首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
  1. To analyze the polymorphic activities of CYP2C8 and evaluate their impact on drug inhibitory potential, three CYP2C8 allelic variants (CYP2C8.2, CYP2C8.3, and CYP2C8.4), two non-synonymous single nucleotide polymorphic variants (R139K and K399R, carried by CYP2C8.3), and wild-type CYP2C8 (CYP2C8.1) were heterologously expressed in yeast, and their enzymatic activities were characterized. CYP2C8 inhibition-based in vitro and in vivo drug–drug interactions (DDIs) in wild-type and variant CYP2C8s were then predicted.

  2. Functional characterization of five CYP2C8 variants revealed similar enzymatic activity in R139K and low activity in CYP2C8.2, CYP2C8.3, CYP2C8.4, and K399R compared with CYP2C8.1. The systematic analysis of these CYP2C8 variants can provide more homogeneous data for predicting CYP2C8 phenotypes and could be applied to personalized drug therapy.

  3. Prediction of DDIs indicated that CYP2C8.4, R139K, and K399R dramatically alter the IC50 values of nifedipine, troglitazone, and raloxifene, and R139K qualitatively and quantitatively reduces the risk of in vivo paclitaxel–raloxifene and paclitaxel–troglitazone interactions. The results provide the first evidence that CYP2C8 inhibition-based DDIs may be influenced by CYP2C8 genetic polymorphisms. These inhibition data can be used by pharmacologists in the design of in vivo studies to further assess and address the potential role of CYP2C8 genotype-dependent inhibition in clinical DDIs.

  相似文献   

2.
  1. Toremifene is an effective agent for the treatment of breast cancer in postmenopausal women and is being evaluated for its ability to prevent bone fractures in men with prostate cancer taking androgen deprivation therapy.

  2. Due to the potential for drug–drug interactions, the ability of toremifene and its primary circulating metabolite N-desmethyltoremifene (NDMT) to inhibit nine human cytochrome P450 (CYP) enzymes was determined using human liver microsomes. Induction of CYP1A2 and 3A4 by toremifene was also investigated in human hepatocytes.

  3. Toremifene did not significantly inhibit CYP1A2 or 2D6. However, toremifene is a competitive inhibitor of CYP3A4, non-competitive inhibitor of CYP2A6, 2C8, 2C9, 2C19 and 2E1 and mixed-type inhibitor of CYP2B6. CYP inhibition by NDMT was similar in magnitude to toremifene. Toremifene did not induce CYP1A2 but increased CYP3A4 monooxygenase activity and gene expression in drug-exposed human primary hepatocytes.

  4. Although clinical doses of toremifene produce steady state exposures to toremifene and NDMT that may be sufficient to cause pharmacokinetic drug–drug interactions with other drugs metabolised by CYP2B6, CYP2C8, CYP3A4, CYP2C9 and CYP2C19, these data indicate that toremifene is unlikely to play a role in clinical drug–drug interactions with substrate drugs of CYP1A2 and CYP2D6.

  相似文献   

3.
  1. The potential for mirabegron, a β3-adrenoceptor agonist for the treatment of overactive bladder, to cause drug–drug interactions via inhibition or induction of cytochrome P450 (CYP) enzymes was investigated in vitro.

  2. Mirabegron was shown to be a time-dependent inhibitor of CYP2D6 in the presence of NADPH as the IC50 value in human liver microsomes decreased from 13 to 4.3 μM after 30-min pre-incubation. Further evaluation indicated that mirabegron may act partly as an irreversible or quasi-irreversible metabolism-dependent inhibitor of CYP2D6. Therefore, the potential of mirabegron to inhibit the metabolism of CYP2D6 substrates in vivo cannot be excluded. Mirabegron was predicted not to cause clinically significant metabolic drug–drug interactions via inhibition of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2E1, or CYP3A4/5 because the IC50 values for these enzymes both with and without pre-incubation were >100 μM (370 times maximum human plasma concentration [Cmax]).

  3. Whereas positive controls (100 µM omeprazole and 10 µM rifampin) caused the anticipated CYP induction, the highest concentration of mirabegron (10 µM; 37 times plasma Cmax) had minimal effect on CYP1A2 and CYP3A4/5 activity, and CYP1A2 and CYP3A4 mRNA levels in freshly isolated human hepatocytes, suggesting that mirabegron is not an inducer of these enzymes.

  相似文献   

4.
  1. Mechanism-based inhibition of CYP2C19 in human liver microsomes by the thienopyridine antiplatelet agents clopidogrel, prasugrel and their thiolactone metabolites was investigated by determining the time- and concentration-dependent inhibition of the activity of S-mephenytoin 4′-hydroxylase as typical CYP2C19 activity and compared with ticlopidine and its metabolite.

  2. Clopidogrel was shown to be a mechanism-based inhibitor of CYP2C19 with the inactivation kinetic parameters, kinact and KI, equal to 0.0557?min?1 and 14.3?μM, respectively, as well as ticlopidine (0.0739?min?1 and 3.32?μM, respectively). The thiolactone metabolite of ticlopidine and clopidogrel inhibited CYP2C19 only in a concentration-dependent manner. In contrast, neither prasugrel nor its thiolactone metabolite inhibited CYP2C19 at concentrations up to 100?μM.

  3. The oxidation of the thiophene moiety of clopidogrel to form their respective thiolactones was found to be the critical reaction that produces the chemically reactive metabolites which cause the mechanism-based inhibition of CYP2C19.

  4. Estimation of in vivo drug–drug interaction using in vitro parameters predicted clinically observed data. For clopidogrel, there was no increase in the area under the curve (AUC) at its clinical dose level as predicted by the in vitro parameters, and for ticlopidine the prediction agreed with the clinically observed AUC increase.

  5. In conclusion, clopidogrel is potent mechanism-based inhibitors of CYP2C19 as well as ticlopidine, whereas prasugrel did not inactivate CYP2C19. Administration of prasugrel would not cause a clinically relevant interaction with CYP2C19.

  相似文献   

5.
  1. Widespread exposure to capsaicin occurs through food and topical medicines. To investigate potential food-drug or drug–drug interactions, capsaicin was evaluated in vitro against seven human drug-metabolizing cytochrome P450 (CYP) enzymes.

  2. At concentrations occurring after ingestion of chili peppers or topical administration of a high-concentration patch, capsaicin did not cause direct inhibition of any CYP enzyme. Direct inhibition was only observed at much higher concentrations; the lowest IC50 value was 2.0 μM. For CYP2E1, the IC50 value was too high to calculate. With pre-incubation, inhibition decreased for CYP1A2, 2C9, 2C19 and 3A4/5, whereas inhibition of CYP2B6 increased and moderately increased for CYP2D6.

  3. Induction of CYP activity was evaluated in microsomes from hepatocyte primary cultures. Capsaicin did not induce CYP1A2, 2B6, 2C9, 2C19, 2E1 or 3A4/5. 10 μM capsaicin caused a statistically significant increase in CYP1A2 activity (8.6% of the positive control).

  4. Inhibition of drug metabolism by capsaicin should be minimal, as the ratio of [I]/Ki for direct inhibition is?<?0.1. Although pre-incubation did enhance the potency for CYP2B6 inhibition to 5.1 μM, given that exposure to capsaicin from either food or a topical medicine is very low (≤58?nM) and transient, effects on CYPs appear unlikely.

  相似文献   

6.
Abstract

  1. ZYTP1 is a novel Poly (ADP-ribose) polymerase protein inhibitor being developed for cancer indications.

  2. The focus of the work was to determine if ZYTP1 had a perpetrator role in the in vitro inhibition of cytochrome P450 (CYP) enzymes to aid dosing decisions during the clinical development of ZYTP1.

  3. ZYTP1 IC50 for CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4/5 was determined using human liver microsomes and LC-MS/MS detection. CYP3A4/5 IC50 of depropylated metabolite of ZYTP1 was also determined. Time dependent inhibition of CYP3A4/5 by ZYTP1 was also assessed using substrates, testosterone and midazolam.

  4. The mean IC50 values of ZYTP1 were >100 µM for CYP1A2, 2B6 and 2D6, while 56.1, 24.5, 39.5 and 23.3–58.7 µM for CYP2C8, 2C9, 2C19 and 3A4/5, respectively. The CYP3A4/5 IC50 of depropylated metabolite was 11.95–24.51 µM. Time dependent CYP3A4/5 inhibition was noted for testosterone and midazolam with IC50 shift of 10.9- and 39.9-fold, respectively. With midazolam, the kinact and KI values of ZYTP1 were 0.075?min?1 and 4.47 µM for the CYP3A4/5 time dependent inhibition, respectively.

  5. Because of potent inhibition of CYP3A4/5, drugs that undergo metabolism via CYP3A4/5 pathway should be avoided during ZYTP1 therapy.

  相似文献   

7.
  1. AZD2624 was pharmacologically characterized as a NK3 receptor antagonist intended for treatment of schizophrenia. The metabolic drug–drug interaction potential of AZD2624 was evaluated in in vitro studies.

  2. CYP3A4 and CYP3A5 appeared to be the primary enzymes mediating the formation of pharmacologically active ketone metabolite (M1), whereas CYP3A4, CYP3A5, and CYP2C9 appeared to be the enzymes responsible for the formation of the hydroxylated metabolite (M2). The apparent Km values were 1.5 and 6.3 µM for the formation of M1 and M2 in human liver microsomes, respectively.

  3. AZD2624 exhibited an inhibitory effect on microsomal CYP3A4/5 activities with apparent IC50 values of 7.1 and 19.8 µM for midazolam and testosterone assays, respectively. No time-dependent inactivation of CYP3A4/5 activity (midazolam 1′-hydroxylation) by AZD2624 was observed. AZD2624 demonstrated weak to no inhibition of CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, and CYP2D6.

  4. AZD2624 was not an inducer of CYP1A2 or CYP2B6. Although AZD2624-induced CYP3A4 activity in hepatocytes, the potential of AZD2624 to cause inductive drug interactions of this enzyme was low at relevant exposure concentration.

  5. Together with targeted low efficacious concentration, the results of this study demonstrated AZD2624 has a relatively low metabolic drug–drug interaction potential towards co-administered drugs. However, metabolism of AZD2624 might be inhibited when co-administrated with potent CYP3A4/5 inhibitors.

  相似文献   

8.
  1. Liu Wei Di Huang Wan (LDW), a well-known traditional Chinese medicine, is widely used for the treatment of various diseases in China. This study was designed to investigate the potential herb–drug interactions of LDW in healthy volunteers and attempted to ascertain whether the interaction might be affected by genotypes.

  2. We assessed the effect of LDW on the activities of CYP2C19, CYP2D6 and CYP3A4 in 12 Chinese healthy subjects in a single-center, controlled, non-blinded, two-way crossover clinical trial. The subject pool consisted of six extensive metabolizers with CYP2C19*1/*1 and six poor metabolizers with CYP2C19*2/*2. Placebo or 4.8?g LDW (12 pills, 0.2?g/pill, twice daily) was given to each participant for 14 continuous days with a wash-out period of 2 weeks after an oral administration of 30?mg omeprazole, 30?mg dextromethorphan hydrobromide and 7.5?mg midazolam. The activities of CYP2C19, CYP2D6 and CYP3A4 were ascertained by their respective plasma or urinary metabolic ratios on day 14 post-treatment.

  3. There is no difference in the activities of the three tested enzymes before or after a 14-day administration of LDW. LDW had no effect on the pharmacokinetic parameters of the substrates and their metabolites.

  4. A 14-day administration of LDW did not affect the activities of CYP2C19, CYP2D6 and CYP3A4. LDW is unlikely to cause pharmacokinetic interaction when it is combined with other medications predominantly metabolized by these enzymes.

  相似文献   

9.
  1. The involvement of cytochrome P450 2B6 (CYP2B6) to the in vitro and in vivo metabolism of bupropion has been well studied. In these investigations we performed a detailed in vitro phenotyping study to characterize isoforms other than CYP2B6.

  2. A total of nine metabolites were identified (M1–M9) in the incubations with cDNA-expressed P450s (rhCYP) and human liver microsomes (HLM).

  3. Incubations in rhCYP identified CYP2B6 as the isoform responsible for the formation of hydroxybupropion (M3). CYP2C19 was involved in bupropion metabolism primarily through alternate hydroxylation pathways (M4–M6) with higher activity at lower substrate concentrations, near 1 µM.

  4. The results from HLM inhibition studies using CYP2B6 and CYP2C19 inhibitory antibodies indicated that CYP2B6 contributed to approximately 90% of M3 formation, and CYP2C19 contributed to approximately 70–90% of M4, M5, and M6 formation.

  5. Studies using single donor HLM with varying degrees of CYP2B6 and CYP2C19 activities showed a good relationship between M3 formation and CYP2B6 activity and M4/M5 formation and CYP2C19 activity.

  6. These results confirmed the principle role of CYP2B6 in hydroxybupropion formation, as a selective CYP2B6 probe. In addition, the new findings revealed that CYP2C19 also contributes to bupropion metabolism through alternate hydroxylation pathways.

  相似文献   

10.
  1. The aim of the study was to determine the pharmacokinetics of lansoprazole and its main metabolites (5′-hydroxy lansoprazole and lansoprazole sulphone) after administration of enteric-coated tablet in healthy Chinese subjects classified by CYP2C19 genotypes, and evaluate the effects of CYP2C19 genotypes on the pharmacokinetics of the three compounds.

  2. A single oral dose of 30?mg lansoprazole was administrated to 24 healthy Chinese male volunteers in different CYP2C19 genotype groups. Blood samples were collected from pre-dose up to 14-h post-dose. Plasma concentration of lansoprazole and its main metabolites were quantified by liquid chromatography-tandem mass spectrometry.

  3. CYP2C19 polymorphism had significant effects on the pharmacokinetics of lansoprazole and its main metabolites. The differences in the pharmacokinetics between CYP2C19 extensive metabolizers (Ems) (homo-EMs and hete-EMs) and PMs were more significant for lansoprazole sulphone than for 5′-hydroxy lansoprazole.

  4. The results indicate that the monitoring of lansoprazole and its main metabolites in plasma at the time-points in the elimination phase for lansoprazole could reflect the activity of CYP2C19. Simultaneously monitored with lansoprazole sulphone, lansoprazole might be a useful probe drug for CYP2C19.

  相似文献   

11.
  1. Human CYP1A2 is an important enzyme for drug metabolism and procarcinogen activation. This study aimed to explore the binding mode of ligands with CYP1A2 and to screen potential inhibitors from a library of herbal compounds using computational and in vitro approaches.

  2. The heme prosthetic group and six residues (Thr124, Phe125, Phe226, Phe260, Gly316, and Ala317) in the active site of CYP1A2 were identified as important residues for ligand binding using the LIGPLOT program. Ala317 in helix I immediately above heme was highly conserved in most human CYPs with known crystal structures.

  3. In molecular docking, 19 of the 56 herbal compounds examined were identified as potential inhibitors of CYP1A2. Up to 21 of the 56 herbal compounds were hit by the pharmacophore model of CYP1A2 inhibitors developed and validated in this study.

  4. In the in vitro inhibition study, 8 herbal compounds were identified as moderate to potent inhibitors of CYP1A2. Five of the 8 herbal compounds predicted to be potential inhibitors were confirmed as CYP1A2 inhibitors in the in vitro study.

  5. A combination of computational and in vitro approaches, represent a useful tool to identify potential inhibitors for CYP1A2 from herbal compounds.

  相似文献   

12.
  1. Phyllanthus amarus, a commonly used medicinal herb, was investigated for possible herb–drug interactions. The effect on CYP3A-mediated drug metabolism in rats after single dose administration of P. amarus extract was investigated using midazolam (MDZ) as a probe substrate. The effect of multiple dose administration of P. amarus extract on activity and expression of various CYP isoforms were studied.

  2. Oral administration of P. amarus extract (800?mg/kg) 1?h before oral MDZ increased the Cmax and AUC0–-∞ of MDZ by 3.9- and 9.6-fold and decreased the clearance by 12%, but did not alter the pharmacokinetics of intravenous MDZ.

  3. Daily administration of P. amarus extract (200 or 800?mg/kg/day) for 15 days in rats increased the activity and expression of CYP3A and CYP2B1/2. In contrast, the activities and expressions of CYP1A, CYP2C and CYP2E1 were not significantly changed.

  4. The dual effects of P. amarus extract on CYP enzymes were demonstrated. Single dose administration of the extract increased oral bioavailability of MDZ through inhibition of intestinal CYP3A whereas repeated administration of the extract slightly induced hepatic CYP3A and CYP2B1/2 in rats, which suggested that herb–drug interactions by P. amarus may potentially occur via CYP3A and 2B.

  相似文献   

13.
  1. Self-administration of complementary products concurrently with conventional medication is increasingly common. The potential for cytochrome P450 (CYP) inhibition requires investigation. The N-in-one assay with ten probe substrates for nine CYPs was used with human liver microsomes to investigate ten products. CYP inhibition was measured in a single liquid chromatography-tandem mass spectrometry (LC/MS-MS) analysis. Estimated IC50-values were determined for the extracts that produced significant inhibition (less than 100 μg ml?1).

  2. Inhibition of CYP2C19 by dong quai (IC50?=?13.7–14.3 μg ml?1 for the methanolic extract) and CYP2D6 by goldenseal (IC50?=?6.7 and 6.3 μg ml?1 for the aqueous and methanolic extracts, respectively), are of particular concern as the potential for adverse interactions is high. The inhibition of CYP2C8 by horsetail (IC50?=?93 μg ml?1 for the aqueous extract) requires further investigation, as the potential for concurrent use with products that require CYP2C8 for metabolism is significant. CYP3A4 inhibition varied depending on the probe reaction being monitored.

  3. The earlier reported findings of inhibition by black cohosh, goldenseal and gotu kola were confirmed. The present work has shown that the N-in-one cocktail is a rapid and reliable method that can be used as an initial screen to help prioritize products that require more detailed investigations and it can also be applied to monitor product variability.

  相似文献   

14.
  1. We established a mechanism-based inhibition cocktail-substrate assay system using human liver microsomes and drug–probe substrates that enabled simultaneous estimation of the inactivation of main cytochrome P450 (CYP) enzymes, CYP2C9, CYP2D6, and CYP3A, in drug metabolism.

  2. The inactivation kinetic parameters of typical mechanism-based inhibitors, tienilic acid, paroxetine, and erythromycin, for each enzyme in the cocktail-substrate assay were almost in agreement with the values obtained in the single-substrate assay.

  3. Using this system, we confirmed that multiple CYP inactivation caused by mechanism-based inhibitors such as isoniazid and amiodarone could be detected simultaneously.

  4. Mechanism-based inhibition potency can be estimated by the determination of the observed inactivation rate constants (kobs) at a single concentration of test compounds because the kobs of eleven CYP3A inactivators at 10?μM in the assay system nearly corresponded to kinact/KI values, an indicator of a compound’s propensity to alter the activity of a CYP in vivo (R2?=?0.97).

  5. Therefore, this cocktail-substrate assay is considered to be a powerful tool for evaluating mechanism-based inhibition at an early stage of drug development.

  相似文献   

15.
  1. Characteristics of twelve cytochromes P450 (CYPs) from cynomolgus monkeys were compared with those of human CYPs that play an important role in drug metabolism.

  2. Eleven members of CYP1A, CYP2A, CYP2C, CYP2D, CYP2E, and CYP3A subfamilies from cynomolgus monkeys exhibited a high degree of homologies (more than 90%) in cDNA and amino acid sequences with corresponding human CYPs, and catalysed typical reactions of corresponding human CYPs.

  3. One member of the cynomolgus monkey CYP2C subfamily, CYP2C76, exhibited a lower homology (around 70%) in amino acid sequences with other cynomolgus monkey and human CYP2C subfamilies. CYP2C76 catalysed typical CYP2C substrates with low activities, and has not been found in humans.

  4. CYPs identified in cynomolgus monkeys were similar to CYP1A1, CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5 in humans.

  5. These results indicate that cynomolgus monkeys express CYPs similar to human CYPs that are important in drug metabolism.

  相似文献   

16.
  1. To develop a method to predict the risk of drug–drug interactions involving the inhibition of intestinal CYP3A4 or P-glycoprotein, data from clinical drug–drug interaction studies of CYP3A4 and/or P-glycoprotein substrates were analysed. The ratio of inhibitor dose (Dosei) to inhibition constant (Ki), termed the drug-interaction number, was used to index intestinal drug–drug interaction.

  2. From the analysis, it was found that (1) CYP3A4 inhibitors with a drug-interaction number below 2.8?L have a low risk of interacting with substrates which exhibit intestinal first-pass metabolism and those with a drug-interaction number above 9.4?L have a high risk; (2) P-glycoprotein inhibitors with a drug-interaction number below 10.8?L have a low risk of interacting with P-glycoprotein substrates and those with a drug-interaction number above 27.9?L have a high risk; and (3) the drug-interaction number indexes, 2.8?L and 9.4?L for CYP3A4 and 10.8?L and 27.9?L for P-glycoprotein were validated by data from dual CYP3A4/P-glycoprotein substrates.

  3. In conclusion, the drug-interaction number is useful for classifying the risk of drug–drug interactions involving the inhibition of intestinal CYP3A4 and P-glycoprotein. This drug-interaction number-based approach is similar to the method that the US Food and Drug Administration (USFDA) recently proposed in the draft guidance for predicting P-glycoprotein-mediated drug–drug interaction.

  相似文献   

17.
  1. A novel cytochrome P450 (CYP), CYP2A26, was identified and characterized in cynomolgus monkey, one of the animal species used in preclinical studies.

  2. Deduced amino acid sequences of CYP2A26 cDNA showed high sequence identities (91–95%) with cynomolgus monkey CYP2A23 and CYP2A24, and human CYP2A6 and CYP2A13.

  3. Phylogenetic analysis showed that macaque CYP2As (CYP2A26, CYP2A23, and CYP2A24) were most closely clustered with human CYP2As, unlike CYP2As of dog, rat, and mouse (other species also used in drug metabolism).

  4. Quantitative polymerase chain reaction analysis showed that CYP2A26 mRNA, along with CYP2A23 and CYP2A24 mRNAs, was expressed predominantly in the liver, where CYP2A proteins were also detected by immunoblotting.

  5. Drug-metabolizing assays using the CYP2A26 protein heterologously expressed in Escherichia coli indicated that CYP2A26 catalyzed coumarin 7-hydroxylation with its apparent Km lower than that of CYP2A24, but similar to those of CYP2A6 and CYP2A23.

  6. These results suggest an evolutionary closeness and functional similarity of cynomolgus monkey CYP2A26 (together with CYP2A23 and CYP2A24) to human CYP2A6, and its functional role as a drug-metabolizing enzyme in the liver.

  相似文献   

18.
To comprehensively understand the effects of CYP2C19 genetic polymorphisms on inhibition-based drug-drug interactions (DDIs), 18 human CYP2C19 non-synonymous single-nucleotide polymorphic variants and the wild-type isoform (CYP2C19.1A) were expressed in yeast cells. Using a fluorescence-based high-throughput method, the kinetic constants of these variants, as well as the inhibition constants for 10 drugs, were determined. CYP2C19.5B and CYP2C19.6 showed no activity towards CEC (3-cyano-7-ethoxycoumarin) O-deethylation. CYP2C19.8, CYP2C19.9, CYP2C19.10, CYP2C19.16, CYP2C19.19, E122A and A161P* (an allele containing both A161P and I331V) exhibited significantly reduced catalytic activities compared with CYP2C19.1A. The inhibition assay showed that the CYP2C19 genotype significantly affected the in vitro drug inhibition potential. Although the effect on drug inhibition potential is genotype- and inhibitor-dependent, there was an obvious trend: drugs tended to exhibit higher IC?? values (i.e. decreased inhibition potential) towards variants with reduced activity compared with variants with normal activity. This indicated that patients with reduced-function alleles may be less susceptible to CYP2C19-related DDIs. In this study, we provided the first in vitro evidence of CYP2C19 genotype-dependent effects on drug inhibition potential. This work greatly extends our understanding of the functional consequences of CYP2C19 genetic polymorphisms, and thus should prove valuable for CYP2C19 genotype-based therapy.  相似文献   

19.
  1. Genetic variations in cytochrome P450 2C9 are known to contribute to interindividual and interethnic variability in response to clinical drugs, but little is known about the genetic variation of CYP2C9 in the Uyghur population.

  2. We directly sequenced the whole CYP2C9 gene in 96 unrelated, healthy Uyghur from Xinjiang Uygur Autonomous Region of China and screened for genetic variants in the promoter, exons, introns and 3′-UTR.

  3. Thirty five previously reported alleles and six genotypes were detected in this study. The allele frequencies of CYP2C9*1, *2, *11, *12, *29 and *33 were 89.58, 7.81, 0.52, 0.52, 1.04 and 0.52%, respectively. We detected one non-synonymous novel variant at position 329 from Arg to Cys and this mutation is predicted to be intolerant by SIFT.

  4. Our results provide basic information about CYP2C9 alleles in Uyghur, which may help to optimize pharmacotherapy effectiveness by providing personalized medicine to this ethnic group.

  相似文献   

20.
  1. The aim was to identify the individual human cytochrome P450 (CYP) enzymes responsible for the in vitro N-demethylation of hydromorphone and to determine the potential effect of the inhibition of this metabolic pathway on the formation of other hydromorphone metabolites.

  2. Hydromorphone was metabolized to norhydromorphone (apparent Km = 206?? 822?μM, Vmax = 104 ? 834?pmol?min?1?mg?1 protein) and dihydroisomorphine (apparent Km = 62 ? 557?μM, Vmax = 17 ? 122?pmol?min?1?mg?1 protein) by human liver microsomes.

  3. In pooled human liver microsomes, troleandomycin, ketoconazole and sulfaphenazole reduced norhydromorphone formation by an average of 45, 50 and 25%, respectively, whereas furafylline, quinidine and omeprazole had no effect. In an individual liver microsome sample with a high CYP3A protein content, troleandomycin and ketoconazole inhibited norhydromorphone formation by 80%.

  4. The reduction in norhydromorphone formation by troleandomycin and ketoconazole was accompanied by a stimulation in dihydroisomorphine production.

  5. Recombinant CYP3A4, CYP3A5, CYP2C9 and CYP2D6, but not CYP1A2, catalysed norhydromorphone formation, whereas none of these enzymes was active in dihydroisomorphine formation.

  6. In summary, CYP3A and, to a lesser extent, CYP2C9 catalysed hydromorphone N-demethylation in human liver microsomes. The inhibition of norhydromorphone formation by troleandomycin and ketoconazole resulted in a stimulation of microsomal dihydroisomorphine formation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号