首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism and disposition of KR31378 (a benzopyran derivative and a novel neuroprotective agent) were investigated following single oral or intravenous administration of [14C]-KR31378 to rats. [14C]-KR31378 was rapidly absorbed after oral dosing with an oral bioavailability of greater than 71%. The maximum plasma concentration and area under the curve of total radioactivity in rat plasma increased proportionally to the administered dose. KR31378 was distributed over all organs and tissues except for brain, eyeball and testis, and declined by first order kinetics up to 24?h after dosing. Excretion of the radioactivity was 29.5% of the dose in the urine and 58.5% in the feces within 2 days after oral administration. Biliary excretion of the radioactivity in bile duct-cannulated rats was about 66.0% for the first 24?h. KR31378 was extensively metabolized by ring hydroxylation, O-demethylation, oxidation and reduction with subsequent N-acetylation and O-glucuronide conjugation. N-acetylated conjugates (M2, M10, M11, M12, M14, and M15) were identified as the predominant metabolites in rats.  相似文献   

2.
1.?The disposition of nefopam, a serotonin–norepinephrine reuptake inhibitor, was characterized in eight healthy male volunteers following a single oral dose of 75?mg [14C]-nefopam (100 μCi). Blood, urine, and feces were sampled for 168 h post-dose.

2.?Mean (±?SD) maximum blood and plasma radioactivity concentrations were 359?±?34.2 and 638?±?64.7 ngEq free base/g, respectively, at 2 h post-dose. Recovery of radioactive dose was complete (mean 92.6%); a mean of 79.3% and 13.4% of the dose was recovered in urine and feces, respectively.

3.?Three main radioactive peaks were observed in plasma (metabolites M2 A-D, M61, and M63). Intact [14C]-nefopam was less than 5% of the total radioactivity in plasma. In urine, the major metabolites were M63, M2 A-D, and M51 which accounted for 22.9%, 9.8%, and 8.1% of the dose, respectively. An unknown entity, M55, was the major metabolite in feces (4.6% of dose). Excretion of unchanged [14C]-nefopam was minimal.  相似文献   

3.
Abstract

Experiments were conducted in four groups of rats to determine the absorption, distribution, metabolism, and excretion (ADME) patterns following oral administration of [formyl-14C] 2,3:4,5-bis(2-butylene) tetrahydro-2 furaldehyde (MGK R11).

Ten rats (five males and five females) were used in each of the four experiments. Fasted rats were administered [for-myl-14C] MGK R11 at a single oral dosage of 65 mg/kg, at a single oral dosage of 1000 mg/kg, and at a daily oral dosage of 65 mg/kg of nonradiolabeled compound for 14 days followed by a single dose of 14C-labeled compound at 65 mg/kg. Rat blood kinetics were determined in the fourth group following a single oral dose of 65 mg/ kg. Each animal was administered approximately 12–14 μCi of radioactivity.

Urine and feces were collected from all groups at predetermined time intervals. Seven days after dose administration, the rats were euthanized and selected tissues and organs were harvested. Samples of urine, feces, and tissues were subsequently analyzed for 14C content.

In the blood kinetics study, radioactivity peaked at approximately 30 min in both the males and females, indicating very rapid absorption. The decline of radioactivity from blood followed a biphasic elimination pattern. The first half-life was 1.36 h for males and 1.18 h for females. In the second phase, the half-life was 21 h for males and 26 h for females.

Female rats excreted 67.21-86.85% of the radioactivity in urine and 13.99–28.08% in feces, whereas male rats excreted 50.19–64.37% of the administered radioactivity in urine and 31.43–40.94% in feces. Tissue residues of 14C ranged between 0.47% and 1.09% of the administered dose. The total mean recovered radioactivity of the administered dose in the four definitive studies ranged between 92% and 101%. No parent compound was detected in the urine.

Three major and one minor metabolite was isolated by high-performance liquid chromatography (HPLC) and identified by gas chromatography/mass spectrometry (GC/MS). One major metabolite was formed by oxidation of the aldehyde moiety to the carboxylic acid. A second metabolite was the glucuronic acid conjugate of the carboxylic acid and the third was formed by reduction of the aldehyde moiety of MGK R11 to an alcohol followed by glucuronic acid conjugation. The minor metabolite was the unconjugated alcohol derivative of MGK R11.

The gender of the animals affected the rate, route of excretion, and metabolic profile. The urinary excretion rate was faster in females than in males and the amount excreted was also greater in female rats.  相似文献   

4.
1.?The metabolism, excretion and pharmacokinetics of glasdegib (PF-04449913) were investigated following administration of a single oral dose of 100?mg/100 μCi [14C]glasdegib to six healthy male volunteers (NCT02110342).

2.?The peak concentrations of glasdegib (890.3?ng/mL) and total radioactivity (1043 ngEq/mL) occurred in plasma at 0.75?hours post-dose. The AUCinf were 8469?ng.h/mL and 12,230 ngEq.h/mL respectively, for glasdegib and total radioactivity.

3.?Mean recovery of [14C]glasdegib-related radioactivity in excreta was 91% of the administered dose (49% in urine and 42% in feces). Glasdegib was the major circulating component accounting for 69% of the total radioactivity in plasma. An N-desmethyl metabolite and an N-glucuronide metabolite of glasdegib represented 8% and 7% of the circulating radioactivity, respectively. Glasdegib was the major excreted component in urine and feces, accounting for 17% and 20% of administered dose in the 0–120?hour pooled samples, respectively. Other metabolites with abundance <3% of the total circulating radioactivity or dose in plasma or excreta were hydroxyl metabolites, a desaturation metabolite, N-oxidation and O-glucuronide metabolites.

4.?Elimination of [14C]glasdegib-derived radioactivity was essentially complete, with similar contribution from urinary and fecal routes. Oxidative metabolism appears to play a significant role in the biotransformation of glasdegib.  相似文献   

5.
1.?The emerging technique of employing intravenous microdose administration of an isotope tracer concomitantly with an [14C]-labeled oral dose was used to characterize the disposition and absolute bioavailability of a novel metabotropic glutamate 5 (mGlu5) receptor antagonist under clinical development for major depressive disorder (MDD).

2. Six healthy volunteers received a single 1?mg [12C/14C]-basimglurant (2.22 MBq) oral dose and a concomitant i.v. tracer dose of 100?μg of [13C6]-basimglurant. Concentrations of [12C]-basimglurant and the stable isotope [13C6]-basimglurant were determined in plasma by a specific LC/MS-MS method. Total [14C] radioactivity was determined in whole blood, plasma, urine and feces by liquid scintillation counting. Metabolic profiling was conducted in plasma, urine, blood cell pellet and feces samples.

3. The mean absolute bioavailability after oral administration (F) of basimglurant was ~67% (range 45.7–77.7%). The major route of [14C]-radioactivity excretion, primarily in form of metabolites, was in urine (mean recovery 73.4%), with the remainder excreted in feces (mean recovery 26.5%). The median tmax for [12C]-basimglurant after the oral administration was 0.71?h (range 0.58–1.00) and the mean terminal half-life was 77.2?±?38.5?h. Terminal half-life for the [14C]-basimglurant was 178?h indicating presence of metabolites with a longer terminal half-life. Five metabolites were identified with M1-Glucuronide as major and the others in trace amounts. There was minimal binding of drug to RBCs. IV pharmacokinetics was characterized with a mean?±?SD CL of 11.8?±?7.4?mL/h and a Vss of 677?±?229?L.

4. The double-tracer technique used in this study allowed to simultaneously characterize the absolute bioavailability and disposition characteristics of the new oral molecular entity in a single study.  相似文献   

6.
Abstract

1.?The metabolism, pharmacokinetics, excretion and tissue distribution of a hepatitis C NS3/NS4 protease inhibitor, faldaprevir, were studied in rats following a single 2?mg/kg intravenous or 10?mg/kg oral administration of [14C]-faldaprevir.

2.?Following intravenous dosing, the terminal elimination t1/2 of plasma radioactivity was 1.75?h (males) and 1.74?h (females). Corresponding AUC0–∞, CL and Vss were 1920 and 1900?ngEq?·?h/mL, 18.3 and 17.7?mL/min/kg and 2.32 and 2.12?mL/kg for males and females, respectively.

3.?After oral dosing, t1/2 and AUC0–∞ for plasma radioactivity were 1.67 and 1.77?h and 11?300 and 17?900 ngEq?·?h/mL for males and females, respectively.

4.?In intact rats, ≥90.17% dose was recovered in feces and only ≤1.08% dose was recovered in urine for both iv and oral doses. In bile cannulated rats, 54.95, 34.32 and 0.27% dose was recovered in feces, bile and urine, respectively.

5.?Glucuronidation plays a major role in the metabolism of faldaprevir with minimal Phase I metabolism.

6.?Radioactivity was rapidly distributed into tissues after the oral dose with peak concentrations of radioactivity in most tissues at 6?h post-dose. The highest levels of radioactivity were observed in liver, lung, kidney, small intestine and adrenal gland.  相似文献   

7.
  1. Tris(4-chlorophenyl)methane (TCPME) and tris(4-chlorophenyl)methanol (TCPMOH) have been detected in various biota and human tissues.

  2. The current studies were undertaken to investigate the disposition and metabolism of TCPME and TCPMOH in rats and mice.

  3. [14C]TCPME was well absorbed (≥66%) in male rats and mice following a single oral administration of 1, 10, or 100?mg/kg. The excretion of [14C]TCPME-derived radioactivity in urine (≤2.5%) and feces (≤18%) was low. The administered dose was retained in tissues (≥?64%) with adipose containing the highest concentrations. The metabolism of TCPME was minimal. The disposition and metabolism of [14C]TCPME in females was similar to males.

  4. The time to reach maximum concentration was ≤7?h, the plasma elimination half-life was ≥31?h, and the bioavailability was ≥82% following a 10?mg/kg oral dose of [14C]TCPME in male rats and mice.

  5. The disposition of [14C]TCPMOH was similar to that of [14C]TCPME.

  6. Following an intravenous administration of [14C]TCPME or [14C]TCPMOH in male rats and mice, the pattern of disposition was similar to that of oral administration.

  7. In conclusion, both TCPME and TCPMOH are readily absorbed and highly bioavailable following a single oral administration pointing to importance of assessing the toxicity of these chemicals.

  相似文献   

8.
1.?Bis(2-ethylhexyl)-tetrabromophthalate (BEH-TEBP; CAS No. 26040-51-7; PubChem CID: 117291; MW 706.15?g/mol, elsewhere: TeBrDEPH, TBPH, or BEHTBP) is used as an additive brominated flame retardant in consumer products.

2.?Female Sprague Dawley rats eliminated 92–98% of [14C]-BEH-TEBP unchanged in feces after oral administration (0.1 or 10?μmol/kg). A minor amount of each dose (0.8–1%) was found in urine after 72?h. Disposition of orally administered BEH-TEBP in male B6C3F1/Tac mice was similar to female rats.

3.?Bioaccumulation of [14C]-radioactivity was observed in liver and adrenals following 10 daily oral administrations (0.1?μmol/kg/day). These tissues contained 5- and 10-fold higher concentrations of [14C]-radioactivity, respectively, versus a single dose.

4.?IV-administered [14C]-BEH-TEBP (0.1?μmol/kg) was slowly eliminated in feces, with?>15% retained in tissues after 72?h. Bile and fecal extracts from these rats contained the metabolite mono-ethylhexyl tetrabromophthalate (TBMEHP).

5.?BEH-TEBP was poorly absorbed, minimally metabolized and eliminated mostly by the fecal route after oral administration. Repeated exposure to BEH-TEBP led to accumulation in some tissues. The toxicological significance of this effect remains to be determined. This work was supported by the Intramural Research Program of the National Cancer Institute at the National Institutes of Health (Project ZIA BC 011476).  相似文献   

9.
1.?This phase-I study (NCT02240290) was designed to investigate the human absorption, disposition and mass balance of 14C-tozadenant, a novel A2a receptor antagonist in clinical development for Parkinson s disease.

2.?Six healthy male subjects received a single oral dose of tozadenant (240?mg containing 81.47?KBq of [14C]-tozadenant). Blood, urine and feces were collected over 14 days. Radioactivity was determined by liquid scintillation counting or accelerator mass spectrometry (AMS). Tozadenant and metabolites were characterized using HPLC-MS/MS and HPLC-AMS with fraction collection.

3.?At 4?h, the Cmax of tozadenant was 1.74?μg/mL and AUC(0–t) 35.0?h?μg/mL, t1/2 15?h, Vz/F 1.82?L/kg and CL/F 1.40?mL/min/kg. For total [14C] radioactivity, the Cmax was 2.29?μg?eq/mL at 5?h post-dose and AUC(0–t) 43.9?h?μg?eq/mL. Unchanged tozadenant amounted to 93% of the radiocarbon AUC(0–48h). At 312?h post-dose, cumulative urinary and fecal excretion of radiocarbon reached 30.5% and 55.1% of the dose, respectively. Unchanged tozadenant reached 11% in urine and 12% of the dose in feces. Tozadenant was excreted as metabolites, including di-and mono-hydroxylated metabolites, N/O dealkylated metabolites, hydrated metabolites.

4.?The only identified species circulating in plasma was unchanged tozadenant. Tozadenant was primarily excreted in urine and feces in the form of metabolites.  相似文献   

10.
Abstract

1.?The human mass balance of 14C-labelled ASP015K ([14C]ASP015K), an orally bioavailable Janus kinase (JAK) inhibitor, was characterized in six healthy male subjects after a single oral dose of [14C]ASP015K (100?mg, 3.7?MBq) in solution. [14C]ASP015K was rapidly absorbed with tmax of 1.6 and 1.8?h for ASP015K and total radioactivity in plasma, respectively. Mean recovery in urine and feces amounted to 36.8% and 56.6% of the administered dose, respectively. The main components of radioactivity in plasma and urine were ASP015K and M2 (5′-O-sulfo ASP015K). In feces, ASP015K and M4 (7-N-methyl ASP015K) were the main components.

2.?In vitro study of ASP015K metabolism showed that the major isozyme contributing to the formation of M2 was human sulfotransferase (SULT) 2A1 and of M4 was nicotinamide N-methyltransferase (NNMT).

3.?The in vitro intrinsic clearance (CLint_in?vitro) of M4 formation from ASP015K in human liver cytosol (HLC) was 11-fold higher than that of M2. The competitive inhibitory effect of nicotinamide on M4 formation in the human liver was considered the reason for high CLint_in vitro of M4 formation, while each metabolic pathway made a near equal contribution to the in vivo elimination of ASP015K. ASP015K was cleared by multiple mechanisms.  相似文献   

11.
1.?Sacubitril/valsartan (LCZ696) is an angiotensin receptor neprilysin inhibitor (ARNI) providing simultaneous inhibition of neprilysin (neutral endopeptidase 24.11; NEP) and blockade of the angiotensin II type-1 (AT1) receptor.

2.?Following oral administration, [14C]LCZ696 delivers systemic exposure to valsartan and AHU377 (sacubitril), which is rapidly metabolized to LBQ657 (M1), the biologically active neprilysin inhibitor. Peak sacubitril plasma concentrations were reached within 0.5–1?h. The mean terminal half-lives of sacubitril, LBQ657 and valsartan were ~1.3, ~12 and ~21?h, respectively.

3.?Renal excretion was the dominant route of elimination of radioactivity in human. Urine accounted for 51.7–67.8% and feces for 36.9 to 48.3 % of the total radioactivity. The majority of the drug was excreted as the active metabolite LBQ657 in urine and feces, total accounting for ~85.5% of the total dose.

4.?Based upon in vitro studies, the potential for LCZ696 to inhibit or induce cytochrome P450 (CYP) enzymes and cause CYP-mediated drug interactions clinically was found to be low.  相似文献   

12.
Abstract

1. Disposition of 1-(1,2,3,4,5,6,7,8-octahydro-2,3,8,8-tetramethyl-2-naphthalenyl)ethanone (β-OTNE), a fragrance ingredient in variety of consumer products, was investigated following a single oral (20?mg/kg) or a dermal (55 or 550?mg/kg) dose of [14C]β-OTNE to male Fisher rats.

2. Following oral administration, 28% and 39% of the dose was recovered in urine and feces, respectively, 48?h following administration. About 73% of a 20?mg/kg dose was excreted in bile within 48?h post-administration supporting significant oral absorption of [14C]β-OTNE.

3. Following dermal application to a covered site, absorption of [14C]β-OTNE 96?h following application was low (ca. 14%) and dose-independent. When the dose site was uncovered, the absorption increased to ca. 33% (55?mg/kg) and ca. 72% (550?mg/kg).

4. [14C]β-OTNE was distributed to tissues following both routes of exposure with the highest radioactive equivalents found in bladder, liver, kidney, adipose and pancreas.

5. Elimination of [14C]β-OTNE equivalents in blood and tissues was slow following both oral and dermal application suggesting potential for accumulation following multiple exposure.  相似文献   

13.
1.?The pharmacokinetics, metabolism and excretion of L-NIL-TA, an inducible nitric oxide synthase inhibitor, were investigated in dog.

2.?The dose of [14C]L-NIL-TA was rapidly absorbed and distributed after oral and intravenous administration (5?mg?kg?1), with Cmax of radioactivity of 6.45–7.07?μg equivalents?g?1 occurring at 0.33–0.39-h after dosing. After oral and intravenous administration, radioactivity levels in plasma then declined with a half-life of 63.1 and 80.6-h, respectively.

3.?Seven days after oral and intravenous administrations, 46.4 and 51.5% of the radioactive dose were recovered in urine, 4.59 and 2.75% were recovered in faeces, and 22.4 and 22.4% were recovered in expired air, respectively. The large percentages of radioactive dose recovered in urine and expired air indicate that [14C]L-NIL-TA was well absorbed in dogs and the radioactive dose was cleared mainly through renal elimination. The mean total recovery of radioactivity over 7 days was approximately 80%.

4.?Biotransformation of L-NIL-TA occurred primarily by hydrolysis of the 5-aminotetrazole group to form the active drug L-N6-(1-iminoethyl)lysine (NIL or M3), which was further oxidized to the 2-keto acid (M5), the 2-hydroxyl acid (M1), an unidentified metabolite (M2) and carbon dioxide. The major excreted products in urine were M1 and M2, representing 22.2 and 21.2% of the dose, respectively.  相似文献   

14.
  1. The disposition and metabolism of lemborexant, a novel dual orexin receptor antagonist currently under development as a therapeutic agent for insomnia disorder, were evaluated after a single oral administration of [14C]lemborexant in Sprague-Dawley rats (10?mg/kg) and cynomolgus monkeys (3?mg/kg).

  2. In both species, [14C]lemborexant was rapidly absorbed: radioactivity concentration in blood peaked at 0.83–1.8?h, and decreased with elimination half-life of 110?h. The radioactivity administered was excreted primarily into faeces, with relatively little excreted into urine.

  3. Lemborexant was not detected in bile, urine or faeces, indicating that lemborexant administered orally was completely absorbed from the gastrointestinal tract and that the main elimination pathway was metabolism in both species.

  4. In rats, lemborexant was found to be minor in plasma (≤5.2% of total radioactivity), and M9 (hydroxylated form) was the major circulating metabolite. In monkeys, the major circulating components were lemborexant, M4 (N-oxide metabolite), M13 (di-oxidised form), M14 (di-oxidised form) and M16 (glucuronide of mono-oxidised form).

  5. In both species, lemborexant was metabolised to various metabolites by multiple pathways, the primary of which was oxidation of the dimethylpyrimidine or fluorophenyl moiety.

  相似文献   

15.
Abstract

1. Loxoprofen (LX), is a prodrug of the pharmacologically active form, trans-alcohol metabolite (trans-OH form), which shows very potent analgesic effect. In this study, the pharmacokinetics and metabolism of [14C]LX-derived radioactivity after dermal application of [14C]LX gel (LX-G) to rats were evaluated.

2. The area under concentration-time curve (AUC0–∞) of radioactivity in the plasma after the dermal application was 13.6% of that of the oral administration (p?<?0.05).

3. After the dermal application, the radioactivity remained in the skin and skeletal muscle at the treated site for 168?h, whereas the AUC0–168?h of the radioactivity concentration in every tissue examined except the treated site was statistically lower than that after the oral administration (p?<?0.05).

4. The trans-OH form was observed at high levels in the treated skin site at 0.5?h. Metabolite profiles in plasma, non-treated skin site and urine after the dermal application were comparable with those after the oral administration.

5. Renal excretion was the main route of elimination after the dermal application.

6. In conclusion, compared to the oral administration, the dermal application of [14C]LX-G showed lower systemic and tissue exposure with higher exposure in the therapeutic target site. The radioactivity revealed similar metabolite profiles in both administration routes.  相似文献   

16.
1.?The disposition and metabolism of galunisertib (LY2157299 monohydrate, a TGF-βRI Kinase/ALK5 Inhibitor) was characterized following a single oral dose of 150?mg of [14C]-galunisertib (100?µCi) to six healthy human subjects.

2.?The galunisertib plasma half-life was 8.6?h, while the 14C half-life was 10.0?h. Galunisertib was abundant in circulation (40.3% of the 14C AUC024?h), with 7 additional metabolites detected in plasma. Two metabolites LSN3199597 (M5, mono-oxidation), and M4 (glucuronide of M3) were the most abundant circulating metabolites (10.7 and 9.0% of the 14C AUC024?h respectively). The pharmacological activity of LSN3199597 was tested and found to be significantly less potent than galunisertib.

3.?The dose was recovered in feces (64.5%) and in urine (36.8%). Galunisertib was cleared primarily by metabolism, based on low recovery of parent in excreta (13.0% of dose). Due to the slow in vitro metabolism of galunisertib in suspended hepatocytes, a long term hepatocyte system was used to model the human excretion profile.

4.?Expressed cytochromes P450 and hepatocytes indicated clearance was primarily CYP3A4-mediated. Mechanistic static modeling that incorporated small non-CYP-mediated metabolic clearance and renal clearance components predicted an AUC ratio of 4.7 for the effect of itraconazole, a strong CYP3A4 inhibitor, on galunisertib.  相似文献   

17.
Abstract

Experiments were conducted in four groups of rats to determine the absorption, distribution, metabolism, and excretion (ADME) patterns following oral administration of [hexyl-1-14C] N-octylbicycloheptene dicarboximide (MGK 264).

Ten rats (five males and five females) were used in each of the four experiments. Fasted rats were administered fhexyl-1-14C] MGK 264 at a single oral dose of 100 mg/kg, at a single oral dose of 1000 mg/kg, and at a daily oral dose of 100 mg/kg of nonradiolabeled compound for 14 days followed by a single dose of 14C-labeled compound at 100 mg/kg. Rat blood kinetics were determined in the fourth group following a single oral dose of 100 mg/kg. Each animal was administered 18-30 μCi radioactivity.

Urine and feces were collected for all groups at predetermined time intervals. Seven days after dose administration, the rats were euthanized and selected tissues and organs were harvested. Samples of urine, feces, and tissues were subsequently analyzed for 14C content.

In the blood kinetics study, radioactivity peaked at approximately 4 h for the males and 6 h for the females. The decline of radioactivity from blood followed a monophasic elimination pattern. The half-life of blood radioactivity was approximately 8 h for males and 6 h for females.

Female rats excreted 71.45-73.05% of the radioactivity in urine and 20.87-25.28% in feces, whereas male rats excreted 49.49-63.49% of the administered radioactivity in urine and 31.76-46.67% in feces. Total tissue residues of radioactivity at 7 days ranged from 0.13 to 0.43% of the administered dose for all dosage regimens. The only tissues with 14C residues consistently higher than that of plasma were the liver, stomach, intestines, and carcass. The total mean recovered radioactivity of the administered dose in the studies ranged between 93.1 and 97.4%. No parent compound was detected in the urine.

Four major metabolites and one minor metabolite were isolated from the urine by high-performance liquid chromatography (HPLC) and identified by gas chromatography/mass spectometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS). The four major metabolites were shown to be carboxylic acids produced by either ω-1 oxidation or β-oxidation of the side chain and oxidation of the norbornene ring double bond. The minor metabolite was the carboxylic acid of the intact norbornene ring.

The gender of the animals affected the rate, route of excretion, and metabolic profile. The urinary excretion rate was faster in females than in males and the amount excreted was also greater in female rats.  相似文献   

18.
MK-0767 (KRP-297; 2-methoxy-5-(2,4-dioxo-5-thiazolidinyl)-N-[[4-(trifluoromethyl)phenyl] methyl]benzamide) is a thiazolidinedione (TZD)-containing dual agonist of the peroxisome proliferator-activated receptors alpha and gamma that has been studied as a potential treatment for patients with type 2 diabetes. The metabolism and excretion of [14C]MK-0767 were evaluated in six human volunteers after a 5-mg (200 microCi) oral dose. Excretion of 14C radioactivity was found to be nearly equal into the urine (approximately 50%) and feces (approximately 40%). Elimination of [14C]MK-0767 was primarily by metabolism, with minimal excretion of parent compound into the urine (<0.5% of dose) and feces (approximately 14% of the dose). [14C]MK-0767 was the major circulating compound-related entity (>96% of radioactivity) through 48 h postdose. It was also found that approximately 91% of the total radioactivity area under the curve was due to intact MK-0767. Several minor metabolites were detected in plasma (<1% of radioactivity, each), formed by cleavage of the TZD ring and subsequent S-methylation and oxidation. All the metabolites excreted into urine were formed by TZD cleavage, whereas the major metabolite in feces was the O-demethylated derivative of MK-0767.  相似文献   

19.
  1. Tissue distribution, metabolism, and disposition of oral (0.2–20?mg/kg) and intravenous (0.2?mg/kg) doses of [2-14C]dibromoacetonitrile (DBAN) were investigated in male rats and mice.

  2. [14C]DBAN reacts rapidly with rat blood in vitro and binds covalently. Prior depletion of glutathione (GSH) markedly diminished loss of DBAN. Chemical reaction with GSH readily yielded glutathionylacetonitrile.

  3. About 90% of the radioactivity from orally administered doses of [14C]DBAN was absorbed. After intravenous administration, 10% and 20% of the radioactivity was recovered in mouse and rat tissues, respectively, at 72?h. After oral dosing, three to four times less radioactivity was recovered, but radioactivity in stomach was mostly covalently bound.

  4. Excretion of radioactivity into urine exceeded that in feces; 9–15% was exhaled as labeled carbon dioxide and 1–3% as volatiles in 72?h.

  5. The major urinary metabolites were identified by liquid chromatography-mass spectrometry, and included acetonitrile mercaptoacetate (mouse), acetonitrile mercapturate, and cysteinylacetonitrile.

  6. The primary mode of DBAN metabolism is via reaction with GSH, and covalent binding may be due to reaction with tissue sulphydryls.

  相似文献   

20.
Abstract

1. Gemigliptin (formerly known as LC15-0444) is a newly developed dipeptidyl peptidase 4 inhibitor for the treatment of type 2 diabetes. Following oral administration of 50?mg (5.4?MBq) [14C]gemigliptin to healthy male subjects, absorption, metabolism and excretion were investigated.

2. A total of 90.5% of administered dose was recovered over 192?hr postdose, with 63.4% from urine and 27.1% from feces. Based on urinary recovery of radioactivity, a minimum 63.4% absorption from gastrointestinal tract could be confirmed.

3. Twenty-three metabolites were identified in plasma, urine and feces. In plasma, gemigliptin was the most abundant component accounting for 67.2%?~?100% of plasma radioactivity. LC15-0636, a hydroxylated metabolite of gemigliptin, was the only human metabolite with systemic exposure more than 10% of total drug-related exposure. Unchanged gemigliptin accounted for 44.8%?~?67.2% of urinary radioactivity and 27.7%?~?51.8% of fecal radioactivity. The elimination of gemigliptin was balanced between metabolism and excretion through urine and feces. CYP3A4 was identified as the dominant CYP isozyme converting gemigliptin to LC15-0636 in recombinant CYP/FMO enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号