首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Inhibitory activity of dihydrosafrole towards benzo[a]pyrene (BP) hydroxylase activity in hepatic microsomes from beta-naphthoflavone (BNF)-induced rats, and in reconstituted systems containing cytochrome P-450c, increased dramatically on preincubation of the inhibitor with NADPH; no inhibition occurred without preincubation. The level of BP hydroxylase inhibition was associated with the progressive formation of the 456 nm dihydrosafrole metabolite-cytochrome P-450c spectral complex during preincubation. 2. Inhibition of BP hydroxylase by dihydrosafrole in control microsomes, and inhibition of ethoxyresorufin O-deethylase (EROD) in microsomes (control or BNF-induced) and in reconstituted systems with cytochrome P-450c, did not require preincubation and apparently was not dependent on prior formation of the dihydrosafrole metabolite-cytochrome P-450 complex. 3. Kinetic studies established that, following preincubation with NADPH, dihydrosafrole was a noncompetitive inhibitor of both BP hydroxylase and EROD activities. In the absence of preincubation, dihydrosafrole was an effective competitive inhibitor of EROD in BNF-induced microsomes and in reconstituted systems with cytochrome P-450c. 4. Both ethoxyresorufin and benzo[a]pyrene inhibited the development of the type I optical difference spectrum of dihydrosafrole in reconstituted systems containing cytochrome P-450c. Inhibition by ethoxyresorufin was competitive while that caused by benzo[a]pyrene was noncompetitive in nature. 5. The type II ligand phenylimidazole was an effective noncompetitive inhibitor of EROD activity but failed to exert any inhibitory effect on cytochrome P-450c-mediated BP hydroxylase activity. Phenylimidazole inhibited formation of the dihydrosafrole type I optical difference spectrum non-competitively. 6. The results indicate that ethoxyresorufin and benzo[a]pyrene may occupy different binding sites on cytochrome P-450c and that dihydrosafrole binds primarily to the site utilized by ethoxyresorufin.  相似文献   

2.
1. Spectral and inhibitory interactions of two methylenedioxyphenyl (MDP) compounds (dihydrosafrole (DHS) and 4,5-dichloro-1,2-methylenedioxybenzene (DCMB)) and 4-n-butyl dioxolane (BD) were studied in vitro in reconstituted systems incorporating cytochromes P-450b and P-450c, purified respectively from hepatic microsomes of phenobarbital (PB)- and β-naphthoflavone (βNF)-treated rats.

2. In NADPH-fortified reconstituted systems containing P-450b, DHS yielded a stable type III spectral complex with peaks at 428 and 458 nm; a complex with a single 456?nm peak was formed in systems containing cytochrome P-450c. DCMB formed unstable 456–458?nm spectral complexes with both isozymes, and BD generated an unstable complex with a single Soret peak near 428?nm with cytochrome P-450b; no spectral interaction occurred between BD and cytochrome P-450c. Carbon monoxide was formed in incubations of DCMB with both isozymes but was not observed with either DHS or BD.

3. Marked selectivity was observed in the ability of the test compounds to inhibit selected mono-oxygenase reactions in the reconstituted systems. Thus, while DHS was an effective inhibitor of cytochrome P-450b-mediated ethoxycoumarin O-deethylase (ECD), it failed to inhibit aldrin epoxidase (AE) in the same system; DCMB and BD inhibited both of these reactions. In reconstituted systems incorporating cytochrome P-450c, DHS and DCMB, but not BD, were effective inhibitors of ethoxyresorufin O-deethylase (ERD) activity but none of the compounds showed any inhibitory activity towards aryl hydrocarbon (benzo[a]pyrene)hydrolase (AHH) activity.

4. The results indicate that metabolite complex formation with cytochrome P-450 is not the sole criterion for inhibition of mono-oxygenase activity by MDF and related compounds, and that in some cases type I competitive interactions at the substrate binding sites may be the primary contributing factor.  相似文献   

3.
Spectral and inhibitory interactions of two methylenedioxyphenyl (MDP) compounds (dihydrosafrole (DHS) and 4,5-dichloro-1,2-methylenedioxybenzene (DCMB] and 4-n-butyl dioxolane (BD) were studied in vitro in reconstituted systems incorporating cytochromes P-450b and P-450c, purified respectively from hepatic microsomes of phenobarbital (PB)- and beta-naphthoflavone (beta NF)-treated rats. In NADPH-fortified reconstituted systems containing P-450b, DHS yielded a stable type III spectral complex with peaks at 428 and 458 nm; a complex with a single 456 nm peak was formed in systems containing cytochrome P-450c. DCMB formed unstable 456-458 nm spectral complexes with both isozymes, and BD generated an unstable complex with a single Soret peak near 428 nm with cytochrome P-450b; no spectral interaction occurred between BD and cytochrome P-450c. Carbon monoxide was formed in incubations of DCMB with both isozymes but was not observed with either DHS or BD. Marked selectivity was observed in the ability of the test compounds to inhibit selected mono-oxygenase reactions in the reconstituted systems. Thus, while DHS was an effective inhibitor of cytochrome P-450b-mediated ethoxycoumarin O-deethylase (ECD), it failed to inhibit aldrin epoxidase (AE) in the same system; DCMB and BD inhibited both of these reactions. In reconstituted systems incorporating cytochrome P-450c, DHS and DCMB, but not BD, were effective inhibitors of ethoxyresorufin O-deethylase (ERD) activity but none of the compounds showed any inhibitory activity towards aryl hydrocarbon (benzo[alpha]pyrene)hydrolase (AHH) activity. The results indicate that metabolite complex formation with cytochrome P-450 is not the sole criterion for inhibition of mono-oxygenase activity by MDP and related compounds, and that in some cases type I competitive interactions at the substrate binding sites may be the primary contributing factor.  相似文献   

4.
Repeated administration of N-phenylimidazole (PI) to rats (3 daily doses of 200 mumol/kg/day) enhanced hepatic microsomal cytochrome P-450 levels (approx. 130%) and aminopyrine N-demethylase (APDM) and aniline p-hydroxylase (APH) activities (approx. 140%); aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH) and 7-ethoxycoumarin O-deethylase (ECOD) activities were not enhanced over control values under similar conditions. Spectral studies with PI-induced microsomes indicated that although type II PI-binding characteristics were similar to those observed in controls, the 427 nm/455 nm absorbance ratio of the type III dihydrosafrole metabolite-cytochrome P-450 complex was lower than that in control microsomes. The results suggest that the inducing characteristics of PI bear some resemblance to those of phenobarbital (PB).  相似文献   

5.
1. Pretreatment of alligators i.p. with 3-methylcholanthrene (MC) resulted in a 1.6-fold increase (P<0.001) in cytochrome P-450 specific content and a bathochromic shift in the absorption maximum of reduced, CO-liganded microsomes (448?nm).

2. Control and MC microsomal cytochrome P-450 binding spectra with a number of type I and type II ligands were similar.

3. MC treatment of alligators resulted in a 12-fold increase in benzo[a]pyrene hydroxylase activity, which was inhibited 82% by 0.1 mM α-naphthoflavone. The turnover number (units/nmol P-450) of aminopyrine N-demethylase and 7-ethoxycoumarin O-deethylase were unaffected by MC treatment.

4. The O-dealkylation (OD) of a series of alkoxyresorufins (ethoxyresorufin (ER), methoxyresorufin (MR), benzyloxyresorufin (BR), and pentoxyresorufin (PR)) was investigated. MC treatment resulted in a significant (P<0.001) increase in turnover number of EROD, MROD, and BROD over control values. The turnover number of PROD was unaltered by MC treatment.

5. Western blots showed that control alligator microsomes contain a protein band of lower mol. wt. than either rat cytochrome P-450c (P450 IA1) or P-450d (P450 IA2), which was recognized by antibodies to both P-450c and P-450d but preferentially by that against P-450c. This protein band was induced 3-4-fold by MC. MC treatment induced a second protein band in alligator microsomes of the same mol. wt. as rat P-450d, recognized preferentially by antibodies to rat cytochrome P-450d.

6. These results illustrate that the alligator mixed-function oxidase (MFO) system responds to MC in a similar manner as described in mammals, i.e. induction in P-450 content, increases in specific MFO activities, and the apparent expression of different P-450 isoenzymes.  相似文献   

6.
1. m-Xylene (1 g/kg, i.p., 1 h) increased formation of benzo(a)pyrene (BP) mutagenic bay region diols, BP-7,8-diol (66%) and BP-9,10-diol (56%) by rat pulmonary microsomal preparations, while formation of individual BP phenols and quinones was unaltered.

2. m-Xylene administration produced a decrease in cytochrome P450IIB1 activity as measured by pentoxy- and benzyloxy-resorufin O-dealkylation (PROD, BROD), while cytochrome P450IA1 activity, expressed as ethoxyresorufin O-dealkylation (EROD), was unaltered.

3. Pulmonary microsomal epoxide hydrolase activity was also unaltered by m-xylene.

4. In summary, m-xylene alters the relative contribution of P-450 isozymes to BP metabolism resulting in inhibition of BP detoxication and increased production of toxic metabolites.  相似文献   

7.
1. Several 1,3-benzodioxoles (BD) and related compounds were studied in relation to their ability to generate metabolite complexes with hepatic cytochrome P-450 following administration in vivo to rats.

2. BD derivatives that formed stable metabolite complexes with cytochrome P-450 were considerably more effective inducers of cytochrome P-450 and aryl hydrocarbon (benzo[α]pyrene) hydroxylase (AHH) activity than derivatives that did not form stable complexes.

3. Linear regression analysis showed that AHH activity was well correlated (r = 0.980) with total (i.e. complexed plus uncomplexed) cytochrome P-450 content and was not correlated with levels of uncomplexed cytochrome P-450.

4. Aminopyrine N-demethylase (APDM) activity in hepatic microsomes from rats treated with 1,3-benzodioxoles was moderately correlated in a linear relationship with uncomplexed levels of cytochrome P-450 and not with total cytochrome P-450.  相似文献   

8.
ABSTRACT

Benzo(a)pyrene metabolism in human placental microsomes from smokers was studied. Benzo(a)pyrene metabolites were separated using high pressure liquid chromatographic technique. Reaction of benzo(a)pyrene with a microsomal fraction of placenta from individuals who smoke cigarettes during pregnency yields 7,8 dihydroxy benzo(a)pyrene as a major metabolite, while 3′-hydroxy benzo(a)pyrene, 4,5 dihydroxy benzo(a)pyrene and quinones constitute minor metabolites. The activities of arylhydrocarbon hydroxylase and 7-ethoxycoumarine deethylase exhibited much higher activities in smokers than in nonsmokers. Examination of specific binding of monoclonal antibodies to cytochrome P-450 isozymes in placental microsomes revealed that cigaratte smoking specifically enhanced the level of cytochrome P-450 c and d isozymes in human placental microsomes. Coincubation of 3H-benzo(a)pyrene and calf thymus DNA with placental microsomes yielded acid insoluble 3H-B(a)P from smokers, suggesting that cigarette smoking may induce placental enzymes which convert benzo(a)pyrene into ultimate metabolites to form carcinogen-DNA adducts.  相似文献   

9.
A comparison of the cytochrome P-450 forms induced in rat liver microsomes by phenobarbital on the one hand, and 3-methylcholanthrene, β-naphtoflavone and 2,3,7,8-tetrachlorodibenzo-p-dioxin on the other hand, was performed using specific antibodies: anti-P-450 B2 PB IG (against the phenobarbital-induced cytochrome P-450) and anti-P-450 B2 BNF IG (against the β-naphtoflavone-induced cytochrome P-450). On DEAE-cellulose chromatography, four cytochrome P-450 fractions were separated, called P-450 A (non-adsorbed), P-450 Ba, P-450 Bb and P-450 Bc, from control, phenobarbital-, 3-methylcholanthrene, /gb-naphtoflavone- and 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated rats. Cytochrome P-450 A fractions appeared to be unmodified by the inducers, whereas the specifically induced cytochrome P-450 forms were always recovered in Bb fractions. The P-450 Bb fractions induced by 3-methylcholanthrene, β-naphtoflavone and 2,3,7,8-tetrachlorodibenzo-p-dioxin exhibited common antigenic determinants, comparable catalytic activities (benzphetamine, N-demethylase, benzo[a]pyrene hydroxylase) and similar mol. wts. Moreover, the inhibition patterns by the two antibodies of benzphetamine N-demethylase and benzo[a]pyrene hydroxylase activities catalysed by 3-methylcholanthrene, β-naphtoflavone and 2,3,7,8-tetrachlorodibenzo-p-dioxin microsomes or by the corresponding P-450 Bb fractions in a reconstituted system were quite identical. By these different criteria, β-naphtoflavone, 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin seem to induce a common cytochrome P-450 species in rat liver.  相似文献   

10.
1. Antibodies to mouse liver cytochrome P3-450 (anti-P3-450) and antibodies to rat liver cytochrome P-450d (anti-P-450d-c) both inhibit the O-deethylation of 7-ethoxyresorufin (ER) in liver microsomes of benzo(a)pyrene-induced (BP) mice but do not inhibit the O-deethylase activity in liver microsomes of BP-induced rats.

2. Anti-P3-450 and anti-P-450d-c inhibit BP hydroxylation in BP-induced mouse liver microsomes by 20%, but they do not inhibit this reaction at all in BP-induced rat liver microsomes.

3. Isolated cytochrome P3-450 in a reconstituted monooxygenase system metabolized 7-ER and BP. In contrast, its homologue, cytochrome P-450d, does not metabolize these substrates. The fraction containing cytochrome P1-450 metabolized 7-ER at a low rate and BP at a rate of 3.6 nmol product/min per nmol cytochrome.

4. Western blot analysis with anti-P-450c + d revealed two bands in SDS-PAGE gels containing BP-induced mouse liver microsomes corresponding to cytochrome P1-450, 55.0 kDa, and cytochrome P3-450, 54.5 kDa. There appeared a single band (cytochrome P3-450) in interaction of mouse liver BP-microsomes with anti-P3-450 and anti-P-450d-c.  相似文献   

11.
Studies were done to determine the mechanism(s) responsible for the thermal lability of adrenal microsomal monooxygenases. Preincubation of guinea pig adrenal microsomal suspensions at 37 degrees C caused large time-dependent declines in benzo(a)pyrene (BP) hydroxylase and benzphetamine (BZ) demethylase activities. Similar preincubations with hepatic microsomes had little effect on enzyme activities. The decreases in adrenal enzyme activities were completely prevented by co-incubation of microsomes with cytosol, but were not diminished by reduced glutathione, ascorbic acid, or bovine serum albumin. Partial protection was afforded by EDTA, suggesting that lipid peroxidation might be involved, but malonaldehyde production was not demonstrable and MnCl2, a potent inhibitor of lipid peroxidation, did not affect the decline in enzyme activities. The decreases in the rates of BP and BZ metabolism were prevented by including NADPH or NADP+ in the preincubation medium. The preincubation conditions causing losses of adrenal enzyme activities did not affect cytochrome P-450 concentrations or substrate binding to cytochromes P-450, as indicated by type I difference spectra. NADH-cytochrome c reductase activity also was not affected, but there were decreases in NADPH-cytochrome c reductase activity that were proportionately similar to the declines in drug-metabolizing activities. Direct assessment of NADPH-cytochrome P-450 reductase revealed similarly large decreases in enzyme activity resulting from preincubation of adrenal microsomes. The results demonstrate a need for extra caution when doing preincubation experiments with adrenal microsomal preparations, and suggest that the thermal lability of adrenal monooxygenases is attributable to effects at the active site of NADPH-cytochrome P-450 reductase.  相似文献   

12.
Our previous studies have shown that 2,2-dimethyl-5-t-butyl-1,3-benzodioxole (DBBD), a methylenedioxyphenyl (MDP) analog in which the methylene hydrogens have been replaced by methyl groups, does not form an inhibitory complex with cytochrome P-450 nor induce this cytochrome. However, in the present experiments, DBBD-treated male Dub:ICR mice showed an increase in NADPH-dependent cytochrome c (P-450) reductase and epoxide hydrolase activity. This separation of cytochrome P-450 induction from the induction of epoxide hydrolase and NADPH-dependent cytochrome c (P-450) reductase appears to be unique among inducers of xenobiotic metabolizing enzymes. In similar experiments, mice were treated with phenobarbital + DBBD or 3-methylcholanthrene + DBBD and the following parameters were measured: cytochrome P-450 content; NADPH-dependent reduction of cytochrome c; ethylmorphine and benzphetamine N-demethylase; 7-ethoxycoumarin O-deethylase; benzo[a]pyrene hydroxylase; and ethoxyresorufin O-deethylase. The microsomal proteins were examined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE). Phenobarbital + DBBD treatment gave results which did not differ significantly from those obtained with phenobarbital alone. In contrast, cytochrome P-450 content and benzo[a]pyrene hydroxylase and ethoxyresorufin O-deethylase activities were less in mice treated with 3-methylcholanthrene + DBBD than in animals treated with 3-methylcholanthrene alone. SDS-PAGE confirmed that induction of cytochrome P-450 by 3-methylcholanthrene was reduced by DBBD, suggesting that the latter compound may be an antagonist to the Ah cytosolic receptor.  相似文献   

13.
The metabolism of benzo(a)pyrene by rabbit liver microsomes can be stimulated or inhibited by 7,8-benzo(a)flavone (ANF) depending on the distribution of specific P-450 enzymes present within the microsomes. Treatment of rabbits with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or rifampicin leads to an increase of hepatic microsomal metabolism of benzo(a)pyrene. ANF stimulates the rate of benzo(a)pyrene metabolism catalyzed by microsomes isolated from rabbits treated with rifampicin by 3-fold. In contrast, ANF moderately inhibits the activity of microsomes from TCDD-treated rabbits. Variations in the benzo(a)pyrene hydroxylase activity of microsomes from untreated rabbits apparently reflect differences in the expression of P-450 1, a constitutive form of P-450. Thus, the benzo(a)pyrene hydroxylase activity of microsomes from untreated rabbits, which varies from 0.40 to 1.5 nmol/min/mg of protein, is directly correlated with the microsomal concentration of P-450 1. The metabolism of benzo(a)pyrene by microsomes containing high concentrations of P-450 1 is inhibited by a monoclonal antibody specific for this cytochrome to approximately the rate exhibited by microsomes with a low concentration of P-450 1. The benzo(a)pyrene activity stimulated by ANF in microsomes with a low concentration of P-450 1 is not inhibited by the monoclonal antibody. The activity of P-450 1 is inhibited by ANF at concentrations that stimulate other constitutive forms of P-450. Thus, ANF produces offsetting effects on benzo(a)pyrene metabolism in microsomes from untreated animals by stimulating the activity of at least one cytochrome and inhibiting P-450 1-mediated activity.  相似文献   

14.
In vitro addition of cadmium (Cd) salts to pulmonary microsomes isolated from male rabbits decreased the cytochrome P-450 levels and the activity of benzo[a]pyrene hydroxylase and aminopyrine N-demethylase but not that of NADPH-cytochrome c reductase. The Cd-induced reduction of pulmonary monooxygenase activity was enhanced when microsomes were preincubated in the presence of Cd and inhibition increased as the time of preincubation progressed, attaining its maximum rate at 20 min of preincubation. When hepatic microsomes were used, this delayed effect of Cd on monooxygenase was less apparent. The presence of NADH and/or NADPH in the preincubation did not markedly enhance the Cd-induced inhibition rate of monooxygenase activity. The addition of Cd-acetate to pulmonary microsomes produced a concentration-dependent inhibition of the monooxygenase activity and the estimated IC50 values of Cd-acetate (i.e. the concentration required to inhibit control enzyme activity by 50%) were 3.8 x 10(-5)M, 6.5 x 10(-6)M and 5.3 x 10(-5)M for cytochrome P-450, benzo[a]pyrene hydroxylase and aminopyrine N-demethylase, respectively. The inhibitory action of Cd-acetate on the monooxygenase activity was also observed with microsomes isolated from the lungs of male guinea-pigs and rats.  相似文献   

15.
The catalytic activities of hepatic microsornes from untreated, phenobarbital-treated and 3-methylcholanthrene-treated adult rabbits with respect to benzo[a]pyrene hydroxylation and the activation of (?)(rflw-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene[(?)trans-7,8-diol] to DNA-binding metabolites were determined in the absence and presence of mixed-function oxidase inhibitors and compared to the corresponding activities of the individual enzyme systems. Treatment of rabbits with phnobarbital led to induction of P-450LM2 and a concomitant 3-fold enhancement in microsomal benzo[a]pyrene hydroxylase activity, whereas the conversion of (?)trans-7,8-diol to DNA-binding products was unaffected. Homogeneous phenobarbital-inducible P-450LM2 exhibited the highest activity and specificity toward benzo[a]pyrene and the lowest activity toward (?)trans-7,8-diol. Conversely, P-450LM4 was the major form of cytochrome P-450 induced in rabbit liver by 3-methylcholanthrene or β-naphthoflavone, and this was associated in microsomes with an increase in the metabolism of (?)trans-7, 8-diol but not of benzo[a]pyrene. Homogeneous P-450LM4 preferentially Catalyzed the oxygénation of (?)trans-7,8-diol, but was largely ineffective with benzo[a]pyrene. Partially purified P-450LM7 lacked substrate specificity, for it metabolized both benzo[a]pyrene and (?)trans-7, S-diol at comparable rates. Additionally, 7,8-benzoflavone strongly inhibited benzo[a]pyrene hydroxylation by P-450LM4 and phenobarbital-induced microsomes, as well as (?)trans-7,8-diol metabolism by P-450LM4 and 3-methyl-cholanthrene-induced microsomes; in contrast, the activity of control microsomes with either substrate, and the activities of P-450LM4 and LM2 with benzo[a]pyrene and (?)trans-7 ,8-diol, respectively, were only partially or slightly decreased by 7,8-benzoflavone. Unlike 7,8-benzoflavone, butylated hydroxytoluene inhibited benzo[a]pyrene hydroxylation only. Thus, different forms of rabbit liver microsomal cytochrome P-450 were involved in the metabolism of benzo[a]pyrene and its 7,8-dihydrodiol. The results also demonstrate that the changes in substrate specificity and inhibitor sensitivity seen in phenobarbital- and 3-methylcholanthrene-induced microsomes relative to control rabbit liver microsomes can be accounted for by the catalytic properties of a specific form of cytochrome P-450 that prevails in these preparations, P-450LM2 and LM4, respectively.  相似文献   

16.
1. The metabolism of benzo[a]pyrene (BP) by gerbil hepatic microsomes is increased following induction by phenobarbital (PB), chlordecone, mirex and 3-methylcholanthrene (3-MC).

2. By several criteria including the influence of α-naphthoflavone (α-NF) on BP-hydroxylase activity and BP-metabolite profiles, the cytochromes P-450 responsible for benzo[a]pyrene metabolism appear to be similar in microsomes isolated from PB-, chlordecone-, or mirex-treated gerbils. The cytochromes P-450 present in microsomes isolated from control animals and those treated with 3-MC are different from each other and from those present in PB, chlordecone, or mirex microsomes by the same criteria.

3. Of the inducers used, only PB induced microsomal epoxide hydrolase activity.  相似文献   

17.
Tetrachlorobenzyltoluene (TCBT) (Ugilec 141) was investigated in induction experiments in male and female Wistar rats with long-term (50, 100 and 300 mg/kg p.o. daily for 28 days) and short-term administration (300 mg/kg once and 100 mg/kg daily for 4 days). The increase in total cytochrome P-450 did not exceed the factor of 1.9 compared to controls, while benzphetamine N-demethylase rose up to 3.5-fold the levels measured in controls, with very low induction of benzo(a)pyrene hydroxylase or ethoxyresorufin O-deethylase. Parallel investigations of UDP-glucuronosyltransferase showed induction of testosterone glucuronidation (1.7-fold). Administration (300 mg/kg body wt. once) of a pyrolysate of TCBT resulted in a marked increase in cytochrome P-450c dependent reactions (benzo(a)pyrene hydroxylase, ethoxyresorufin O-deethylase).  相似文献   

18.
The effects of cumene hydroperoxide on microsomal mixed-function oxidase components and enzyme activities were determined. In vitro cumene hydroperoxide treatment decreased cytochrome P-450 content, benzphetamine N-demethylase activity and aryl hydrocarbon hydroxylase activity of hepatic and renal microsomes from adult male and female rats, and of hepatic microsomes from fetal rats. Cumene hydroperoxide-treated microsomes, as well as fetal liver and adult renal microsomes, which are naturally low in cytochrome P-450 and mixed-function oxidase activity, were used to incorporate partially purified hepatic cytochrome P-448 isolated from 2,3,7,8-tetrachlorodibenzo-p-dioxin-pretreated immature male rats. This resulted in an enhanced rate of benzo[a]pyrene hydroxylation. Aryl hydrocarbon hydroxylase activity was increased 12-, 26-. 31- and 53-fold when 1.0 nmole of partially purified cytochrome P-448 was incubated with fetal liver microsomes, microsomes from kidney cortex of female rats, and cumene hydroperoxide-pretreated hepatic microsomes from female and male rats, respectively. The increased rate of benzo[a]pyrene hydroxylation was linear with cytochrome P-448 over the range 0.25 to 1.0 nmole. Because cumene hydroperoxide-pretreated microsomes from male rat liver and the hepatic and renal microsomes from female rats have a combination of high NADPH-cytochrome c reductase activity and low mixed-function oxidase activity, they are an attractive choice for catalytic studies of the interaction between cytochrome P-448 and microsomes.  相似文献   

19.
The metabolism of benzo[a]pyrene in reconstituted pulmonary mono-oxygenase systems has been studied. Metabolites formed by pulmonary cytochrome P450MC, a major form of pulmonary cytochrome P-450 isolated from 3-methylcholanthrene-treated rats, were analysed by h.p.l.c. The profiles of benzo[a]pyrene metabolites formed by the reconstituted P-450MC systems were different from that obtained with rat-lung microsomes, indicating the presence of several unknown metabolites in the reconstituted systems containing NADPH-cytochrome P-450 reductase and epoxide hydrolase. 3-Hydroxybenzo[a]pyrene was a major product formed by pulmonary cytochrome P-450MC, in the absence or presence of epoxide hydrolase. The addition of purified epoxide hydrolase to the reconstituted systems increased the formation of dihydrodihydroxy-benzo[a]pyrenes, particularly 7,8-dihydro-7,8-dihydroxybenzo[a]pyrene. The 9,10-dihydro-9,10-dihydroxybenzo[a]pyrene was the major dihydrodiol formed by pulmonary cytochrome P-450MC. By the addition of epoxide hydrolase the total amount of phenols decreased in parallel with an increased production of dihydrodiol, but the amount of quinones was not changed. Similar results concerning the related production of phenols and dihydrodiols, in the absence and presence of epoxide hydrolase, were obtained in reconstituted systems of hepatic cytochrome P-450MC, the major form of hepatic cytochrome P-450 from 3-methylcholanthrene-treated rats.  相似文献   

20.
The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on hepatic microsomal mixed function oxidase (MFO) enzyme systems were examined in female rats. Although TCDD had little effect on NADPH-cytochrome c reductase activity and cytochrome P-450 content, the activities of the cytochrome P-448-mediated enzymes benzo[α]pyrene hydroxylase, ethoxyresorufin O-deethylase, and biphenyl 2-hydroxylase were greatly increased. Three months after a single oral dose of 2 μg/kg TCDD, the cytochrome P-450 content and benzo[α]pyrene hydroxylase and ethoxyresorufin O-deethylase activities were still significantly increased. In addition, the microsomal metabolism of the novel substrate 4,4′-dimethylbiphenyl was greatly increased by TCDD pretreatment. Low dose studies revealed that the ED50 of TCDD induction of benzo[α]pyrene hydroxylase was 0.63 μg/kg and the lowest dose of TCDD which caused a significant increase in enzyme activity was 0.002 μg/kg. Studies in which [1,6-3H]TCDD was used to determine the extent of hepatic uptake of orally administered TCDD at the lowest effective dose of 0.002 μg/kg lead to the estimate that only 65 molecules of TCDD per hepatocyte were required to produce a measurable increase in benzo[α]pyrene hydroxylation. These results attest to the specificity and persistence of TCDD in the induction of cytochrome P-448-mediated enzyme activities in rat liver. The small number of molecules required to induce benzo[α]pyrene hydroxylase suggests that TCDD is among the most potent MFO-inducing agents yet demonstrated in mammalian liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号