.05). FFMRS and FFDIXON were significantly higher in subjects with (>grade 1) structural damage of the Achilles-tendon (p?=?0.01).

Conclusions

Two-point Dixon-based MRI allows for accurate quantification of MFC, outperforming visual assessment of calf muscle fat. Structural damage of the Achilles tendon is associated with a significantly higher MFC.

Key points

? Two-point Dixon-based MRI allows accurate quantification of muscular fat content (MFC). ? Quantitative analysis outperforms visual analysis in the detection of elevated MFC. ? Achillodynia results in an increased MFC of the gastrocnemius muscles. ? Structural damage of the Achilles tendon further increases the MFC.  相似文献   

12.

Objectives

To prospectively compare the accuracies of PET/MR and PET/CT in the preoperative staging of non-small cell lung cancer (NSCLC).

Methods

Institutional review board approval and patients’ informed consents were obtained. 45 patients with proven or radiologically suspected lung cancer which appeared to be resectable on CT were enrolled. PET/MR was performed for the preoperative staging of NSCLC followed by PET/CT without contrast enhancement on the same day. Dedicated MR images including diffusion weighted images were obtained. Readers assessed PET/MR and PET/CT with contrast-enhanced CT. Accuracies of PET/MR and PET/CT for NSCLC staging were compared.

Results

Primary tumour stages (n?=?40) were correctly diagnosed in 32 patients (80.0 %) on PET/MR and in 32 patients (80.0 %) on PET/CT (P?=?1.0). Node stages (n?=?42) were correctly determined in 24 patients (57.1 %) on PET/MR and in 22 patients (52.4 %) on PET/CT (P?=?0.683). Metastatic lesions in the brain, bone, liver, and pleura were detected in 6 patients (13.3 %). PET/MR missed one patient with pleural metastasis while PET/CT missed one patient with solitary brain metastasis and two patients with pleural metastases (P?=?0.480).

Conclusions

This study demonstrated that PET/MR in combination with contrast-enhanced CT was comparable to PET/CT in the preoperative staging of NSCLC while reducing radiation exposure.

Key points

? PET/MR can be comparable to PET/CT for preoperative NSCLC staging.? PET/MR and PET/CT show excellent correlation in measuring SUVmax of primary lesions.? Using PET/MR, estimated radiation dose can decrease by 31.1?% compared with PET/CT.
  相似文献   

13.

Purpose

Prior studies have suggested that 18F-FDG PET/CT can help characterize adrenal lesions and differentiate adrenal metastases from benign lesions. The aim of this study was to assess the value of 18F-FDG PET/CT for the differentiation of malignant from benign adrenal lesions.

Methods

This retrospective study included 85 patients (47 men and 38 women, age 63.8?±?10.8 years) who had undergone 18F-FDG PET/CT (60 min after injection 300 – 370 MBq 18F-FDG; Biograph 64 scanner) for evaluation of 102 nonsecreting adrenal masses. For semiquantitative analysis, the maximum standardized uptake value (SUVmax), adrenal to liver (T/L) SUVmax ratio, mean CT attenuation value and tumour diameter were measured in all lesions and compared with the pathological findings.

Results

Malignant adrenal tumours (68 % of evaluated tumours) had a significantly higher mean SUVmax (13.0?±?7.1 vs. 3.7?±?3.0), a higher T/L SUVmax ratio (4.2?±?2.6 vs. 1.0?±?0.9), a higher CT attenuation value (31.9?±?16. 7 HU vs. 0.2?±?25.8 HU) and a greater diameter (43.6?±?23.7 mm vs. 25.6?±?13.3 mm) than benign lesions. The false-positive findings were tuberculosis and benign phaeochromocytoma. Based on ROC analysis, a T/L SUVmax ratio >1.53, an adrenal SUVmax >5.2, an attenuation value >24 HU and a tumour diameter >30 mm were chosen as the optimal cut-off values for differentiating malignant from benign tumours. The areas under the ROC curves for the selected cut-off values were 0.96, 0.96, 0.88 and 0.77, respectively. A multivariate logistic regression model revealed that the T/L SUVmax ratio was an independent prognostic factor for malignancy (p?25 HU and a tumour diameter >30 mm had no additional individual importance in the diagnosis of malignancy.

Conclusion

Using a T/L SUVmax ratio >1.53 and an adrenal SUVmax >5.2 in 18F-FDG PET/CT led to high diagnostic sensitivity, specificity and negative predictive value for characterizing adrenal tumours. The diagnostic accuracies of the two parameters were comparable, but T/L SUVmax ratio was an independent predictor of malignancy.  相似文献   

14.

Purpose

The aim of the present study was to identify prostate-specific antigen (PSA) threshold levels, as well as PSA velocity, progression rate and doubling time in relation to the detectability and localization of recurrent lesions with [18F]fluorocholine (FC) PET/CT in patients after radical prostatectomy.

Methods

The study group comprised 82 consecutive patients with biochemical relapse after radical prostatectomy. PSA levels measured at the time of imaging were correlated with the FC PET/CT detection rates in the entire group with PSA velocity (in 48 patients), with PSA doubling time (in 47 patients) and with PSA progression (in 29 patients).

Results

FC PET/CT detected recurrent lesions in 51 of the 82 patients (62%). The median PSA value was significantly higher in PET-positive than in PET-negative patients (4.3?ng/ml vs. 1.0?ng/ml; p?p?p?p?=?0.071).

Conclusion

In a study cohort of patients with biochemical recurrence of prostate cancer after radical prostatectomy there emerged clear PSA thresholds for the presence of FC PET/CT-detectable lesions.  相似文献   

15.

Purpose

18F-Fluoro-l-dihydroxyphenylalanine (18F-DOPA) PET offers high sensitivity and specificity in the imaging of nonmetastatic extra-adrenal paragangliomas (PGL) but lower sensitivity in metastatic or multifocal disease. These tumours are of neuroendocrine origin and can be detected by 68Ga-DOTA-Tyr3-octreotide (68Ga-DOTA-TOC) PET. Therefore, we compared 68Ga-DOTA-TOC and 18F-DOPA as radiolabels for PET/CT imaging for the diagnosis and staging of extra-adrenal PGL. Combined cross-sectional imaging was the reference standard.

Methods

A total of 5 men and 15 women (age range 22 to 73 years) with anatomical and/or histologically proven extra-adrenal PGL were included in this study. Of these patients, 5 had metastatic or multifocal lesions and 15 had single sites of disease. Comparative evaluation included morphological imaging with CT and functional imaging with 68Ga-DOTA-TOC PET and 18F-DOPA PET. The imaging results were analysed on a per-patient and a per-lesion basis. The maximum standardized uptake value (SUVmax) of each functional imaging modality in concordant tumour lesions was measured.

Results

Compared with anatomical imaging, 68Ga-DOTA-TOC PET and 18F-DOPA PET each had a per-patient and per-lesion detection rate of 100 % in nonmetastatic extra-adrenal PGL. However, in metastatic or multifocal disease, the per-lesion detection rate of 68Ga-DOTA-TOC was 100 % and that of 18F-DOPA PET was 56.0 %. Overall, 68Ga-DOTA-TOC PET identified 45 lesions; anatomical imaging identified 43 lesions, and 18F-DOPA PET identified 32 lesions. The overall per-lesion detection rate of 68Ga-DOTA-TOC PET was 100 % (McNemar, P?<?0.5), and that of 18F-DOPA PET was 71.1 % (McNemar, P?<?0.001). The SUVmax (mean ± SD) of all 32 concordant lesions was 67.9?±?61.5 for 68Ga-DOTA-TOC PET and 11.8?±?7.9 for 18F-DOPA PET (Mann-Whitney U test, P?<?0.0001).

Conclusion

68Ga-DOTA-TOC PET may be superior to 18F-DOPA PET and diagnostic CT in providing valuable information for pretherapeutic staging of extra-adrenal PGL, particularly in surgically inoperable tumours and metastatic or multifocal disease.  相似文献   

16.

Purpose

Accurate attenuation correction (AC) is essential for quantitative analysis of PET tracer distribution. In MR, the lack of cortical bone signal makes bone segmentation difficult and may require implementation of special sequences. The purpose of this study was to evaluate the need for accurate bone segmentation in MR-based AC for whole-body PET/MR imaging.

Methods

In 22 patients undergoing sequential PET/CT and 3-T MR imaging, modified CT AC maps were produced by replacing pixels with values of >100 HU, representing mostly bone structures, by pixels with a constant value of 36 HU corresponding to soft tissue, thereby simulating current MR-derived AC maps. A total of 141 FDG-positive osseous lesions and 50 soft-tissue lesions adjacent to bones were evaluated. The mean standardized uptake value (SUVmean) was measured in each lesion in PET images reconstructed once using the standard AC maps and once using the modified AC maps. Subsequently, the errors in lesion tracer uptake for the modified PET images were calculated using the standard PET image as a reference.

Results

Substitution of bone by soft tissue values in AC maps resulted in an underestimation of tracer uptake in osseous and soft tissue lesions adjacent to bones of 11.2?±?5.4 % (range 1.5–30.8?%) and 3.2?±?1.7 % (range 0.2–4?%), respectively. Analysis of the spine and pelvic osseous lesions revealed a substantial dependence of the error on lesion composition. For predominantly sclerotic spine lesions, the mean underestimation was 15.9?±?3.4?% (range 9.9–23.5?%) and for osteolytic spine lesions, 7.2?±?1.7?% (range 4.9–9.3?%), respectively.

Conclusion

CT data simulating treating bone as soft tissue as is currently done in MR maps for PET AC leads to a substantial underestimation of tracer uptake in bone lesions and depends on lesion composition, the largest error being seen in sclerotic lesions. Therefore, depiction of cortical bone and other calcified areas in MR AC maps is necessary for accurate quantification of tracer uptake values in PET/MR imaging.  相似文献   

17.

Purpose

Hybrid positron emission tomography and magnetic resonance (PET/MR) imaging performs a two-point Dixon MR sequence for attenuation correction. However, MR data in hybrid PET/MR should provide anatomic and morphologic information as well as an attenuation map. We evaluated the Dixon sequence of hybrid PET/MR for anatomic correlation of PET-positive lesions compared with contrast-enhanced PET/computed tomography (CT) in patients with oncologic diseases.

Methods

Twelve patients underwent a single injection, dual imaging protocol. PET/CT was performed with an intravenous contrast agent (85 ± 13 min after 18F-FDG injection of 403 ± 45 MBq) and then (125 ± 19 min after injection) PET/MR was performed. Attenuation correction and anatomic allocation of PET were performed using contrast-enhanced CT for PET/CT and Dixon MR sequence for hybrid PET/MR. The Dixon MR sequence and contrast-enhanced CT were compared for anatomic correlation of PET-positive lesions (scoring scale ranging from 0 to 3 for visual ratings). Additionally, standardized uptake values (SUVs) for the detected lesions were assessed for quantitative comparison.

Results

Both hybrid PET/MR and contrast-enhanced PET/CT identified 55 lesions with increased FDG uptake in ten patients. In total, 28 lymph nodes, 11 bone lesions, 3 dermal nodules, 3 pleural thickening lesions, 2 thyroid nodules, 1 pancreas, 1 liver, 1 ovary, 1 uterus, 1 breast, 1 soft tissue and 2 lung lesions were present. The best performance was observed for anatomic correlation of PET findings by the contrast-enhanced CT scans (contrast-enhanced CT, 2.64 ± 0.70; in-phase, 1.29 ± 1.01; opposed-phase, 1.29 ± 1.15; water-weighted, 1.71 ± 1.07; fat weighted, 0.56 ± 1.03). A significant difference was observed between the scores obtained from the contrast-enhanced CT and all four coregistered Dixon MR images. Quantitative evaluation revealed a high correlation between the SUVs measured with hybrid PET/MR (SUVmean, 2.63 ± 1.62; SUVmax, 4.30 ± 2.88) and contrast-enhanced PET/CT (SUVmean, 3.88 ± 2.30; SUVmax, 6.53 ± 4.04) in PET-positive lesions (SUVmean, ρ = 0.93; SUVmax, ρ = 0.95), although hybrid PET/MR presented a decrease of SUVs compared with contrast-enhanced PET/CT (mean reduction; SUVmean, 32.44 ± 15.64 %; SUVmax, 35.16 ± 12.59 %).

Conclusions

Despite different attenuation correction approaches, the SUV of PET-positive lesions correlated well between hybrid PET/MR and contrast-enhanced PET/CT. However Dixon MR images acquired for attenuation correction were insufficient to provide anatomic information of PET images because of low spatial resolution. Thus, additional MR sequence with fast and higher resolution may be necessary for anatomic information.  相似文献   

18.

Purpose

The objective of the study was to validate an adaptive, contrast-oriented thresholding algorithm (COA) for tumour delineation in 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) for non-small cell lung cancer (NSCLC) in comparison with pathological findings. The impact of tumour localization, tumour size and uptake heterogeneity on PET delineation results was also investigated.

Methods

PET tumour delineation by COA was compared with both CT delineation and pathological findings in 15 patients to investigate its validity. Correlations between anatomical volume, metabolic volume and the pathology reference as well as between the corresponding maximal diameters were determined. Differences between PET delineations and pathological results were investigated with respect to tumour localization and uptake heterogeneity.

Results

The delineated volumes and maximal diameters measured on PET and CT images significantly correlated with the pathology reference (both r?>?0.95, p?<?0.0001). Both PET and CT contours resulted in overestimation of the pathological volume (PET 32.5?±?26.5 %, CT 46.6?±?27.4 %). CT volumes were larger than those delineated on PET images (CT 60.6?±?86.3 ml, PET 48.3?±?61.7 ml). Maximal tumour diameters were similar for PET and CT (51.4?±?19.8 mm for CT versus 53.4?±?19.1 mm for PET), slightly overestimating the pathological reference (mean difference CT 4.3?±?3.2 mm, PET 6.2?±?5.1 mm). PET volumes of lung tumours located in the lower lobe were significantly different from those determined from pathology (p?=?0.037), whereas no significant differences were observed for tumours located in the upper lobe (p?=?0.066). Only minor correlation was found between pathological tumour size and PET heterogeneity (r?=??0.24).

Conclusion

PET tumour delineation by COA showed a good correlation with pathological findings. Tumour localization had an influence on PET delineation results. The impact of tracer uptake heterogeneity on PET delineation should be considered carefully and individually in each patient. Altogether, PET tumour delineation by COA for NSCLC patients is feasible and reliable with the potential for routine clinical application.  相似文献   

19.

Purpose

To evaluate the concordance among 18F-FDG PET imaging, MR T2-weighted (T2-W) imaging and apparent diffusion coefficient (ADC) maps with diffusion-weighted (DW) imaging in cervical cancer using hybrid whole-body PET/MR.

Methods

This study prospectively included 35 patients with cervical cancer who underwent pretreatment 18F-FDG PET/MR imaging. 18F-FDG PET and MR images were fused using standard software. The percent of the maximum standardized uptake values (SUVmax) was used to contour tumours on PET images, and volumes were calculated automatically. Tumour volumes measured on T2-W and DW images were calculated with standard techniques of tumour area multiplied by the slice profile. Parametric statistics were used for data analysis.

Results

FDG PET tumour volumes calculated using SUVmax (14.30?±?4.70) and T2-W imaging volume (33.81?±?27.32 cm3) were similar (P?>?0.05) at 35 % and 40 % of SUVmax (32.91?±?18.90 cm3 and 27.56?±?17.19 cm3 respectively) and significantly correlated (P?<?0.001; r?=?0.735 and 0.766). The mean DW volume was 30.48?±?22.41 cm3. DW volumes were not significantly different from FDG PET volumes at either 35 % SUVmax or 40 % SUVmax or from T2-W imaging volumes (P?>?0.05). PET subvolumes with increasing SUVmax cut-off percentage showed an inverse change in mean ADC values on DW imaging (P?<?0.001, ANOVA).

Conclusion

Hybrid PET/MR showed strong volume concordance between FDG PET, and T2-W and DW imaging in cervical cancer. Cut-off at 35 % or 40 % of SUVmax is recommended for 18F-FDG PET/MR SUV-based tumour volume estimation. The linear tumour subvolume concordance between FDG PET and DW imaging demonstrates individual regional concordance of metabolic activity and cell density.  相似文献   

20.

Purpose

To compare the accuracy of PET/MR imaging with that of FDG PET/CT and to determine the MR sequences necessary for the detection of liver metastasis using a trimodality PET/CT/MR set-up.

Methods

Included in this single-centre IRB-approved study were 55 patients (22 women, age 61?±?11 years) with suspected liver metastases from gastrointestinal cancer. Imaging using a trimodality PET/CT/MR set-up (time-of-flight PET/CT and 3-T whole-body MR imager) comprised PET, low-dose CT, contrast-enhanced (CE) CT of the abdomen, and MR with T1-W/T2-W, diffusion-weighted (DWI), and dynamic CE imaging. Two readers evaluated the following image sets for liver metastasis: PET/CT (set A), PET/CECT (B), PET/MR including T1-W/T2-W (C), T1-W/T2-W with either DWI (D) or CE imaging (E), and a combination (F). The accuracy of each image set was determined by receiver-operating characteristic analysis using image set B as the standard of reference.

Results

Of 120 liver lesions in 21/55 patients (38 %), 79 (66 %) were considered malignant, and 63/79 (80 %) showed abnormal FDG uptake. Accuracies were 0.937 (95 % CI 89.5 – 97.9 %) for image set A, 1.00 (95 % CI 99.9 – 100.0 %) for set C, 0.998 (95 % CI 99.4 – 100.0 %) for set D, 0.997 (95 % CI 99.3 – 100.0 %) for set E, and 0.995 (95 % CI 99.0 – 100.0 %) for set F. Differences were significant for image sets D – F (P?<?0.05) when including lesions without abnormal FDG uptake. As shown by follow-up imaging after 50 – 177 days, the use of image sets D and both sets E and F led to the detection of metastases in one and three patients, respectively, and further metastases in the contralateral lobe in two patients negative on PET/CECT (P?=?0.06).

Conclusion

PET/MR imaging with T1-W/T2-W sequences results in similar diagnostic accuracy for the detection of liver metastases to PET/CECT. To significantly improve the characterization of liver lesions, we recommend the use of dynamic CE imaging sequences. PET/MR imaging has a diagnostic impact on clinical decision making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号