首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Statins are the preferred class of drugs for treating patients with atherosclerosis and related coronary heart disease. Treatment with statins leads to significant low-density lipoprotein cholesterol (LDL-C) lowering, resulting in reductions in major coronary and vascular events. Statins are generally well tolerated and safe; however, their use is complicated by infrequent, but often serious, muscular adverse events. For many statins, both efficacy and risk of adverse muscle events can be influenced by membrane transporters, which are important determinants of statin disposition. Genetic polymorphisms and drug-drug interactions (DDIs) involving organic anion-transporting polypeptide 1B1 and breast cancer resistance protein have shown the capacity to reduce the activity of these transporters, resulting in changes in LDL-C lowering by statins, as well as changes in the frequency of adverse muscle events associated with their use. This review presents evidence for how reduced transporter activity impacts the safety and pharmacology of statins. It expands on the scope of other recent statin reviews by providing recommendations on in vitro evaluation of statin interaction potential, discussing how reduced transporter activity impacts statin management during drug development, and proposing ideas on how to evaluate the impact of DDI on statin efficacy during clinical trials. Furthermore, the potential clinical consequences of perturbing statin efficacy via DDI are discussed.  相似文献   

2.
3.
4.
  1. Rare instances of myopathy are associated with all statins, but cerivastatin was withdrawn from clinical use due to a greater incidence of myopathy.

  2. The mechanism of statin-induced myopathy with respect to tissue disposition was investigated by measuring the systemic, hepatic, and skeletal muscle exposure of cerivastatin, rosuvastatin, and simvastatin in rats before and after muscle damage.

  3. The development of myopathy was not associated with the accumulation of statins in skeletal muscle. For each statin exposure was equivalent in muscles irrespective of their fibre-type sensitivity to myopathy. The low amount of each statin in skeletal muscle relative to the liver does not support a significant role for transporters in the disposition of statins in skeletal muscle. Finally, the concentration of cerivastatin necessary to cause necrosis in skeletal muscle was considerably lower than rosuvastatin or simvastatin, supporting the concept cerivastatin is intrinsically more myotoxic than other statins.

  相似文献   

5.
6.
  1. Baicalin was extensively researched for utility in a number of therapeutic areas owing to its anti-inflammatory, anti-oxidant, anti-bacterial, and anti-cancer properties.

  2. A number of preclinical studies, in vitro work, and mechanistic studies were performed to understand the absorption, distribution, metabolism, and excretion profiles of baicalin.

  3. The absorption of baicalin involved several complexities: the restriction to two distant sites; the conversion of baicalin to baicalein; the possible role of transporter(s); and enhanced absorption due to breakdown of conjugates by beta-glucuronidase.

  4. Limited distribution data suggest that baicalin reached several sites such as the brain, eye lens, thymus, etc. Hepatobiliary recycling also served as a distribution phase for sustained delivery of baicalin.

  5. Metabolism data suggest the rapid conversion of baicalin to baicalein, which was extensively subjected to Phase 2 metabolism, conjugates baicalein glucuronide/sulfate have been identified.

  6. Limited excretion data suggest involvement of renal and faecal routes—glucuronide and sulfate conjugates were excreted in urine and faeces (via biliary excretion).

  7. The published data on baicalin suggest imminent challenges for developing baicalin and/or during co-administration with other agents. These challenges are absorption related (transporter or changes in the microenvironment), metabolism related (CYP2B6 induction and/or CYP2E1 inhibition), and excretion/efflux related (competitive biliary pathway and/or OATP1B1 transport).

  相似文献   

7.
  1. The predictive utility of two in vitro methods (empirical IC50-based and mechanistic kinact/KI) for the assessment of time-dependent cytochrome P450 3A4 (CYP3A4) inhibition has been compared.

  2. IC50 values were determined at multiple pre-incubation time points over 30?min for five CYP3A4 time-dependent inhibitors (verapamil, diltiazem, erythromycin, clarithromycin, and azithromycin). The ability of IC50 data obtained following pre-incubation to predict kinact/KI parameters was investigated and its utility was assessed relative to the conventional kinact/KI model using 50 reported clinical drug–drug interactions (DDIs). Models with either hepatic or hepatic with intestinal components were explored.

  3. For low/medium potency time-dependent inhibitors, 81% of the predicted kinact/KI(unbound) from IC50 data were within an order of magnitude of the actual values, in contrast to 50% of potent inhibitors. An underprediction trend and >?50% of false-negatives were observed when IC50 data were used in the DDI hepatic prediction model; incorporation of the intestine improved the prediction accuracy. On the contrary, 86% of the DDI studies were predicted within twofold using kinact/KI mechanistic approach and the combined hepatic and intestinal model.

  4. Use of the empirical IC50 approach as an alternative to the mechanistic kinact/KI model for in vivo DDI prediction is limited and is best restricted to preliminary investigations.

  相似文献   

8.
  1. The phenomenon known as multiple-drug resistance, whereby anti-cancer agents are expelled from cancer cells, makes it necessary to develop methods that will reliably increase the accumulation of anti-cancer agents within cancer cells. To accomplish this goal, a new model compound, Val-SN-38, was synthesized by introducing valine to SN-38, an active ingredient of irinotecan.

  2. Val-SN-38 improved intracellular accumulation approximately 5-fold in MCF7 cells, compared with SN-38, and rather than changes in membrane permeability, the amino acid transporter ATB0,+ played a role, whereas the dipeptide transporter PEPT1 did not. Other sodium-dependent amino acid transporters, namely ATA1, ATA2, and ASCT2, were unexpectedly involved in the uptake of Val-SN-38 as well. The efflux of Val-SN-38 by major efflux transporters was variably changed, but not significantly.

  3. In summary, the enhanced accumulation of Val-SN-38 in cancer cells was due to augmented uptake via various amino acid transporters. The results of the present study make a compelling argument in favour of a prodrug concept that can improve intracellular accumulation and take advantage of amino acid transporters without significantly inducing multiple-drug resistance.

  相似文献   

9.
  1. Women who experience hot flashes as a side effect of tamoxifen (TAM) therapy often try botanical remedies such as black cohosh to alleviate these symptoms. Since pharmacological activity of TAM is dependent on the metabolic conversion into active metabolites by the action of cytochromes P450 2D6 (CYP2D6) and 3A4, the objective of this study was to evaluate whether black cohosh extracts can inhibit formation of active TAM metabolites and possibly reduce its clinical efficacy.

  2. At 50 μg/mL, a 75% ethanolic extract of black cohosh inhibited formation of 4-hydroxy- TAM by 66.3%, N-desmethyl TAM by 74.6% and α-hydroxy TAM by 80.3%. In addition, using midazolam and dextromethorphan as probe substrates, this extract inhibited CYP3A4 and CYP2D6 with IC50 values of 16.5 and 50.1 μg/mL, respectively.

  3. Eight triterpene glycosides were identified as competitive CYP3A4 inhibitors with IC50 values ranging from 2.3–5.1 µM, while the alkaloids protopine and allocryptopine were identified as competitive CYP2D6 inhibitors with Ki values of 78 and 122?nM, respectively.

  4. The results of this study suggests that co-administration of black cohosh with TAM might interfere with the clinical efficacy of this drug. However, additional clinical studies are needed to determine the clinical significance of these in vitro results.

  相似文献   

10.
Abstract

  1. Parthenolide (PTL) and micheliolide (MCL) are sesquiterpene lactones with similar structures, and both of them have been reported to exhibit multiple biochemical and pharmacological activities. This study aims to investigate the inhibition of these two compounds on the activity of UDP-glucuronosyltransferases (UGTs).

  2. In vitro incubation mixture for recombinant UGTs-catalyzed glucuronidation metabolism of 4-methylumbelliferone (4-MU) was utilized to investigate the inhibition potential. Inhibition kinetics (including inhibition type and parameters) were determined, and in silico docking was employed to elucidate the inhibition difference between PTL and MCL on UGT1A1.

  3. MCL showed no inhibition toward all the UGT isoforms, and PTL showed strong inhibition toward UGT1A1. The half-maximal inhibitory concentration (IC50) of PTL on the activity of UGT1A1 was determined to be 64.4?μM. Inhibition kinetics determination showed that PTL exerted noncompetitive inhibition toward UGT1A1, and the inhibition kinetic constant (Ki) was determined to be 12.1?μM. In silico docking method has been employed to show that hydrogen bonds between PTL and the activity cavity of UGT1A1 contributed to the stronger inhibition of PTL on the activity of UGT1A1 than MCL. In conclusion, PTL can more easily induce drug–drug interaction (DDI) with clinical drugs mainly undergoing UGT1A1-catalyzed glucuronidation.

  相似文献   

11.
  1. In this paper we model the cost-benefit of excluding populations at risk through predictive toxicity biomarkers and diagnostics.

  2. False positives/ negatives inherent in predictive markers and the frequency and nature of adverse events determine whether biomarkers are beneficial and economically viable.

  3. We present a model that takes these and other factors into account using data largely in line with real world cases.

  相似文献   

12.
  1. Over the last two decades the impact on drug pharmacokinetics of the organic anion transporting polypeptides (OATPs: OATP-1B1, 1B3 and 2B1), expressed on the sinusoidal membrane of the hepatocyte, has been increasingly recognized.

  2. OATP-mediated uptake into the hepatocyte coupled with subsequent excretion into bile via efflux proteins, such as MRP2, is often referred to as hepatobiliary excretion.

  3. OATP transporter proteins can impact some drugs in several ways including pharmacokinetic variability, pharmacodynamic response and drug-drug interactions (DDIs).

  4. The impact of transporter mediated hepatic clearance is illustrated with case examples, from the literature and also from the Pfizer portfolio.

  5. The currently available in vitro techniques to study the hepatic transporter proteins involved in the hepatobiliary clearance of drugs are reviewed herein along with recent advances in using these in vitro data to predict the human clearance of compounds recognized by hepatic uptake transporters.

  相似文献   

13.
14.
  1. Transporters have been increasingly identified as a factor in limiting the oral bioavailability of certain drugs. Previously, the present authors investigated a compound (SB-265123) with an apparent absolute oral bioavailability (Fapp) consistently >100%, and excluded likely artefactual causes for this observation, as well as standard considerations of non-stationary or non-linear pharmacokinetics. The data led the authors to believe that SB-265123 might be a transporter substrate in the rat, and it was hypothesized that transporter interactions might be responsible for the observed Fapp>100%.

  2. In the present study, a model was proposed incorporating rapid and complete absorption and elimination by a saturable intestinal secretory pathway. Intestinal secretion was demonstrated for SB-265123 using a rat single-pass intestinal perfusion technique. In addition, in a study employing both independent and simultaneous intravenous and oral administration of SB-265123, exposure to SB-265123 was greater than additive on joint intravenous and oral administration, lending further support to the hypothesis of a saturable transporter. Furthermore, in a study with co-administration of GF120918A, a transporter inhibitor, the observed Fapp for SB-265123 was only 84±17%, providing additional evidence for transporter involvement in the >100% Fapp phenomenon.

  3. Experience with SB-265123 illustrates a counterintuitive impact of transporters on oral bioavailability and highlights the importance of considering transporter interactions in the systemic disposition of xenobiotics, even those not demonstrating low oral bioavailability.

  相似文献   

15.
  1. Numerous groups have described the rat as an in vivo model for the assessment and prediction of drug–drug interactions (DDIs) in humans involving the inhibition of cytochrome P450 3A forms. Even for a well-established substrate-inhibitor pair like midazolam-ketoconazole, however, the magnitude of the DDI in rats (e.g. 1.5- to 5-fold) does not relate to what is observed clinically (e.g. 5- to 16-fold).

  2. Because nonlinear substrate pharmacokinetics (PK) may result in a weaker interaction, it was hypothesized that the lower magnitude of interaction observed in rats was due to the saturation of metabolic pathway(s) of midazolam at the doses used (10–20 mg/kg). Therefore, the inhibitory effects of ketoconazole were reevaluated at lower oral (1 and 5 mg/kg) and intravenous (IV) (1 mg/kg) doses of midazolam.

  3. In support of the hypothesis, oral exposure at 5 mg/kg dose of midazolam was 18-fold higher compared to that at 1 mg/kg. Furthermore, when the interaction was investigated at the lower midazolam dose (1 mg/kg), ketoconazole increased the IV and oral exposure of midazolam by 7-fold and 11-fold, respectively. A weaker DDI (1.5- to 1.8-fold) was observed at the higher oral midazolam dose.

  4. Collectively, these results suggest that the lower reported interaction in rats is likely due to saturation of midazolam clearance at the doses used. Therefore, when the rat is used as a DDI model to screen and differentiate compounds, or predict CYP3A inhibition in humans, it is important to use low doses of midazolam and ensure linear PK.

  相似文献   

16.
17.
18.
  1. ZD4054 is an oral specific endothelin-A receptor antagonist in development for the treatment of hormone-resistant prostate cancer. Both renal and metabolic processes contribute to its overall clearance.

  2. Two preclinical in vitro studies investigated the metabolism of ZD4054 using human liver microsomes, individual cytochrome P450 (CYP) isozymes, and flavin-containing monooxygenase isoforms. Two Phase I open-label crossover volunteer studies subsequently investigated in vivo drug interactions between ZD4054 and the CYP450 inducer rifampicin or CYP3A4 inhibitor itraconazole.

  3. The most abundant metabolite produced in in vitro incubations accounted for 12.8% of radioactivity after ZD4054 was incubated with CYP3A4. No significant flavin-containing monooxygenase metabolism of ZD4054 was observed. In the in vivo studies, rifampicin co-administration reduced the area under the concentration–time curve and maximum plasma concentration of ZD4054 by 68% and 29%, respectively, whilst co-administration with itraconazole was associated with an increase in ZD4054 area under the curve of approximately 28%.

  4. While co-administration of CYP450 inducers might be associated with reduced efficacy of ZD4054, dose reduction is unlikely to be required with concomitant administration of CYP3A4 inhibitors.

  相似文献   

19.
20.
  1. Early prediction of human pharmacokinetics (PK) and drug–drug interactions (DDI) in drug discovery and development allows for more informed decision making. Physiologically based pharmacokinetic (PBPK) modelling can be used to answer a number of questions throughout the process of drug discovery and development and is thus becoming a very popular tool. PBPK models provide the opportunity to integrate key input parameters from different sources to not only estimate PK parameters and plasma concentration-time profiles, but also to gain mechanistic insight into compound properties.

  2. Using examples from the literature and our own company, we have shown how PBPK techniques can be utilized through the stages of drug discovery and development to increase efficiency, reduce the need for animal studies, replace clinical trials and to increase PK understanding.

  3. Given the mechanistic nature of these models, the future use of PBPK modelling in drug discovery and development is promising, however, some limitations need to be addressed to realize its application and utility more broadly.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号