首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to evaluate the potential adverse effects due to genetic polymorphism and/or inter-individual variation, it is necessary to calculate the cytochrome P450 (CYP) contribution to the metabolism of new drugs. In the current study, the in vitro intrinsic clearance (CLint) values of marker substrates and drugs were determined by measuring metabolite formation and substrate depletion, respectively. Recombinant CYP microsomes expressing CYP2C9, CYP2C19 and CYP3A4 with co-expressed cytochrome b5 were used, but those expressing CYP1A2 and CYP2D6 did not have co-expressed cytochrome b5. The following prediction methods were compared to determine the CLint value using data from recombinant CYP enzymes: (1) relative CYP enzyme content in human liver microsomes; (2) relative activity factor (RAF) estimated from the Vmax value; and (3) RAF estimated from the CLint value. Estimating RAF from CLint proved the most accurate prediction method among the three tested, and differences in the CYP3A4 marker reactions did not affect its accuracy. The substrate depletion method will be useful in the early drug-discovery stage when the main metabolite and/or metabolic pathway has not been identified. In addition, recombinant CYP microsomes co-expressed with cytochrome b5 might be suitable for the prediction of the CLint value.  相似文献   

2.
To evaluate the role that cytochrome (CYP) 3A5 plays in hepatic drug metabolism, the substrate selectivity and inhibitory potential of over 60 compounds towards CYP3A4 and CYP3A5 were assessed using Escherichia coli recombinant cell lines. CYP3A4-mediated metabolism predominated for many of the compounds studied. However, a number of drugs gave similar CLint estimates using CYP3A5 compared with CYP3A4 including midazolam (CLint?=?3.4 versus 3.3?µl?min–1?pmol–1). Significant CYP3A5-mediated metabolism was also observed for several drugs including mifepristone (CLint?=?10.3 versus 2.4?µl?min–1?pmol–1), and ritonavir (CLint?=?0.76 versus 0.47?µl?min–1?pmol–1). The majority of compounds studied showed a greater inhibitory potential (IC50) towards CYP3A4 compared with CYP3A5 (eightfold lower on average). A greater degree of time-dependent inhibition was also observed with CYP3A4 compared with CYP3A5. The range of compounds investigated in the present study extends significantly previous work and suggests that CYP3A5 may have a significant role in drug metabolism particularly in populations expressing high levels of CYP3A5 and/or on co-medications known to inhibit CYP3A4.  相似文献   

3.
1.?The aim of this study was to investigate the inhibitory effect of morusin on Glucuronosyltransferase (UGT) isoforms and cytochrome P450 enzymes (CYP450s). We also investigated the metabolism of morusin in human, rat, dog, monkey, and minipig liver microsomes.

2.?100?μM of morusin exhibited strong inhibition on all UGTs and CYP450s. The half inhibition concentration (IC50) values for CYP3A4, CYP1A2, CYP2C9, CYP2E1, UGT1A6, UGT1A7, and UGT1A8 were 2.13, 1.27, 3.18, 9.28, 4.23, 0.98, and 3.00?μM, and the inhibition kinetic parameters (Ki) were 1.34, 1.16, 2.98, 6.23, 4.09, 0.62, and 2.11?μM, respectively.

3.?Metabolism of morusin exhibited significant species differences. The quantities of M1 from minipig, monkey, dog, and rat were 7.8, 11.9, 2.0, and 6.3-fold of human levels. The Km values in HLMs, RLMs, MLMs, DLMs, and PLMs were 7.84, 22.77, 14.32, 9.13, and 22.83?μM, and Vmax for these species were 0.09, 1.23, 1.43, 0.15, and 0.75?nmol/min/mg, respectively. CLint (intrinsic clearance) values (Vmax/Km) for morusin obeyed the following order: monkey?>?rat?>?minipig?>?dog?>?human. CLH (hepatic clearance) values for humans, dogs, and rats were calculated to be 8.28, 17.38, and 35.12?mL/min/kg body weight, respectively.

4.?This study provided vital information to understand the inhibitory potential and metabolic behavior of morusin among various species.  相似文献   

4.
Under hyperlipidemic conditions, there are likely to be alterations in the pharmacokinetics of CYP2C11 substrates following decreased expression of CYP2C11, which is homologous to human CYP2C9. The pharmacokinetics of tolbutamide (TB) and its metabolite 4‐hydroxy tolbutamide (4‐OHTB) were evaluated as a CYP2C11 probe after intravenous and oral administration of 10 mg/kg tolbutamide to poloxamer 407‐induced hyperlipidemic rats (HL rats). Changes in the expression and metabolic activity of hepatic CYP2C11 and the plasma protein binding of tolbutamide in HL rats were also evaluated. The total area under the plasma concentration–time curve (AUC) of tolbutamide in HL rats after intravenous administration was comparable to that in controls due to their comparable non‐renal clearance (CLNR). The free fractions of tolbutamide in plasma were comparable between the control and HL rats. The 4‐hydroxylated metabolite formation ratio (AUC4‐OHTB/AUCTB) in HL rats was significantly smaller than that in the control rats as a result of the reduced expression of hepatic CYP2C11 (by 15.0%) and decreased hepatic CLint (by 28.8%) for metabolism of tolbutamide to 4‐OHTB via CYP2C11. Similar pharmacokinetic changes were observed in HL rats after oral administration of tolbutamide. These findings have potential therapeutic implications, assuming that the HL rat model qualitatively reflects similar changes in patients with hyperlipidemia. Since other sulfonylureas in clinical use are substrates of CYP2C9, their hepatic CLint changes have the potential to cause clinically relevant pharmacokinetic changes in a hyperlipidemic state. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract

1.?Buffer conditions in in vitro metabolism studies using human liver microsomes (HLM) have been reported to affect the metabolic activities of several cytochrome P450 (CYP) isozymes in different ways, although there are no reports about the dependence of CYP2C8 activity on buffer conditions.

2.?The present study investigated the effect of buffer components (phosphate or Tris-HCl) and their concentration (10–200?mM) on the CYP2C8 and CYP3A4 activities of HLM, using paclitaxel and triazolam, respectively, as marker substrates.

3.?The Km (or S50) and Vmax values for both paclitaxel 6α-hydroxylation and triazolam α- and 4-hydroxylation, estimated by fitting analyses based on the Michaelis–Menten or Hill equation, greatly depended on the buffer components and their concentration.

4.?The CLint values in phosphate buffer were 1.2–3.0-fold (paclitaxel) or 3.1–6.4-fold (triazolam) higher than in Tris-HCl buffer at 50–100?mM. These values also depended on the buffer concentration, with a maximum 2.3-fold difference observed between 50 and 100?mM which are both commonly used in drug metabolism studies.

5.?These findings suggest the necessity for optimization of the buffer conditions in the quantitative evaluation of metabolic clearances, such as in vitro–in vivo extrapolation and also estimating the contribution of a particular enzyme in drug metabolism.  相似文献   

6.
1.?A cocktail of the following probe substrates for human drug-metabolizing enzymes was used to characterize hepatocyte preparations: phenacetin (for CYP1A2), diclofenac (CYP2C9), diazepam (CYP2C19), bufuralol (CYP2D6), midazolam (CYP3A4/5) and 7-hydroxycoumarin (for glucuronidation and sulphation).

2.?The cocktail was incubated with cryopreserved human, dog or minipig hepatocytes or with freshly prepared rat hepatocytes. Sample analysis was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in an Open Access environment that allowed less experienced MS operators to login, submit and analyse sample sets using predefined settings without the immediate attendance of an experienced analyst. Intrinsic clearances (CLint) were calculated from the disappearance of the compounds from the incubations.

3.?Initially, the cocktail used for human, rat and dog hepatocyte incubations contained 7-ethoxycoumarin instead of 7-hydroxycoumarin. However, 7-ethoxycoumarin had an inhibitory effect on the metabolism of phenacetin.

4.?The highest CLint estimated with human and dog hepatocytes was observed for 7-hydroxycoumarin. For rat and minipig hepatocytes, the highest CLint was observed for bufuralol. In incubations with dog and minipig hepatocytes, the lowest CLint was seen with diclofenac, whereas for human and rat hepatocytes, the lowest value was observed with diazepam and phenacetin, respectively.

5.?When the cocktail was incubated together with human hepatocytes and 1?μM ketoconazole, the CLint of midazolam was decreased to about 7.5% of the control value, whereas the metabolism of the other cocktail compounds was virtually unaffected by this CYP3A inhibitor.

6.?It is suggested that a cocktail of specific human probe substrates for drug-metabolizing enzymes can be used routinely for the determination of the metabolic capacity of hepatocyte preparations in order to ensure the quality and reproducibility of experiments. Moreover, a cocktail of specific probe substrates can also be a useful tool for studies on enzyme inhibition.  相似文献   

7.
1. Focusing on the genetic similarity of CYP3A subfamily enzymes (CYP3A4 and CYP3A5) between monkeys and humans, we have attempted to provide a single-species approach to predicting human hepatic clearance (CLh) of CYP3A4 substrates using pharmacokinetic parameters in cynomolgus monkeys following intravenous administrations.

2. Hepatic intrinsic clearance (CLint,h) of six CYP3A4 substrates (alprazolam, clonazepam, diltiazem, midazolam, nifedipine, and quinidine), covering a wide range of clearance, in monkeys correlated well with that cited in literature for humans (R = 0.90) with a simple equation of Y = 0.165X (Y: human CLint,h, X: monkey CLint,h, represented in mL/min/kg).

3. To verify the predictability of human CLint,h, monkey CLint,h of a test set of CYP3A4 substrates cited in literature (dexamethasone, nifedipine, midazolam, quinidine, tacrolimus, and verapamil) was applied to the equation and human CLint,h was calculated. The human CLint,h of all the substrates was predicted within 3-fold error (fold error: 0.35–2.77).

4. The predictability of human CLh by our method was superior to common in vivo prediction methods (allometry and liver blood flow method). These results suggest that human hepatic clearance of CYP3A4 substrates can be predicted by applying cynomolgus monkey CLint,h obtained following intravenous administrations in each laboratory to the simple equation.  相似文献   

8.
Purpose. To clarify the contribution of the intestinal first-pass metabolism to the drug bioavailability, the correlation between the intestinal and hepatic metabolism of human CYP3A4 substrates was investigated in rats. Methods. The metabolic rates of four compounds (lidocaine, quinidine, nifedidpine, and rifabutin) were examined with excised intestinal tissues and liver microsomes. The intestinal and hepatic expression of CYP3A1/23 and CYP3A2 was evaluated by Western blot analysis. Results. Rifabutin was metabolized fastest, and lidocaine was metabolized slowest in excised intestinal tissues. By contrast, lidocaine was metabolized fastest and rifabutin was the slowest in liver microsomes. The hepatic metabolism of lidocaine was inhibited by a CYP2D6 substrate desipramine, not by a CYP3A4 inhibitor ketoconazole. In addition, members of the CYP3A subfamily expressed in the intestine were different from those expressed in the liver. Conclusions. Poor correlation between the intestinal and hepatic metabolism of human CYP3A4 substrates in rats may be caused by the contribution of the CYP2D subfamily to the drug metabolisms in the liver and also by the unique expression of the CYP3A subfamily in the intestine.  相似文献   

9.
  1. Prediction of metabolic clearance in extreme individuals rather than the ‘average human’ is becoming an attractive tool within the pharmaceutical industry.

  2. The current study involved prediction of variability in metabolic clearance for alprazolam, triazolam and midazolam with emphasis on the following factors: first, evaluation of clearance prediction accuracy using intrinsic clearance (CLint) data from in vitro metabolic data and back-calculation from in vivo clearance data. Second, the sensitivity of predicted in vivo variability to changes in variability for physiological parameters (e.g. liver weight, haematocrit, CYP3A abundance). Finally, reported estimates of variability in hepatic CYP3A4 abundance (coefficient of variation (CV) 95%) were refined by separating experimental from interindividual variability using a repeat measurement protocol in 52 human liver samples.

  3. Using in vitro metabolic data, predicted clearances were within 2-fold of observed for triazolam and midazolam. Clearance of alprazolam was overpredicted by 2.0- to 3.7-fold. Use of in vivo CLint values improved prediction of intravenous clearance to within 2-fold of observed for all drugs.

  4. Initially, the variability in clearance was overestimated for all drugs (by 1.8- to 3.6-fold). Use of a reduced hepatic CYP3A4 CV of 41%, representative of interindividual variability alone improved predictions of variability in clearance for all drugs to within 2-fold of observed.

  相似文献   

10.
  1. The area under the curve (AUC) of mirodenafil after intravenous administration in diabetes mellitus induced by streptozotocin (DMIS) rats was significantly smaller (by 28.0?%) than the control value, and the AUCSK3541/AUCmirodenafil ratio was significantly greater (by 130?%) in DMIS rats. This may be explained by the significantly faster hepatic CLint of mirodenafil, owing to increased hepatic CYP1A, CYP2B1/2, CYP2D, and CYP3A expression, and a faster hepatic blood flow rate, compared with control values.

  2. The AUC of mirodenafil after oral administration was comparable between DMIS and control rats, possibly because of the comparable intestinal CLint, which may be attributable to increased CYP1A2 expression and decreased CYP2D expression in the intestines of DMIS rats.

  相似文献   

11.
  1. The time-dependent (2-h, 24-h, and 96-h) effects of Escherichia coli lipopolysaccharide (ECLPS) on the intravenous (100?mg kg?1) and oral (100?mg kg?1) metformin pharmacokinetics were evaluated in rats.

  2. After the intravenous administration of metformin to 24-h and 96-h ECLPS rats, the total area under the plasma concentration–time curve from time zero to time infinity (AUCs) and time-averaged non-renal clearances (CLNRs) of metformin were significantly greater and slower, respectively, than the controls. However, after the oral administration of metformin, the AUCs of metformin were comparable among four groups of rats.

  3. The greater (slower) intravenous AUCs (CLNRs) of metformin in 24-h and 96-h ECLPS rats were due to the slower hepatic intrinsic clearance (CLint) because of a decrease in the protein expression of hepatic cytochrome P450 (CYP) 2C11 and/or CYP3A subfamily than controls. The comparable oral AUCs among four groups of rats were mainly due to the comparable gastrointestinal metabolism (CLint).

  相似文献   

12.
Isobavachalcone, a naturally occurring chalcone in Psoralea corylifolia, posses many biological properties including anticancer, antiplatelet, and antifungal. However, its glucuronidation, glucuronides excretion, and drug-drug interaction (DDI) involving in human cytochrome P450 (CYP), UDP-glucuronosyltransferase (UGT) enzymes, and efflux transporters (BCRP and MRPs) remains unclear so far. After incubation, three glucuronides were produced by HLM and HIM with total intrinsic clearance (CLint) of 236.71 and 323.40 μL/min/mg, respectively. Reaction phenotyping proved UGT1A1, 1A3, 1A7, 1A8, and 1A9 played important roles in glucuronidation with total CLint values of 62.69–143.00 μL/min/mg. Activity correlation analysis indicated UGT1A1 and UGT1A3 participated more in the glucuronidation. In addition, the glucuronidation showed marked species differences, and rabbits and dogs were probably appropriate model animals to investigate the in vivo glucuronidation. Furthermore, BCRP, MRP1, and MRP4 transporters were identified as the most important contributors to glucuronides excretion in HeLa1A1 cells based on gene silencing method. Moreover, isobavachalcone demonstrated broad-spectrum inhibitory effects against CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, UGT1A1, UGT1A9, UGT2B7 with IC50 values of 1.08–9.78 μM. Except CYP2B6 and CYP2D6, the calculated [I]/Ki values for other enzymes were all greater than 0.1, indicating the inhibition of systemic metabolism or elimination for these enzyme substrates seems likely. Taken together, we summarized metabolic fates of isobavachalcone including glucuronidation and efflux transport as well as inhibitory effects involving in human CYP and UGT enzymes.  相似文献   

13.
Due to the risk of new synthetic opioids (NSOs) for human health, the knowledge of their toxicokinetic characteristics is important for clinical and forensic toxicology. U‐48800 is an NSO structurally non‐related to classical opioids such as morphine or fentanyl and offered for abuse. As toxicokinetic data of U‐48800 is not currently available, the aims of this study were to identify the in vitro metabolites of U‐48800 in pooled human liver S9 fraction (pS9), to map the isozymes involved in the initial metabolic steps, and to determine further toxicokinetic data such as metabolic stability, including the in vitro half‐life (t1/2), and the intrinsic (CLint) and hepatic clearance (CLh). Furthermore, drug detectability studies in rat urine should be done using hyphenated mass spectrometry. In total, 13 phase I metabolites and one phase II metabolite were identified. N‐Dealkylation, hydroxylation, and their combinations were the predominant metabolic reactions. The isozymes CYP2C19 and CYP3A4 were mainly involved in these initial steps. CYP2C19 poor metabolizers may suffer from an increased U‐48800 toxicity. The in vitro t1/2 and CLint could be rated as moderate, compared to structural related compounds. After administration of an assumed consumer dose to rats, the unchanged parent compound was found only in very low abundance but three metabolites were detected additionally. Due to species differences, metabolites found in rats might be different from those in humans. However, phase I metabolites found in rat urine, the parent compound, and additionally the N‐demethyl metabolite should be used as main targets in toxicological urine screening approaches.  相似文献   

14.
  1. The metabolism of the pyrethroids deltamethrin (DLM), cis-permethrin (CPM) and trans-permethrin (TPM) was studied in human expressed cytochrome P450 (CYP) and carboxylesterase (CES) enzymes.

  2. DLM, CPM and TPM were metabolised by human CYP2B6 and CYP2C19, with the highest apparent intrinsic clearance (CLint) values for pyrethroid metabolism being observed with CYP2C19. Other CYP enzymes contributing to the metabolism of one or more of the three pyrethroids were CYP1A2, CYP2C8, CYP2C9*1, CYP2D6*1, CYP3A4 and CYP3A5. None of the pyrethroids were metabolised by CYP2A6, CYP2E1, CYP3A7 or CYP4A11.

  3. DLM, CPM and TPM were metabolised by both human CES1 and CES2 enzymes.

  4. Apparent CLint values for pyrethroid metabolism by CYP and CES enzymes were scaled to per gram of adult human liver using abundance values for microsomal CYP enzymes and for CES enzymes in liver microsomes and cytosol. TPM had the highest and CPM the lowest apparent CLint values for total metabolism (CYP and CES enzymes) per gram of adult human liver.

  5. Due to their higher abundance, all three pyrethroids were extensively metabolised by CES enzymes in adult human liver, with CYP enzymes only accounting for 2%, 10% and 1% of total metabolism for DLM, CPM and TPM, respectively.

  相似文献   

15.
In this study we investigated cytochrome P450 (CYP) 2E1 expression using a probe drug, chlorzoxazone (CZX), whose metabolism can be used to monitor toluene exposure in rats. The animals received an i.p. injection of toluene (0.25, 0.5 and 1 ml/kg) once a day for 3 days. The total CYP and CYP2E1 content and the aniline and CZX hydroxylase activity (V max and CLint) increased depending on the dose of toluene administered. At the highest concentration (128 mM) of diethyldithiocarbamate, a specific inhibitor of CYP2E1, the production of 6-hydroxychlorzoxazone (HCZX) in microsomes from toluene-treated rats was reduced by about 80%. The IC50 values in microsomes from toluene-treated rats were between 3 and 5 μM. The production of HCZX and the activity of aniline hydroxylase in toluene-treated rats were correlated with the amount of rat CYP2E1 protein (r=0.88 and r=0.88, respectively). The elimination of CZX by toluene-treated rats was increased and the HCXZ production in the toluene-treated group was greater than that in the olive oil control group. The correlations between intrinsic clearance (CLint: V max/K m) in vitro and total body clearance (CLtot) of CZX hydroxylation and the elimination half-life (t 1/2) of CZX in vivo in toluene-treated rats were high (r=0.784, P < 0.001; r=−0.678, P < 0.001, respectively). In addition, the metabolic plasma HCZX/CZX ratio did not require multiple blood sampling and 2 h after CZX administration in vivo there was also a high correlation with CLint (V max/K m) in vitro (r=−0.729, P < 0.001). In conclusion, these results demonstrate that CZX is a very good probe for monitoring induction in toluene-treated rats. Received: 28 September 1999 / Accepted: 10 January 2000  相似文献   

16.
1.?The identification and relative contributions of human cytochrome P450 (CYP) enzymes involved in the metabolism of glibenclamide and lansoprazole in human liver microsomes were investigated using an approach based on the in vitro disappearance rate of unchanged drug.

2.?Recombinant CYP2C19 and CYP3A4 catalysed a significant disappearance of both drugs. When the contribution of CYPs to the intrinsic clearance (CLint) of drugs in pooled human microsomes was estimated by relative activity factors, contributions of CYP2C19 and CYP3A4 were determined to be 4.6 and 96.4% for glibenclamide, and 75.1 and 35.6% for lansoprazole, respectively.

3.?CLint of glibenclamide correlated very well with CYP3A4 marker activity, whereas the CLint of lansoprazole significantly correlated with CYP2C19 and CYP3A4 marker activities in human liver microsomes from 12 separate individuals. Effects of CYP-specific inhibitors and anti-CYP3A serum on the CLint of drugs in pooled human liver microsomes reflected the relative contributions of CYP2C19 and CYP3A4.

4.?The results suggest that glibenclamide is mainly metabolized by CYP3A4, whereas lansoprazole is metabolized by both CYP2C19 and CYP3A4 in human liver microsomes. This approach, based on the in vitro drug disappearance rate, is useful for estimating CYP identification and their contribution to drug discovery.  相似文献   

17.
Case: We are reporting about a patient with major depression who failed to respond to pharmacotherapy due to ultra-rapid metabolism of maprotiline. Under daily oral doses of 175 mg maprotiline, the patient's metabolic ratio (MR) for maprotiline in plasma was 9.2 (expected MRp: 2.4) and the clearance of maprotiline (CLM) was 4190 ml · min−1 (expected CLM = 1220 in extensive metabolisers of CYP2D6). Results: The patient's MRurine for sparteine was 0.5, which is within the range for extensive metabolisers of CYP2D6. Genotyping did not show a duplication of the CYP2D6L allele. The patient's caffeine half-life was 10 h, thus, precluding ultra-rapid metabolism for CYP1A2. The therapeutic regimen was changed to coadministration of 200 mg maprotiline and 20 mg fluoxetine once per day in order to inhibit metabolism via CYP2D6. Subsequently, MRp of maprotiline (4.9) and CLM were reduced (1900 ml · min−1; expected CLM in poor metabolisers: of CYP2D6 364). This regimen improved the clinical outcome of the underlying disease. Conclusion: We conclude that for the non-response seen with maprotiline, P450 isozymes other than CYP2D6 or CYP1A2 are responsible. As CYP2C19 is involved in the metabolism of a number of tricyclic antidepressants it may be a candidate for ultra-rapid metabolism in this patient. Received: 11 October 1996 / Accepted in revised form: 6 February 1997  相似文献   

18.
1.?KR-62980 and its stereoisomer KR-63198 are novel and selective peroxisome proliferator-activated receptor gamma (PPARγ) modulators with activity profiles different from that of rosiglitazone. This study was performed to identify the major metabolic pathways for KR-62980 and KR-63198 in human liver microsomes.

2.?Human liver microsomal incubation of KR-62980 and KR-63198 in the presence of a β-nicotinamide adenine dinucleotide phosphate (NADPH)-generating system resulted in hydroxy metabolite formation. In addition, the specific cytochrome P450s (CYPs) responsible for KR-62980 and KR-63198 hydroxylation were identified by using a combination of chemical inhibition in human liver microsomes and metabolism by recombinant P450s. It is shown that CYP1A2, CYP2D6, CYP3A4, and CYP3A5 are the predominant enzymes in the hydroxylation of KR-62980 and KR-63198.

3.?The intrinsic clearance through hydroxylation was consistently and significantly higher for KR-62980 than for KR-63198, indicating metabolic stereoselectivity (CLint of 0.012?±?0.001 versus 0.004?±?0.001 μl min?1 pmol?1 P450, respectively).

4.?In a drug–drug interaction study, KR-62980 and KR-63198 had no effect on the activities of the P450s tested (IC50?>?50 μM), suggesting that in clinical interactions between KR-62980 and KR-63198 the P450s tested would not be expected.  相似文献   

19.
Atorvastatin is a 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor that is mainly metabolized by cytochrome P450 (CYP) 3A4. A recent study showed that the lipid-lowering effect of statins is affected by the CYP3A5 polymorphism. Therefore, it was investigated whether CYP3A5 contributes to the metabolism of atorvastatin. Two metabolites of atorvastatin, para- and ortho-hydroxyatorvastatin, were produced by human liver microsomes and human recombinant CYP3A enzymes, and the enzyme kinetic pattern exhibited substrate inhibition. The intrinsic clearance (CLint) rates of para- and ortho-hydroxyatorvastatin by CYP3A4 were 2.4- and 5.0-fold of the respective CLint rates of CYP3A5, indicating that CYP3A4 is the major P450 isoform responsible for atorvastatin metabolism. These results suggest that atorvastatin is preferentially metabolized by CYP3A4 rather than by CYP3A5, and thus the genetic CYP3A5 polymorphism might not be an important factor in the inter-individual variation of atorvastatin disposition and pharmacodynamics in human.  相似文献   

20.
Species and organ differences in the intrinsic clearance and the enzymes involved in the metabolism of DEHP were examined in subcellular fractions of the intestine and liver as well as by recombinant cytochrome P450 (CYP) isoforms of human and rat. Estimated clearance (CLint) of DEHP via esterase-mediated pathway in human intestine was 2.4-fold greater than that in human liver while its value in rat intestine was 1.7-fold less than that in rat liver. Ranks of CLint for CYP-mediated oxidation/dealkylation of MEHP were human liver > rat liver > human intestine > rat intestine. Estimates of CLint for the production of mono(2-ethyl-5-hydroxyhexyl) phthalate and mono(2-ethyl-5-oxohexyl) phthalate by human CYP2C9*1 were 4.2- and 2.6-fold greater than those by rat CYP2C6, respectively. Total CLint via hCYP2C9*3-mediated oxidation was 1.9- and 2.6-fold less than those by hCYP2C9*2 and 2C9*1, respectively. Estimated CLint for phthalic acid production by hCYP3A4 was 24.5 μL nmol CYP?1 min?1 while it was continuously produced by rCYP2C6 and 3A2 via passive mechanism. These species/organ differences in major metabolic pathway and CYP isoforms should be considered for appraisal of the potential adverse health effects of DEHP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号