首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cynomolgus monkeys are widely used to predict human pharmacokinetic and/or toxic profiles in the drug developmental stage. Characterization of cynomolgus monkey P450s such as the mRNA expression level, substrate specificity, and inhibitor selectivity were conducted to provide helpful information in designing monkey in vivo studies and monkey-to-human extrapolation. The expression levels of 12 monkey P450 mRNAs, which are considered to be important P450 subfamilies in drug metabolism, were investigated in the liver, small intestine (duodenum, jejunum, and ileum), and colon of individual monkeys. 3. In vitro activities and intrinsic clearance values were determined in monkey intestinal and liver microsomes (MIM and MLM, respectively) using nine typical oxidative reactions for human P450s. Paclitaxel 6α-hydroxylation, diclofenac 4′-hydroxylation, and S-mephenytoin 4′-hydroxylation showed low activities in MIM and MLM. IC?? values of eight selective inhibitors of human P450s were determined in MIM and MLM. Inhibitory effects of furafylline and sulfaphenazole were weak in monkeys on phenacetin O-deethylation and diclofenac 4′-hydroxylation, respectively. These results show profiles of monkey P450s in both the intestine and liver in detail and contribute to a better understanding of the species difference in substrate specificity and inhibitor selectivity between cynomolgus monkeys and humans.  相似文献   

2.
  1. The aim was to characterize mouse gender and strain differences in the metabolism of commonly used human cytochrome (CYP) P450 probe substrates.

  2. Thirteen human CYP probe substrates (phenacetin, coumarin, 7-ethoxy-4-trifluoromethyl coumarin, amiodarone, paclitaxel, diclofenac, S-mephenytoin, bufuralol, dextromethorphan, chlorzoxazone, p-nitrophenol, testosterone and lauric acid) were used in activity measurements. The metabolism of the probe substrates was compared in liver microsomes from male and female NMRI, CBA, C57bl/6, 129/SvJ and CD1 strains. The expression of proteins identified on Western blots with commonly available antibodies selective for specific human and rat CYP enzymes were compared in the different mouse strains.

  3. Males had higher metabolism than corresponding females for phenacetin O-deethylation (human marker for CYP1A2 activity), and a high correlation was found between phenacetin activity and immunoreactivity in Western blots produced with rat CYP1A2 antibodies.

  4. Protein detected by antibodies cross-reacting with human CYP2B6 and rat CYP2B1/2 antibodies was female specific except for the 129/SvJ strain, where it was absent in both genders.

  5. Females generally had a higher metabolism of bufuralol 1′-hydroxylation and dextromethorphan O-demethylation (human markers for CYP2D activity).

  6. Bufuralol 1′-hydroxylation correlated with a female-dominant mouse CYP, which was detected with antibodies against rat CYP2D4.

  7. p-Nitrophenol 2-hydroxylation correlated better than chlorzoxazone 6-hydroxylation with the protein detected with antibodies against rat CYP2E1, indicating that p-nitrophenol is a more specific substrate for mouse CYP2E1.

  相似文献   

3.
  1. The common marmoset (Callithrix jacchus) is a useful experimental animal to evaluate the pharmacokinetics of drug candidates. Cytochrome P450 (P450) 2B enzyme in marmoset livers has been identified; however, only limited information on the enzymatic properties and distribution has been available.

  2. Marmoset P450 2B6 amino acids showed high sequence identities (>86%) with those of primates including humans and cynomolgus monkeys. Phylogenetic analysis using amino acid sequences indicated that marmoset P450 2B6 was closer to human and cynomolgus monkey P450 2B6 than to P450 2B orthologs of other species, including pigs, dogs, rabbits and rodents.

  3. Quantitative polymerase chain reaction analysis using specific primers showed P450 2B6 mRNA predominantly expressed in livers among the five marmoset tissues, similar to those of humans and cynomolgus monkeys.

  4. Marmoset P450 2B6 heterologously expressed in Escherichia coli membranes oxidized 7-ethoxycoumarin, pentoxyresorufin, propofol and testosterone, at roughly similar rates to those of humans and/or cynomolgus monkeys. A high capacity of marmoset P450 2B6 with propofol 4-hydroxylation (at low ionic strength conditions) with a low Km value was relatively comparable to that for marmoset livers.

  5. These results collectively indicated a high propofol 4-hydroxylation activity of P450 2B6 expressed in marmoset livers.

  相似文献   

4.
Abstract

  • 1.?Although the New World non-human primate, the common marmoset (Callithrix jacchus), is a potentially useful animal model, comprehensive understanding of drug metabolizing enzymes is insufficient.

  • 2.?A cDNA encoding a novel cytochrome P450 (P450) 2D8 was identified in marmosets. The amino acid sequence deduced from P450 2D8 cDNA showed a high sequence identity (83–86%) with other primate P450 2Ds. Phylogenetic analysis showed that marmoset P450 2D8 was closely clustered with human P450 2D6, unlike P450 2Ds of miniature pig, dog, rabbit, guinea pig, mouse or rat.

  • 3.?Marmoset P450 2D8 mRNA was predominantly expressed in the liver and small intestine among the tissues types analyzed, whereas marmoset P450 2D6 mRNA was expressed predominantly in the liver where P450 2D protein was detected by immunoblotting.

  • 4.?By metabolic assays using marmoset P450 2D8 protein heterologously expressed in Escherichia coli, although P450 2D8 exhibits lower catalytic efficiency compared to marmoset and human P450 2D6 enzymes, P450 2D8 mediated O-demethylations of metoprolol and dextromethorphan and bufuralol 1′-hydroxylation.

  • 5.?These results suggest that marmoset P450 2D8 (also expressed in the extrahepatic tissues) has potential roles in drug metabolism in a similar manner to those of human and marmoset P450 2D6.

  相似文献   

5.
  1. The pharmacokinetics of cytochrome P450 probes in humans can be extrapolated from corresponding data in cynomolgus monkeys using simplified physiologically based pharmacokinetic (PBPK) modeling. In the current study, despite some species difference in drug clearances, this modeling methodology was adapted to estimate human plasma concentrations of P450 probes based on data from commonly used medium-sized experimental animals, namely dogs and minipigs.

  2. Using known species allometric scaling factors and in vitro metabolic clearance data, the observed plasma concentrations of slowly eliminated caffeine and warfarin and rapidly eliminated omeprazole, metoprolol and midazolam in two young dogs were scaled to human oral monitoring equivalents. Using the same approach, the previously reported pharmacokinetics of the five P450 probes in minipigs was also scaled to human monitoring equivalents.

  3. The human plasma concentration profiles of the five P450 probes estimated by the simplified human PBPK models based on observed/reported pharmacokinetics in dogs/minipigs were consistent with previously published pharmacokinetic data in humans.

  4. These results suggest that dogs and minipigs, in addition to monkeys, could be suitable models for humans during research into new drugs, especially when used in combination with simple PBPK models.

  相似文献   

6.
  1. To clarify the metabolic pathways of flavanones in mammals, the metabolism of (±)-flavanone and (±)-4′-methoxyflavanone by rat liver microsomes and recombinant human P450s in which structural changes are readily identifiable were examined.

  2. The β-nicotinamide adenine dinucleotide phosphate (NADPH)-dependent formation of flavone plus (±)-2,3-trans-flavanonol and of 4′-methoxyflavone plus (±)-2,3-trans-4′-methoxyflavanonol, respectively, by rat liver microsomes was observed.

  3. The same metabolites were generated by recombinant human P450s in addition to the formation of isoflavone from (±)-flavanone.

  4. The kinetic isotope effects in these reactions were examined using deuterated (±)-flavanone and (±)-4′-methoxyflavanone. There was a strong isotope effect in the production of flavanonols, but the isotope effect in the production of flavones was small. The results indicated that the P450-mediated conversion of (±)-flavanone and of (±)-4′-methoxyflavanone to the corresponding metabolites proceeded via abstraction of a hydrogen radical from the C-2- or C-3-position of the flavanone skeleton.

  5. The antioxidant properties of flavanone and its metabolites were examined by measuring superoxide-scavenging activity in a xanthine–xanthine oxidase-cytochrome c system. (±)-2,3-trans-Flavanonol had higher activity than that of other flavonoids.

  6. Flavanones are metabolized by mammalian P450s, providing important information relevant to the metabolism and pharmacological action of dietary flavanones.

  相似文献   

7.
  1. Amino terminal sequence modification of cytochrome P450 enzymes is often necessary to achieve expression in bacteria. The aim of this study was to examine the effect of such modifications on membrane integration and P450 activity.

  2. Forms that retained substantial N-terminal hydrophobic sequences remained unaffected by treatments to remove peripheral membrane proteins and were released only by detergent. Truncated P450s 2A13, 2C9 (δ3–20), 2C19 (δ3–20), 2D6 (DB11) and 2E1 remained principally membrane-bound, but some P450 was found in the soluble fraction and could be partially extracted by alkaline and high salt treatments.

  3. The subcellular localization of P450s 2C9 and 2C19 assessed by fluorescence microscopy mirrored the distribution between subcellular fractions. The MALLLAVFL modified forms of P450 2C9 YFP, P450 2C18 YFP and P450 2C19 YFP were found primarily at the periphery of the cells, whereas the truncated forms of P450 2C9 (δ3–20) YFP and 2C19 (δ3–20) YFP were observed at the periphery as well as inside the cells.

  4. N-terminal variants of P450s 2C9 and 2C19 showed altered kinetics towards form-selective substrates. Rates of diclofenac 4´-hydroxylation by P450 2C9 and luciferin H-EGE metabolism by P450 2C19 were higher for the MALLLAVFL-modified forms compared with the (δ3–20) truncated forms despite supplementation of truncated form incubations with additional reductase.

  5. Thus, N-terminal sequence modifications changed the degree of membrane integration, potentially affecting subcellular localization, interactions with redox partners, and hence enzymatic activity.

  相似文献   

8.
  1. Characteristics of twelve cytochromes P450 (CYPs) from cynomolgus monkeys were compared with those of human CYPs that play an important role in drug metabolism.

  2. Eleven members of CYP1A, CYP2A, CYP2C, CYP2D, CYP2E, and CYP3A subfamilies from cynomolgus monkeys exhibited a high degree of homologies (more than 90%) in cDNA and amino acid sequences with corresponding human CYPs, and catalysed typical reactions of corresponding human CYPs.

  3. One member of the cynomolgus monkey CYP2C subfamily, CYP2C76, exhibited a lower homology (around 70%) in amino acid sequences with other cynomolgus monkey and human CYP2C subfamilies. CYP2C76 catalysed typical CYP2C substrates with low activities, and has not been found in humans.

  4. CYPs identified in cynomolgus monkeys were similar to CYP1A1, CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5 in humans.

  5. These results indicate that cynomolgus monkeys express CYPs similar to human CYPs that are important in drug metabolism.

  相似文献   

9.
  1. A novel cytochrome P450 (CYP), CYP2A26, was identified and characterized in cynomolgus monkey, one of the animal species used in preclinical studies.

  2. Deduced amino acid sequences of CYP2A26 cDNA showed high sequence identities (91–95%) with cynomolgus monkey CYP2A23 and CYP2A24, and human CYP2A6 and CYP2A13.

  3. Phylogenetic analysis showed that macaque CYP2As (CYP2A26, CYP2A23, and CYP2A24) were most closely clustered with human CYP2As, unlike CYP2As of dog, rat, and mouse (other species also used in drug metabolism).

  4. Quantitative polymerase chain reaction analysis showed that CYP2A26 mRNA, along with CYP2A23 and CYP2A24 mRNAs, was expressed predominantly in the liver, where CYP2A proteins were also detected by immunoblotting.

  5. Drug-metabolizing assays using the CYP2A26 protein heterologously expressed in Escherichia coli indicated that CYP2A26 catalyzed coumarin 7-hydroxylation with its apparent Km lower than that of CYP2A24, but similar to those of CYP2A6 and CYP2A23.

  6. These results suggest an evolutionary closeness and functional similarity of cynomolgus monkey CYP2A26 (together with CYP2A23 and CYP2A24) to human CYP2A6, and its functional role as a drug-metabolizing enzyme in the liver.

  相似文献   

10.
  1. The effect of flavonoids on coumarin 7-hydroxylation, an activity marker of an important human liver cytochrome P450 isoform, cytochrome P450 2A6 (CYP2A6), was investigated in this study.

  2. Coumarin 7-hydroxylase activity was measured fluorometrically in reaction mixtures containing cDNA-expressed CYP2A6, nicotinamide adenine dinucleotide phosphate generating system and 10 uM coumarin, at various concentrations of flavonoids.

  3. Among the 23 compounds tested, most of the active members were from flavonol group of hydroxylated flavonoids, with myricetin being the most potent inhibitor followed by quercetin, galangin, and kaempferol.

  4. Further exploration of the inhibition mechanism of these compounds revealed that myricetin, galangin, and kaempferol exhibited mixed-type of inhibition pattern while quercetin was observed to exhibit competitive mode of inhibition.

  5. Structure-function analyses revealed that degree of inhibition was closely related to the number and location of hydroxyl groups, glycosylation of the free hydroxyl groups, degree of saturation of the flavane nucleus as well as the presence of the alkoxylated function.

  相似文献   

11.
  1. The effect of cytochrome P450 (CYP) 2C9 polymorphisms on the stereoselective biotransformation of the oral anticoagulant phenprocoumon (PPC) to inactive, monohydroxylated metabolites was studied in vitro and in vivo.

  2. In human liver microsomes, the (S)-7-hydroxylation — being the major metabolic pathway — was significantly compromised in a gene–dose-dependent manner in samples expressing the CYP2C9*2 or CYP2C9*3 allele. The CYP2C9*3/*3 genotype corresponded to an almost fourfold lower (S)-7-hydroxylation rate than CYP2C9*1/*1 (wild-type).

  3. The intrinsic clearance of human recombinant CYP2C9*2 and CYP2C9*3 for the (S)-7-hydroxylation was 28.9 and 50.9% lower than of CYP2C9*1, respectively.

  4. The area under the plasma concentration–time curve (AUC) of PPC metabolites after oral intake of 12?mg racemic PPC was significantly lower in volunteers expressing the CYP2C9*2 or CYP2C9*3 allele. Increasing plasma AUC metabolic ratios (parent compound/metabolite) in CYP2C9*2 and CYP2C9*3 variant allele carriers were found for each hydroxylation reaction and the CYP2C9*3/*3 genotype corresponded to an about 10-fold higher metabolic ratio of PPC (S)-7-hydroxylation relative to CYP2C9*1/*1.

  5. CYP2C9 polymorphisms cause a markedly compromised PPC (S)-7-hydroxylation. However, PPC metabolism appears overall less influenced by CYP2C9 genotype compared with other oral anticoagulants and it may thus be a valuable alternative for therapeutic anticoagulation of patients expressing CYP2C9 variant alleles.

  相似文献   

12.
  1. The aim was to identify the individual human cytochrome P450 (CYP) enzymes responsible for the in vitro N-demethylation of hydromorphone and to determine the potential effect of the inhibition of this metabolic pathway on the formation of other hydromorphone metabolites.

  2. Hydromorphone was metabolized to norhydromorphone (apparent Km = 206?? 822?μM, Vmax = 104 ? 834?pmol?min?1?mg?1 protein) and dihydroisomorphine (apparent Km = 62 ? 557?μM, Vmax = 17 ? 122?pmol?min?1?mg?1 protein) by human liver microsomes.

  3. In pooled human liver microsomes, troleandomycin, ketoconazole and sulfaphenazole reduced norhydromorphone formation by an average of 45, 50 and 25%, respectively, whereas furafylline, quinidine and omeprazole had no effect. In an individual liver microsome sample with a high CYP3A protein content, troleandomycin and ketoconazole inhibited norhydromorphone formation by 80%.

  4. The reduction in norhydromorphone formation by troleandomycin and ketoconazole was accompanied by a stimulation in dihydroisomorphine production.

  5. Recombinant CYP3A4, CYP3A5, CYP2C9 and CYP2D6, but not CYP1A2, catalysed norhydromorphone formation, whereas none of these enzymes was active in dihydroisomorphine formation.

  6. In summary, CYP3A and, to a lesser extent, CYP2C9 catalysed hydromorphone N-demethylation in human liver microsomes. The inhibition of norhydromorphone formation by troleandomycin and ketoconazole resulted in a stimulation of microsomal dihydroisomorphine formation.

  相似文献   

13.
  1. The human cytochrome P450 enzymes and their substrates are reviewed, together with current knowledge on the three-dimensional structures of P450s obtained from X-ray crystallographic studies and from homology modelling based on mammalian P450 template crystal structures.

  2. There is a particular focus on human Phase 1 drug metabolism mediated by P450s, and a rationalization of their substrate selectivities and binding strengths in terms of lipophilicity and active site interactions.

  3. The combination of molecular modelling and quantitative structure–activity relationship (QSAR) studies facilitates understanding of the factors which determine substrate selectivity and binding to the human drug-metabolizing P450s.

  相似文献   

14.
  1. Ilaprazole is a new proton pump inhibitor, designed for treatment of gastric ulcers, and developed by Il-Yang Pharmaceutical Co (Seoul, Korea). It is extensively metabolised to the major metabolite ilaprazole sulfone.

  2. In the present study, several in vitro approaches were used to identify the cytochrome P450 (CYP) enzymes responsible for ilaprazole sulfone formation. Concentrations of ilaprazole sulfone were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS).

  3. Incubation of ilaprazole with cDNA-expressed recombinant CYPs indicated that CYP3A was the major enzyme that catalyses ilaprozole to ilaprazole sulfone. This reaction was inhibited significantly by ketoconazole, a CYP3A inhibitor, and azamulin, a mechanism-based inhibitor of CYP3A, while no substantial effect was observed using selective inhibitors for eight other P450s (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP2E1).

  4. In addition, the formation of ilaprazole sulfone correlated well with CYP3A-catalysed testosterone 6β-hydroxylation and midazolam 1′-hydroxylation in 20 different human liver microsome panels. The intrinsic clearance of the formation of ilaprazole sulfone by CYP3A4 was 16-fold higher than that by CYP3A5.

  5. Collectively, these results indicate that the formation of the major metabolite of ilaprazole, ilaprazole sulfone, is predominantly catalysed by CYP3A4/5.

  相似文献   

15.
  1. Ten compounds from the Merck Research Laboratories pipeline were selected to evaluate the utility of using intrinsic clearance derived from recombinantly expressed cytochromes P450 (CYP) and physiologically based pharmacokinetic modelling to predict Phase I pharmacokinetics using simCYP. The compounds selected were anticipated to be eliminated predominantly by P450 metabolism.

  2. There was a reasonable agreement between the predicted and actual clinical exposure with 80% of the predicted exposures being within three-fold of the observed values. Furthermore, prediction of C(t) (plasma concentration at a specified time point) and Tmax were acceptable with greater than or equal to 70% of the predicted data being within three-fold of the observed values. However, prediction of Cmax was unreliable and may have been due to error in predicting the time-dependent change in volume of distribution and/or error in estimating absorption rate.

  3. Although it is acknowledged that research is needed to improve predictive performance, the data presented are supportive of using recombinant P450 intrinsic clearance and physiologically based pharmacokinetic modelling to predict Phase I pharmacokinetics for compounds eliminated by P450 metabolism.

  相似文献   

16.
  1. Widespread exposure to capsaicin occurs through food and topical medicines. To investigate potential food-drug or drug–drug interactions, capsaicin was evaluated in vitro against seven human drug-metabolizing cytochrome P450 (CYP) enzymes.

  2. At concentrations occurring after ingestion of chili peppers or topical administration of a high-concentration patch, capsaicin did not cause direct inhibition of any CYP enzyme. Direct inhibition was only observed at much higher concentrations; the lowest IC50 value was 2.0 μM. For CYP2E1, the IC50 value was too high to calculate. With pre-incubation, inhibition decreased for CYP1A2, 2C9, 2C19 and 3A4/5, whereas inhibition of CYP2B6 increased and moderately increased for CYP2D6.

  3. Induction of CYP activity was evaluated in microsomes from hepatocyte primary cultures. Capsaicin did not induce CYP1A2, 2B6, 2C9, 2C19, 2E1 or 3A4/5. 10 μM capsaicin caused a statistically significant increase in CYP1A2 activity (8.6% of the positive control).

  4. Inhibition of drug metabolism by capsaicin should be minimal, as the ratio of [I]/Ki for direct inhibition is?<?0.1. Although pre-incubation did enhance the potency for CYP2B6 inhibition to 5.1 μM, given that exposure to capsaicin from either food or a topical medicine is very low (≤58?nM) and transient, effects on CYPs appear unlikely.

  相似文献   

17.
  1. Taxanes exhibit a high tendency to epimerize at C-7 under physiological conditions. This study aimed to investigate the composite effect of C-7 configuration and other substructural elements on the metabolic properties of taxanes. Cephalomannine, 7-epi-cephalomannine, 10-deacetyl-paclitaxel, and 7-epi-10-deacetyl-paclitaxel were chosen as model compounds.

  2. In human liver microsomes, 7-epi-cephalomannine was subject to C-13 lateral chain (M-1) and diterpenoid core monohydroxylation (M-2), mediated by cytochrome P450 (CYP) 3A4 and CYP2C8, respectively. However, only one 7-epi-10-deacetyl-paclitaxel metabolite (M), monohydroxylated at taxane ring by CYP2C8, was detected. In comparison with cephalomannine, the catalytic efficiency of CYP2C8 for 7-epi-cephalomannine was about five-fold higher due to the decreased Km. Although CYP2C8 showed a high capacity for metabolizing 7-epi-10-deacetyl-paclitaxel, 10-deacetyl-paclitaxel was hardly metabolized under the identical incubation conditions.

  3. In conclusion, C-7 configuration represents one of the most important structural determinants in taxanes metabolism.

  相似文献   

18.
  • The high-level expression of mammalian cytochrome P450 in bacteria usually requires modification of the amino-terminal region of the enzyme. The effect of altering amino acids in the N-terminus of human recombinant CYP1A2 on its catalytic activity was investigated herein.

  • Rates of 7-ethoxyresorufin O-deethylation by CYP1A2a (a form made by altering the amino acids LLL of CYP1A2 to RER at positions 3–5) in reconstituted systems were significantly low compared with those of other CYP1A2?N-terminal variants at a low ratio of cytochrome P450 to NADPH-cytochrome P450 reductase, but not at higher reductase concentrations.

  • CYP1A2a-dependent ethoxyresorufin O-deethylase activity in a cumene hydroperoxide-supported system was approximately 2-fold higher than other CYP1A2?N-terminal variants.

  • Our results suggest that modification of three N-terminal amino acids in CYP1A2 alters the interaction between CYP1A2 and the reductase in reconstituted phospholipid vesicles and in the bicistronic membranes.

  相似文献   

19.
  1. The involvement of cytochrome P450 2B6 (CYP2B6) to the in vitro and in vivo metabolism of bupropion has been well studied. In these investigations we performed a detailed in vitro phenotyping study to characterize isoforms other than CYP2B6.

  2. A total of nine metabolites were identified (M1–M9) in the incubations with cDNA-expressed P450s (rhCYP) and human liver microsomes (HLM).

  3. Incubations in rhCYP identified CYP2B6 as the isoform responsible for the formation of hydroxybupropion (M3). CYP2C19 was involved in bupropion metabolism primarily through alternate hydroxylation pathways (M4–M6) with higher activity at lower substrate concentrations, near 1 µM.

  4. The results from HLM inhibition studies using CYP2B6 and CYP2C19 inhibitory antibodies indicated that CYP2B6 contributed to approximately 90% of M3 formation, and CYP2C19 contributed to approximately 70–90% of M4, M5, and M6 formation.

  5. Studies using single donor HLM with varying degrees of CYP2B6 and CYP2C19 activities showed a good relationship between M3 formation and CYP2B6 activity and M4/M5 formation and CYP2C19 activity.

  6. These results confirmed the principle role of CYP2B6 in hydroxybupropion formation, as a selective CYP2B6 probe. In addition, the new findings revealed that CYP2C19 also contributes to bupropion metabolism through alternate hydroxylation pathways.

  相似文献   

20.
  1. Cytochromes P450 (P450) involved in letrozole metabolism were investigated. Among 13 recombinant P450 forms examined, only P450 2A6 and 3A4 showed activities in transforming letrozole to its carbinol metabolite with small Km and high Vmax values yielding apparent Vmax/Km values of 0.48 and 0.24 nl min?1 nmol?1 P450, respectively.

  2. The metabolic activities of individual human liver microsomes showed a significant correlation with coumarin 7-hydroxylase activities (P450 2A6 marker) at a letrozole concentration of 0.5 μM, while a good correlation was also seen with testosterone 6β-hydroxylase activities (P450 3A4 marker) at 5 μM substrate concentration with different inhibition by 8-methoxypsolaren.

  3. Significantly low carbinol-forming activities were seen in human liver microsomes from individuals possessing CYP2A6*4/*4 (whole CYP2A6 gene deletion) at a letrozole concentration of 0.5 μM. A Vmax/Km value measured for CYP2A6.7 (amino acid substitution type) in human liver microsomes, in the presence of anti-P450 3A4 antibodies, was approximately seven-fold smaller than that for CYP2A6.1 (wild-type).

  4. These results demonstrate that P450 2A6 and 3A4 catalyse the conversion of letrozole to its carbinol metabolite in vitro at low and high concentrations of letrozole. Polymorphic variation of CYP2A6 is considered to be relevant to inter-subject variation in therapeutic exposure of letrozole.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号