首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Osteoporotic fractures are a major public health problem, particularly in women. Bone mineral density (BMD), bone mineral content (BMC), and bone size have been regarded as important determinants of osteoporotic fractures. In 1449 women over age 30 years, we studied the detailed relationship, at the spine and hip, between BMD, BMC, and bone areal size (all measured by dual-energy X-ray absorptiometry) and compared their relative magnitudes in fracturing and non-fracturing individuals. We find that, (1) BMD and BMC are significantly higher at the spine and hip in non-fracturing women. Bone areal size is significantly larger at the spine in non-fracturing women; however, the significance disappears when adjustment is made for the significant difference of height (stature) between fracturing and non-fracturing women. In contrast to the spine, bone areal size is always significantly largerin fracturing women at the hip. (2) The relationship among BMD, BMC, and bone areal size is different at the spine and hip. Specifically, at the spine, BMD increases with bone areal size linearly. At the hip, BMD has a quadratic relationship with bone areal size, so that BMD increases at lower bone areal sizes, then (after an intermediate zone of values) decreases with increasing bone areal size. However, BMD adjusted for BMC always decreases with increasing bone areal size, as expected by the definition of BMD. With no adjustment for BMC, the increase in BMD with bone areal size is due to a more rapid increase of BMC than increasing bone areal size, thus explaining the observations of association of both larger BMD and larger bone areal size with stronger bone. (3) At the spine, 86.2% of BMD variation is attributable to BMC and 12.6% to bone areal size. At the hip, 98.0% of BMD variation is due to BMC and 1.1% due to bone areal size. The current study may be important in understanding the relationship among BMD, BMC, and bone size as risk determinants of osteoporotic fractures.  相似文献   

2.
Apparent bone mineral density estimated from DXA in healthy men and women   总被引:4,自引:0,他引:4  
The aim of this study was to measure bone mineral density (BMD) in healthy people and examine the influence of age, anthropometry, and postmenopause on calculated bone mineral apparent density (BMAD). The study included 541 healthy subjects (249 men and 292 women), aged 20 to 79 years. Anthropometric measurements included height, weight, and body mass index (BMI). Bone mineral content (BMC) and areal BMD were measured at the lumbar spine and proximal femur, using dual-energy X-ray absorptiometry (DXA). The calculation of volumetric density relied on the formula BMAD=BMD/BA (where BA = bone area). Association between densitometric parameters and age, height, weight, and postmenopause was analyzed with multiple regression. BMC and BMD decreased with age, especially in postmenopausal women. The average annual bone loss in spine was 0.2% in both sexes, whereas femur loss was 0.5% in men and 0.3% in women. Bone area slightly increased with age in both sexes, and BMD loss after the age of 50 could be attributed to bone area increase. To minimize the effect of bone size on bone density, volumetric density and areal density were regressed to age, anthropometry, and postmenopause. Age and postmenopause were significantly associated with BMD and BMAD in the spine and femur. Furthermore, BMD showed a stronger association with height and weight than BMAD, in both regions. Weaker association of body height and weight with BMAD than with BMD suggests that BMD depends on the bone size and body size and that the different BMDs could be the consequence of the difference in those parameters.  相似文献   

3.
4.
目的比较pQCT与DXA定量检测去卵巢大鼠股骨近端骨质疏松的建模效果的能力。方法16只8月龄Wistar雌性大鼠(平均体重350g)随机分为模型组(卵巢切除组)与对照组(卵巢假切除组)。术后3个月,取大鼠左侧股骨。应用肢体计算机断层扫描(pQCT)与双能X线骨密度仪(DXA)对骨质疏松建模效果进行对比研究:(1)确定pQCT与DXA测量精度,即计算重复测量的精度误差;(2)比较应用两种骨密度仪所测得的对照组、模型组的骨密度、骨矿含量、骨几何结构参数及其相关系数。结果(1)pQCT总骨及松质骨体密度的测量精度误差分别为2.27%与2.00%,而DXA骨面密度的测量精度误差为3.36%。(2)模型组pQCT总骨体密度和松质骨体密度分别低于对照组8.2%和15.0%犤(模型组-对照组)/对照组×100%犦,差异有显著性(P<0.01);而模型组DXA骨面密度低于对照组3.0%,差异无显著性(P>0.05)。模型组pQCT总骨骨矿含量低于对照组3.7%,差异无显著性(P>0.05),而松质骨骨矿含量低于对照组11.4%,差异有显著性(P<0.05);模型组DXA骨矿含量低于对照组3.0%,差异无显著性(P>0.05)。(3)DXA骨矿含量与pQCT总骨骨矿含量之间呈正相关(r=0.82,P<0.001);DXA骨投影面积与pQCT骨体积之间亦呈正相关(r=0.52,P<0.05);DXA骨面密度与pQCT总骨体密度之间无相关关系(r=0.14,P>0.05)。DXA  相似文献   

5.
We have demonstrated previously that higher birth weight is associated with greater peak and later‐life bone mineral content and that maternal body build, diet, and lifestyle influence prenatal bone mineral accrual. To examine prenatal influences on bone health further, we related ultrasound measures of fetal growth to childhood bone size and density. We derived Z‐scores for fetal femur length and abdominal circumference and conditional growth velocity from 19 to 34 weeks' gestation from ultrasound measurements in participants in the Southampton Women's Survey. A total of 380 of the offspring underwent dual‐energy X‐ray absorptiometry (DXA) at age 4 years [whole body minus head bone area (BA), bone mineral content (BMC), areal bone mineral density (aBMD), and estimated volumetric BMD (vBMD)]. Volumetric bone mineral density was estimated using BMC adjusted for BA, height, and weight. A higher velocity of 19‐ to 34‐week fetal femur growth was strongly associated with greater childhood skeletal size (BA: r = 0.30, p < .0001) but not with volumetric density (vBMD: r = 0.03, p = .51). Conversely, a higher velocity of 19‐ to 34‐week fetal abdominal growth was associated with greater childhood volumetric density (vBMD: r = 0.15, p = .004) but not with skeletal size (BA: r = 0.06, p = .21). Both fetal measurements were positively associated with BMC and aBMD, indices influenced by both size and density. The velocity of fetal femur length growth from 19 to 34 weeks' gestation predicted childhood skeletal size at age 4 years, whereas the velocity of abdominal growth (a measure of liver volume and adiposity) predicted volumetric density. These results suggest a discordance between influences on skeletal size and volumetric density. © 2010 American Society for Bone and Mineral Research  相似文献   

6.
Dual-energy X-ray absorptiometry (DXA) estimates of areal bone mineral density (BMD) are confounded by bone size in children. Two strategies have been proposed to estimate vertebral volumetric BMD: (1) bone mineral apparent density (BMAD) is based on the posteroanterior (PA) spine scan; (2) width-adjusted bone mineral density (WABMD) is based on paired PA lateral scans. The objective of this study was to compare DXA estimates of vertebral bone mineral content (BMC), volume and volumetric BMD obtained from Hologic PA scans (Hologic, Inc., Bedford, MA) alone, and paired PA lateral scans in 124 healthy children, ages 4 to 20 yr. The PA scans were used to estimate bone volume (PA Volume) as (PA Area)1.5 and BMAD as [(PA BMC)/(PA Volume)]. Paired PA lateral scans were used to estimate width-adjusted bone volume (WA Volume) as [(pi/4)(PA width)(lateral depth)(vertebral height)] and WABMD as [(lateral BMC)/(WA Volume)]. Generalized estimating equations were used to compare the relationship between scan type (PA vs. paired PA lateral) and bone outcomes, and the effects of height and maturation on this relationship. The estimates of BMC and volume derived from PA scans and paired PA lateral scans were highly correlated (r>0.97); WABMD and BMAD were less correlated (r=0.81). The increases in BMC, volume, and volumetric BMD with greater height and maturation were significantly larger (all p<0.001) when estimated from paired PA lateral scans, compared with PA scans alone. The proportion of spine BMC contained within the vertebral body, versus the cortical spinous processes, increased significantly with age (p<0.001) from 28% to 69%. The smaller increases in bone measures on PA scans may have been due to magnification error by the fan beam as posterior tissue thickness increased in taller, more mature subjects, and the distance of the vertebrae from the X-ray source increased. In conclusion, paired Hologic PA lateral scans may increase sensitivity to growth-related increases in trabecular BMC and density in the spine, with less bias due to magnification error.  相似文献   

7.
体重标准化骨矿含量及应用前景   总被引:1,自引:1,他引:0       下载免费PDF全文
放射线测量骨矿的原始数据是骨矿含量(bone mineral content,BMC)。由于该值与骨大小和(或)体重成正比,因而用骨投影面积、骨体积和体重标准化BMC以消除它们的影响,分别称为面积骨密度、体积骨密度和体重标准化BMC(BMC/体重)。用面积骨密度诊断骨质疏松,易造成漏诊和误诊;体积骨密度可消除骨大小的影响,但整体骨体积尚难于在活体中获得;体重标化BMC,数据易获得,且在应用中初步表现出其优越性,可能在骨质疏松诊断应用中有较好的前景。  相似文献   

8.
The effect of 18 months of training on the ovarian hormone concentrations and bone mineral density (BMD) accrual was assessed longitudinally in 14 adolescent rowers and 10 matched controls, aged 14–15 years. Ovarian hormone levels were assessed by urinary estrone glucuronide (E1G) and pregnanediol glucuronide (PdG) excretion rates, classifying the menstrual cycles as ovulatory or anovulatory. Total body (TB), total proximal femur (PF), femoral neck (FN) and lumbar spine (LS) (L2–4) bone mass were measured at baseline and 18 months using dual-energy X-ray densitometry. Results were expressed as bone mineral content (BMC), BMD and bone mineral apparent density (BMAD). Five rowers had anovulatory menstrual cycles compared with zero prevalence for the control subjects. Baseline TB BMD was significantly higher in the ovulatory rowers, with PF BMD, FN BMD and LS BMD similar for all groups. At completion, the LS bone accrual of the ovulatory rowers was significantly greater (BMC 8.1%, BMD 6.2%, BMAD 6.2%) than that of the anovulatory rowers (BMC 1.1%, BMD 3.9%, BMAD 1.6%) and ovulatory controls (BMC 0.5%, BMD 1.1%, BMAD 1.1%). No difference in TB, PF or FN bone accrual was observed among groups. This study demonstrated an osteogenic response to mechanical loading, with the rowers accruing greater bone mass than the controls at the lumbar spine. However, the exercise-induced osteogenic benefits were less when rowing training was associated with low estrogen and progesterone metabolite excretion. Received: 8 December 1998 / Accepted: 15 March 1999  相似文献   

9.
Sundberg  M.  Gärdsell  P.  Johnell  O.  Ornstein  E.  Karlsson  M. K.  Sernbo  I. 《Osteoporosis international》2003,14(7):548-558
Fragility fractures are correlated to reduced bone size and/or reduced volumetric bone density (vBMD). These region-specific deficits may originate from reduced mineral accrual and/or reduced skeletal growth during the first 2 decades of life. Before pathological development can be defined, normal skeletal growth must be described. To evaluate growth of bone size, accrual of bone mineral content (BMC), areal bone mineral density (aBMD) and vBMD in a population-based cohort, 44 boys and 42 girls were followed by annual measurements from the age of 12 to 16 (attendance rates 90-100%). Segmental bone length, bone width, BMC, aBMD and vBMD were measured by dual-energy X-ray absorptiometry (DXA). Data were compared with predicted adult peak, as determined in 36 men aged 27.7+/-4.6 years and 44 women aged 26.8+/-4.9 years. Growth in width of the femoral neck precedes accrual of BMC in the femoral neck in both genders up to age 15. The girls were at all ages closer to their predicted adult peak in both bone width and BMC compared with the boys except in the femoral neck. As femoral neck vBMD had reached its predicted adult peak already at 12 years in both genders, the increase in femoral neck BMC and femoral neck aBMD from age 12 to 16 was most likely to be explained by the increase in bone size. In boys the peak velocity growth was recorded at ~14 years for BMC, height, width and lean mass. Growth from the age of 12 to 16 seems to build a bigger but not a denser skeleton in the femoral neck.  相似文献   

10.
The aim of the study was to improve the practical implementation of the dual X-ray absorptiometry (DXA) by converting the areal bone mineral density BMD (BMD(areal)) to volumetric BMD using magnetic resonance (MR) imaging (MRI) because a failure to control for the femoral neck size can lead to erroneous interpretation of BMD values. We also evaluated the feasibility of MR T2* relaxation time in assessing bone mineral status of the femoral neck. Twenty-eight randomly selected 47- to 64-yr-old healthy men were studied. The men had neither unilateral nor bilateral hip osteoarthritis according to radiographs. Bone width, mineral content (BMC), BMD(areal), and apparent volumetric BMD (BMD(vol)) of the right femoral neck were measured with DXA. The BMD(vol) was calculated by approximating the femoral neck to be cylindrical with a circular cross-section (Vol(dxa)). Volumetric measurements from MR (Vol(mri)) images of the femoral neck were also used to create a BMD measure that was corrected for the femoral neck volume (BMD(mri)). T2* measurements were performed with a 1.5-T scanner (Siemens Magnetom 63SP, Erlangen, Germany). A single 10-mm-thick coronal slice was generated on the femur with a repetition time of 60 ms, and nine echo times (4-20 ms) were used to derive T2* values. Vol(mri) correlated positively (r = 0.828, p < 0.001) with Vol(dxa). However, the Vol(mri) of the femoral neck was 18% lower than the Vol(dxa). Similarly, the BMD(mri) was related to the BMD(vol) (r = 0.737, p < 0.001). Because of the difference in the volumetric measures, the BMD(mri) of the femoral neck was 21% higher than the BMD(vol) (p < 0.001). T2* relaxation time showed a significant negative correlation with BMC, BMD(areal), BMD(vol), and BMD(mri) (r = -0.423 to -0.757, p < 0.05-0.001). In conclusion, these results are evidence that DXA-derived volume approximations by the cylinder with circular cross-section geometry may lead to lower DXA-derived BMD(vol) values, as compared to true MRI-derived volumetric bone mineral density. Thus, the BMD(vol) may not be an accurate method to calculate the true volumetric BMD in the femoral neck. Our results also suggest that the MRI-derived T2* method may be used to approximate the BMD in the proximal femur.  相似文献   

11.
Men with spine fractures have reduced vertebral body (VB) volume and volumetric bone mineral density (vBMD). Men with hip fractures have reduced femoral neck (FN) volume and vBMD, site-specific deficits that may have their origins in growth. To describe the tempo of growth in regional bone size, bone mineral content (BMC), and vBMD, we measured bone length, periosteal and endocortical diameters, BMC, and vBMD using dual-energy X-ray absorptiometry in 184 boys aged between 7 and 17 years. Before puberty, growth was more rapid in the legs than in the trunk. During puberty, leg growth slowed while trunk length accelerated. Bone size was more advanced than BMC in all regions, being approximately 70% and approximately 35% of their predicted peaks at 7 years of age, respectively. At 16 years of age, bone size had reached its adult peak while BMC was still 10% below its predicted peak. The legs accounted for 48%, whereas the spine accounted for 10%, of the 1878 g BMC accrued between 7 and 17 years. Peripubertal growth contributed (i) 55 % of the increase in leg length but 78% of the mineral accrued and (ii) 69% of the increase in spine length but 87% of the mineral accrued. Increased metacarpal and midfemoral cortical thickness was caused by respective periosteal expansion with minimal change in the endocortical diameter. Total femur and VB vBMD increased by 30-40% while size and BMC increased by 200-300%. Thus, growth builds a bigger but only slightly denser skeleton. We speculate that effect of disease or a risk factor during growth depends on the regions maturational stage at the time of exposure. The earlier growth of a regions size than mass, and the differing growth patterns from region to region, predispose to site-specific deficits in bone size, vBMD, or both. Regions further from their peak may be more severely affected by illness than those nearer completion of growth. Bone fragility in old age is likely to have its foundations partly established during growth.  相似文献   

12.
The structural basis of bone fragility in men.   总被引:4,自引:0,他引:4  
E Seeman 《BONE》1999,25(1):143-147
Understanding of the pathogenesis of bone fragility in men requires knowledge of its structural basis. There is no evidence that gender differences in fracture rates are explained by gender differences in bone mineral content (BMC) or areal bone mineral density (BMD). This is an untested assumption. The BMD measurement integrates the modeling and remodeling that occurs on the periosteal and endosteal surfaces of bone during growth and aging. The size, shape, and architecture of the bone so formed determine its breaking strength. None of these three-dimensional structural components is "seen" by the dual photons of the densitometer. Men and women attain a similar peak vertebral height during growth. Vertebral width is greater in men, conferring higher BMC and areal BMD, but trabecular number and thickness (trabecular volumetric BMD) is no greater in men than women. Blacks have shorter vertebra than whites, and vertebral width is similar. Trabecular thickness is greater in blacks than whites. Thus, at peak, gender differences in vertebral strength are likely to be size, not BMD, dependent. Racial differences in vertebral strength are likely to be BMD, not size, dependent. Greater periosteal expansion during growth in males than females, and blacks than whites, establishes the gender and racial differences in peak bone size. Men have wider long bones than women. Blacks have wider long bones than whites. The proximity of the endocortical surface to the periosteal surface determines peak cortical width, which is similar in men, women, blacks, and whites. It is the greater distance of the cortical mineral mass from the neutral axis of a long bone in males than in females, in blacks than in whites, and in men with, than men without, fractures, that partly accounts for the greater bone strength in the first mentioned in each group. Thus, at peak, racial and gender differences in long bone strength are likely to be size, not BMD dependent. Trabecular bone loss is similar in men and women. Loss of connectivity is greater in women. Endocortical resorption is greater in women than men, but men lose less cortical width because subperiosteal apposition during aging is greater in men than in women offsetting endocortical resorption. Men with spine fractures have smaller vertebrae because vertebral width is less. Men with hip fractures have smaller femoral neck width. In both types of fractures, there is less bone in the smaller bone-reduced volumetric BMD. The relative contributions of reduced accrual during growth, excessive bone loss during aging, or both to the deficit in volumetric BMD are undefined. No antifracture efficacy trials have been done in men. Reasonable approaches to treatment include the use of testosterone in hypogonadal men, and vitamin D if vitamin D deficiency is present. Calcium supplements may slow endocortical bone loss. Bisphosphonates may increase BMD.  相似文献   

13.
Specker B  Binkley T  Fahrenwald N 《BONE》2004,35(6):1389-1398
Despite reports of lower fracture risk among rural versus urban populations, few studies have investigated rural versus urban differences in bone mineral content (BMC) and bone mineral density (BMD). Population differences in cross-sectional bone geometry and understanding lifestyle factors responsible for these differences may reveal insights into the reason for differences in fracture risk. We hypothesized that if lifestyle differences in bone mass, size, and geometry are a result of muscle strength, activity, or dietary differences, Hutterite and rural populations should have greater bone mass compared to nonrural populations. The study population consisted of 1189 individuals: 504 rural Hutterites (188 men), 349 rural individuals (>75% life farming, 184 men), and 336 nonrural individuals (never lived on farm, 134 men) aged 20 to 66 years. BMC, bone area, and areal BMD (aBMD) of the total body (TB), hip, femoral neck (FN), and spine by DXA; volumetric BMD (vBMD) and bone geometry at the 4% and 20% radius; polar stress strain index (pSSI), a measure of bone strength, at the 20% pQCT site; and strength, 7-day activity recall, and 24-h diet recall were collected and compared among groups. Hutterite women and men had greater grip strength compared to rural and nonrural populations (both, P < 0.001). Rural women had greater activity versus Hutterite and nonrural (P < 0.001), while both Hutterite and rural men had greater activity than nonrural (P < 0.001). Hutterite and rural populations tended to have greater BMC and areal size than the nonrural population, while Hutterites had greater BMC and areal size than rural population at some (TB, FN for females only), but not all (proximal hip), sites. Cortical vBMD was inversely associated with periosteal circumference at the 20% radius in women (r = −0.25, P < 0.001) and men (r = −0.28, P < 0.001) and was higher in nonrural versus Hutterite and rural men. Hutterite and rural women and men had greater pSSI at the 20% radius compared to nonrural; inclusion of strength measurements explained population differences among women, but not men. Lifestyle differences did not explain population differences in BMC, aBMD, vBMD, or bone size.  相似文献   

14.
Gymnasts' bone mineral characteristics are generally not known before starting their sport. Prepubertal females who enrolled in beginning artistic gymnastics (n = 65) had lower bone mineral than controls (n = 78). However, 2 years of gymnastics participation versus no participation led to a significantly greater accrual of forearm bone area and lumbar spine areal BMD. INTRODUCTION: The skeletal response to exercise in children compared with adults is heightened because of the high bone turnover rate and the ability of bone to change its size and shape. Whereas child gymnasts generally have greater rates of bone mineral accrual compared with nongymnasts, it is unknown if some of these skeletal advantages are present before the onset of training or are caused entirely by training. MATERIALS AND METHODS: Changes in bone area (BA; cm2), BMC (g), and areal BMD (aBMD; g/cm2) over 24 months were examined in prepubertal females, 4-8 years of age, who selected to perform recreational gymnastics (GYM; n = 65), nongymnastic activities, or no organized activity (CON; n = 78). Participants had essentially no lifetime history of organized athletic participation (< 12 weeks). Pubertal maturation was assessed annually by a physician. Total body, lumbar spine, total proximal femur, and forearm BA, BMC, and aBMD were measured every 6 months using DXA (Hologic QDR-1000W). Independent samples t-tests determined baseline group differences. Nonlinear mixed effects models were used to model 24-month changes in bone data. In subset analyses, high-level gymnasts advancing to competition (HLG; n = 9) were compared with low-level nonadvancing gymnasts (LLG; n = 56). RESULTS: At baseline, GYM were shorter, lighter, and had lower BA, BMC, and aBMD compared with CON (p < 0.05), whereas HLG did not differ significantly in these measurements compared with LLG (p > 0.05). Controlling for differences in race, baseline measures of body mass, height, and calcium intake, and change in breast development beyond stage II at 24 months, GYM had greater long-term (asymptotic) mean responses for total body aBMD and forearm BMC (p < 0.04) and greater rates of increase in the mean responses of lumbar spine aBMD and forearm BA compared with CON over 24 months. Over time, forearm BA increased to a greater extent in HLG compared with LLG (p < 0.01). CONCLUSIONS: Females participating in recreational gymnastics initiated during childhood have enhanced bone mineral gains at the total body, lumbar spine, and forearm over 24 months. Higher-level training promotes additional gains in forearm BA.  相似文献   

15.
Högler W  Briody J  Moore B  Lu PW  Cowell CT 《BONE》2005,37(5):642-650
The state of bone health and the effect of growth hormone (GH) therapy on bone and body composition in children with idiopathic short stature (ISS) are largely unknown. A direct role of GH deficiency (GHD) on bone density is controversial. Using dual-energy X-ray absorptiometry, this study measured total body bone mineral content (TB BMC), body composition, and volumetric bone mineral density (vBMD) at the lumbar spine (LS) and femoral neck (FN) in 77 children (aged 3-17 years) with ISS (n = 57) and GHD (n = 20). Fifty-five children (GHD = 13) receiving GH were followed over 24 months including measurement of bone turnover. At diagnosis, size-corrected TB BMC SDS was greater (P 相似文献   

16.
Published data on the spinal bone mineral density (BMD) of premenopausal women originating from the Indian subcontinent (Indian/Pakistani) are few. We compared anteroposterior (AP) and lateral areal BMD (aBMD) using dual X-ray absorptiometry and calculated volumetric BMD (vBMD) in Indian/Pakistani (n = 47) vs American (n = 47) women with dissimilar statures and skeletal sizes. To account for differences, we "adjusted" lumbar aBMD separately for vertebral size (aBMD/the square root of the projected area), height (aBMD/height), and hip skeletal width (aBMD/hip width). We "corrected" bone mineral content (BMC), aBMD, and vBMD for frame size, collectively using height, hip width, and vertebral size. Unadjusted mean aBMD values for AP lumbar (L1-L4, p = 0.0086; L3-L4, p = 0.044) spine were higher in Americans than Indians/Pakistanis,whereas lateral vBMD (p = 0.56) or aBMD (p = 0.060) values were not different. After adjusting for height, hip width, or vertebral size, or correcting for frame size, differences in aBMD disappeared. Regression analyses indicated that the best measures to correct for frame size were: vertebral area for BMC, hip width for aBMD, and vertebral width for lateral vBMD. Height was not significant in any model. In correcting for frame size, we accounted for 73-85% of the variability in BMC, 22-28% in aBMD, and 27% in lateral vBMD. After frame size was corrected, we accounted for 34% of the variability in AP BMC and aBMD, in contrast with 6-9% in the lateral models. Five significant biologic and lifestyle factors remained in AP models; only body weight remained for lateral spine. Upon accounting for frame size using regression, much variability in BMD, aBMD, and vBMD was explained by lifestyle and biologic factors, not by ethnicity.  相似文献   

17.
Long-term GH treatment in GH-deficient men resulted in a continuous increase in bone turnover as shown by histomorphometry. BMD continuously increased in all regions of interest, but more in the regions with predominantly cortical bone. INTRODUCTION: Adults with growth hormone (GH) deficiency have reduced rates of bone turnover and subnormal BMD. GH treatment is effective in enhancing bone turnover as shown by biochemical markers and bone histomorphometric studies. However, it is uncertain whether long-term treatment will result in higher bone mass. In this study, we present BMD and histomorphometric data on 5 years of GH treatment in GH-deficient men. MATERIALS AND METHODS: Thirty-eight adult men with childhood onset GH deficiency (20-35 years) were included in the study. Twenty-six of these had multiple pituitary hormone deficiencies and were on stable conventional hormone replacement. BMC (total body) and BMD (lumbar spine and hip) were measured before and after 1, 2, 3, 4, and 5 years of treatment. BMD in various regions of the total body was calculated by computer software (head, trunk, arms, and legs). Transiliac bone biopsies were obtained before and after 1 and 5 years of GH treatment. RESULTS: Total body BMC increased 18% after 5 years of treatment. This increase was observed in all regions of interest: head, 13.7%; trunk, 27.8%; arms, 24.4%; legs, 13.8%. BMD also increased in all separately measured regions: lumbar spine, 9%; femoral neck, 11%; femoral trochanter, 16%. Lumbar spine area significantly increased (p=0.0002). Histomorphometric data showed increased osteoid surface (p<0.02), osteoid volume (p<0.01), and activation frequency (p<0.006), but trabecular bone volume did not increase significantly. Qualitative assessment of the cortical bone showed endosteal and periosteal bone formation. CONCLUSIONS: In conclusion, GH considerably increases BMC after long-term treatment. The combination of BMD and histomorphometric data suggests that GH has a greater effect on cortical than on trabecular bone.  相似文献   

18.
Areal bone mineral density (BMD), the quotient of bone mineral content (BMC) divided by the projectional bone area (BA), measured with dual-energy X-ray absorptiometers (DXA), is the most common parameter used today to evaluate spinal osteoporosis. To evaluate whether gender, age, weight, and height can determine spinal BA, and to compare BA and analyze its effects on spinal density in the two genders, we measured BA and BMC, and calculated areal BMD, and the bone mineral apparent density (BMAD = BMD/√BA) of the L-2 to L-4 vertebrate of 604 female and 223 male Chinese volunteers from 20 to 70 years of age using a Norland XR-26 DXA. Standardized for height and weight, BA showed a relatively large variation and a significant increase with increasing age in both genders. On the other hand, BMC stayed unchanged in men > 50 years of age and decreased with aging in postmenopausal women. Younger men (< 51 years) had a much larger mean BA (by 15.5%) and larger mean BMC (only 10%) than that of age-matched women. As a result, younger men had a slightly and significantly lower areal BMD (by 7.1%) and a much lower BMAD (by 16%) (p < 0.0001 for both) than premenopausal women of similar age. Men had higher areal BMD and BMAD values than age-matched women only after age 50 years. Although taller body height, heavier weight, and increasing age were associated with a larger BA, these factors could not explain most of the interindividual variations in BA in both genders. Thus anteroposterior BA of lumbar vertebrate measured with DXA seems to affect the areal BMD and BMAD readings in the two genders. The larger BA caused a low BMAD and probably underestimated the true volumetric spine density in men.  相似文献   

19.
In this study we analyzed the effect of variations in bone area size, baseline soft tissue composition represented by the R-value, and bone region of interest positioning on the precision in vivo of bone mineral density (BMD) and content (BMC) as measured by dual X-ray absorptiometry (DXA). The posterior-anterior (PA) spine, decubitus latcral, and femur modes were evaluated. Eleven (PA-spine), 9 (dec-lat), and 14 (femur) postmenopausal women were scanned twice on a Norland XR-26 with repositioning to determine short-term precision of BMD, BMC, AREA, and the R-value. Phantom precisions (CV[%] of 10 consecutive scans) for BMD (BMC) were PA spine: 0.66% (0.57%), neck: 1.1% (1.2%), and trochanter: 0.55% (1.0%). Precisions in vivo (CV[%]; two consecutive scans averaged over all patients) were PA spine: 0.9% (1.0%), dec-lat: 7.1% (18%), neck: 1.3% (1.9%), and trochanter: 2.5% (4.9%). BMD precision could be fully explained by BMC and AREA variations. However, BMC alone was a particularly poor predictor of BMD in the dec-lat (r2=0.05) and in the neck (r2=0.13) modes. AREA was a strong predictor for BMC precision explaining between 41% and 88% of the BMC changes. Changes in soft tissue composition contributed significantly in explaining the BMC changes in the dec-lat projection. A higher dependence of BMC changes on AREA changes resulted in a larger difference between BMC and BMD precision. Thus, particularly in the femur and in the decubitus lateral modes, the use of BMD is advantageous compared with BMC.  相似文献   

20.
Gender difference in bone size is a potential confounder when comparing bone density between males and females. A comparison of volumetric BMD (vBMD) between men and women, which is a measure of bone mass relative to three-dimensional bone volume (g/cm3) as opposed to areal bone density (g/cm2), may be a more accurate reflection of gender differences in bone density. The aims of this study were to examine gender differences in bone mass (BMC), areal BMD (aBMD), volumetric BMD (vBMD) by comparing twins of opposite sex in whom the effects of age, genes and environment are partially controlled for. DEXA derived BMC, aBMD, vBMD at the third lumbar vertebra (L3), femoral neck (FN) and forearm (1/3 radius) were compared between 82 opposite sex pairs aged 18–80. BMC was significantly higher in males at all three sites (26–45.5%). For aBMD the gender differences remained significant at all sites except the spine. The average differences in aBMD were not as great as the differences in BMC (2.2–20.5%). The differences in vBMD, however, followed a different pattern. FN and L3 vBMD were significantly higher in females (4.8 and 0.6%, respectively), while radial BMD was not significantly different between the sexes. Comparing aBMD values between males and females, when females in general have a smaller skeleton than males may not be a true indication of gender differences in bone density. A comparison of vBMD between men and women shows only small differences in bone density between the sexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号