首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1.?This study examined the pharmacokinetics, distribution, metabolism and excretion of the selective prostacyclin receptor agonist selexipag (NS-304; ACT-293987) and its active metabolite MRE-269 (ACT-33679). The compounds were investigated following oral and/or intravenous administration to intact rats, dogs and monkeys, and bile-duct-cannulated rats and dogs.

2.?After oral administration of [14C]selexipag, selexipag was well absorbed in rats and dogs with total recoveries of over 90% of the dose, mainly in the faeces. Biliary excretion was the major elimination pathway for [14C]MRE-269 as well as [14C]selexipag, while renal elimination was of little importance. [14C]Selexipag-related radioactivity was secreted into the milk in lactating rats.

3.?Plasma was analysed for total radioactivity, selexipag and MRE-269 in rats and monkeys. Selexipag was negligible in rat plasma due to extensive metabolism, and MRE-269 was present in rat and monkey plasma. A species difference was clearly evident when selexipag was incubated in rat, dog and monkey plasma.

4.?Total radioactivity was rapidly distributed to tissues. The highest concentrations were found in the bile duct and liver without significant accumulation or persistence, while there was limited melanin-associated binding, penetration of the blood–brain barrier and placental transfer of drug-related materials.  相似文献   

2.
1.?Following oral administration of [14C]TAK-438, the radioactivity was rapidly absorbed in rats and dogs. The apparent absorption of the radioactivity was high in both species.

2.?After oral administration of [14C]TAK-438 to rats, the radioactivity in most tissues reached the maximum at 1-hour post-dose. By 168-hour post-dose, the concentrations of the radioactivity were at very low levels in nearly all the tissues. In addition, TAK-438F was the major component in the stomach, whereas TAK-438F was the minor component in the plasma and other tissues. High accumulation of TAK-438F in the stomach was observed after oral and intravenous administration.

3.?TAK-438F was a minor component in the plasma and excreta in both species. Its oxidative metabolite (M-I) and the glucuronide of a secondary metabolite formed by non-oxidative metabolism of M-I (M-II-G) were the major components in the rat and dog plasma, respectively. The glucuronide of M-I (M-I-G) and M-II-G were the major components in the rat bile and dog urine, respectively, and most components in feces were other unidentified metabolites.

4.?The administered radioactive dose was almost completely recovered. The major route of excretion of the drug-derived radioactivity was via the feces in rats and urine in dogs.  相似文献   

3.
1.?The absorption, metabolism and excretion of cobimetinib, an allosteric inhibitor of MEK1/2, was characterized in mass balance studies following single oral administration of radiolabeled (14C) cobimetinib to Sprague–Dawley rats (30?mg/kg) and Beagle dogs (5?mg/kg).

2.?The oral dose of cobimetinib was well absorbed (81% and 71% in rats and dogs, respectively). The maximal plasma concentrations for cobimetinib and total radioactivity were reached at 2–3?h post-dose. Drug-derived radioactivity was fully recovered (~90% of the administered dose) with the majority eliminated in feces via biliary excretion (78% of the dose for rats and 65% for dogs). The recoveries were nearly complete after the first 48?h following dosing.

3.?The metabolic profiles indicated extensive metabolism of cobimetinib prior to its elimination. For rats, the predominant metabolic pathway was hydroxylation at the aromatic core. Lower exposures for cobimetinib and total radioactivity were observed in male rats compared with female rats, which was consistent to in vitro higher clearance of cobimetinib for male rats. For dogs, sequential oxidative reactions occurred at the aliphatic portion of the molecule. Though rat metabolism was well-predicted in vitro with liver microsomes, dog metabolism was not.

4.?Rats and dogs were exposed to the two major human circulating Phase II metabolites, which provided relevant metabolite safety assessment. In general, the extensive sequential oxidative metabolism in dogs, and not the aromatic hydroxylation in rats, was more indicative of the metabolism of cobimetinib in humans.  相似文献   

4.
1.?The absorption, metabolism and excretion of darexaban (YM150), a novel oral direct factor Xa inhibitor, were investigated after a single oral administration of [14C]darexaban maleate at a dose of 60?mg in healthy male human subjects.

2.?[14C]Darexaban was rapidly absorbed, with both blood and plasma concentrations peaking at approximately 0.75?h post-dose. Plasma concentrations of darexaban glucuronide (M1), the pharmacological activity of which is equipotent to darexaban in vitro, also peaked at approximately 0.75?h.

3.?Similar amounts of dosed radioactivity were excreted via faeces (51.9%) and urine (46.4%) by 168?h post-dose, suggesting that at least approximately half of the administered dose is absorbed from the gastrointestinal tract.

4.?M1 was the major drug-related component in plasma and urine, accounting for up to 95.8% of radioactivity in plasma. The N-oxides of M1, a mixture of two diastereomers designated as M2 and M3, were also present in plasma and urine, accounting for up to 13.2% of radioactivity in plasma. In faeces, darexaban was the major drug-related component, and N-demethyl darexaban (M5) was detected as a minor metabolite.

5.?These findings suggested that, following oral administration of darexaban in humans, M1 is quickly formed during first-pass metabolism via UDP-glucuronosyltransferases, exerting its pharmacological activity in blood before being excreted into urine and faeces.  相似文献   

5.
Abstract

1.?The absorption, distribution, metabolism and excretion of a novel dipeptidyl peptidase IV inhibitor, gemigliptin, were examined following single oral administration of 14C-labeled gemigliptin to rats.

2.?The 14C-labeled gemigliptin was rapidly absorbed after oral administration, and its bioavailability was 95.2% (by total radioactivity). Distribution to specific tissues other than the digestive organs was not observed. Within 7 days after oral administration, 43.6% of the administered dose was excreted via urine and 41.2% was excreted via feces. Biliary excretion of the radioactivity was about 17.7% for the first 24?h. After oral administration of gemigliptin to rats, the in vivo metabolism of gemigliptin was investigated with bile, urine, feces, plasma and liver samples.

3.?The major metabolic pathway was hydroxylation, and the major circulating metabolites were a dehydrated metabolite (LC15-0516) and hydroxylated metabolites (LC15-0635 and LC15-0636).  相似文献   

6.
1.?The metabolism, excretion and pharmacokinetics of glasdegib (PF-04449913) were investigated following administration of a single oral dose of 100?mg/100 μCi [14C]glasdegib to six healthy male volunteers (NCT02110342).

2.?The peak concentrations of glasdegib (890.3?ng/mL) and total radioactivity (1043 ngEq/mL) occurred in plasma at 0.75?hours post-dose. The AUCinf were 8469?ng.h/mL and 12,230 ngEq.h/mL respectively, for glasdegib and total radioactivity.

3.?Mean recovery of [14C]glasdegib-related radioactivity in excreta was 91% of the administered dose (49% in urine and 42% in feces). Glasdegib was the major circulating component accounting for 69% of the total radioactivity in plasma. An N-desmethyl metabolite and an N-glucuronide metabolite of glasdegib represented 8% and 7% of the circulating radioactivity, respectively. Glasdegib was the major excreted component in urine and feces, accounting for 17% and 20% of administered dose in the 0–120?hour pooled samples, respectively. Other metabolites with abundance <3% of the total circulating radioactivity or dose in plasma or excreta were hydroxyl metabolites, a desaturation metabolite, N-oxidation and O-glucuronide metabolites.

4.?Elimination of [14C]glasdegib-derived radioactivity was essentially complete, with similar contribution from urinary and fecal routes. Oxidative metabolism appears to play a significant role in the biotransformation of glasdegib.  相似文献   

7.
1.?The pharmacokinetics, metabolism and excretion of L-NIL-TA, an inducible nitric oxide synthase inhibitor, were investigated in dog.

2.?The dose of [14C]L-NIL-TA was rapidly absorbed and distributed after oral and intravenous administration (5?mg?kg?1), with Cmax of radioactivity of 6.45–7.07?μg equivalents?g?1 occurring at 0.33–0.39-h after dosing. After oral and intravenous administration, radioactivity levels in plasma then declined with a half-life of 63.1 and 80.6-h, respectively.

3.?Seven days after oral and intravenous administrations, 46.4 and 51.5% of the radioactive dose were recovered in urine, 4.59 and 2.75% were recovered in faeces, and 22.4 and 22.4% were recovered in expired air, respectively. The large percentages of radioactive dose recovered in urine and expired air indicate that [14C]L-NIL-TA was well absorbed in dogs and the radioactive dose was cleared mainly through renal elimination. The mean total recovery of radioactivity over 7 days was approximately 80%.

4.?Biotransformation of L-NIL-TA occurred primarily by hydrolysis of the 5-aminotetrazole group to form the active drug L-N6-(1-iminoethyl)lysine (NIL or M3), which was further oxidized to the 2-keto acid (M5), the 2-hydroxyl acid (M1), an unidentified metabolite (M2) and carbon dioxide. The major excreted products in urine were M1 and M2, representing 22.2 and 21.2% of the dose, respectively.  相似文献   

8.
Abstract

1.?The pharmacokinetics and metabolism of dalcetrapib (JTT-705/RO4607381), a novel cholesteryl ester transfer protein inhibitor, were investigated in rats and monkeys.

2.?In in vitro stability studies, dalcetrapib was extremely unstable in plasma, liver S9 and small intestinal mucosa, and the pharmacologically active form (dalcetrapib thiol) was detected as major component. Most of the active form in plasma was covalently bound to plasma proteins via mixed disulfide bond formation.

3.?Following oral administration of 14C-dalcetrapib to rats and monkeys, active form was detected in plasma. The active form was mainly metabolized to the glucuronide conjugate and the methyl conjugate at the thiol group. Several minor metabolites including mono- and di-oxidized forms of the glucuronide are also detected in the plasma and urine.

4.?The administered radioactivity was widely distributed to all tissues and mainly excreted into the feces (85.7 and 62.7% of the dose in rats and monkeys, respectively). Most of the radioactivity was recovered by 168?h. Although the absorbed dalcetrapib was hydrolyzed to the active form and was bound to endogenous thiol via formation of disulfide bond, it was relatively rapidly eliminated from the body and was not retained.  相似文献   

9.
1.?Alectinib is a highly selective, central nervous system-active small molecule anaplastic lymphoma kinase inhibitor.

2.?The absolute bioavailability, metabolism, excretion and pharmacokinetics of alectinib were studied in a two-period single-sequence crossover study. A 50?μg radiolabelled intravenous microdose of alectinib was co-administered with a single 600?mg oral dose of alectinib in the first period, and a single 600?mg/67?μCi oral dose of radiolabelled alectinib was administered in the second period to six healthy male subjects.

3.?The absolute bioavailability of alectinib was moderate at 36.9%. Geometric mean clearance was 34.5?L/h, volume of distribution was 475?L and the hepatic extraction ratio was low (0.14).

4.?Near-complete recovery of administered radioactivity was achieved within 168?h post-dose (98.2%) with excretion predominantly in faeces (97.8%) and negligible excretion in urine (0.456%). Alectinib and its major active metabolite, M4, were the main components in plasma, accounting for 76% of total plasma radioactivity. In faeces, 84% of dose was excreted as unchanged alectinib with metabolites M4, M1a/b and M6 contributing to 5.8%, 7.2% and 0.2% of dose, respectively.

5.?This novel study design characterised the full absorption, distribution, metabolism and excretion properties in each subject, providing insight into alectinib absorption and disposition in humans.  相似文献   

10.
Abstract

1.?The metabolism, pharmacokinetics, excretion and tissue distribution of a hepatitis C NS3/NS4 protease inhibitor, faldaprevir, were studied in rats following a single 2?mg/kg intravenous or 10?mg/kg oral administration of [14C]-faldaprevir.

2.?Following intravenous dosing, the terminal elimination t1/2 of plasma radioactivity was 1.75?h (males) and 1.74?h (females). Corresponding AUC0–∞, CL and Vss were 1920 and 1900?ngEq?·?h/mL, 18.3 and 17.7?mL/min/kg and 2.32 and 2.12?mL/kg for males and females, respectively.

3.?After oral dosing, t1/2 and AUC0–∞ for plasma radioactivity were 1.67 and 1.77?h and 11?300 and 17?900 ngEq?·?h/mL for males and females, respectively.

4.?In intact rats, ≥90.17% dose was recovered in feces and only ≤1.08% dose was recovered in urine for both iv and oral doses. In bile cannulated rats, 54.95, 34.32 and 0.27% dose was recovered in feces, bile and urine, respectively.

5.?Glucuronidation plays a major role in the metabolism of faldaprevir with minimal Phase I metabolism.

6.?Radioactivity was rapidly distributed into tissues after the oral dose with peak concentrations of radioactivity in most tissues at 6?h post-dose. The highest levels of radioactivity were observed in liver, lung, kidney, small intestine and adrenal gland.  相似文献   

11.
Abstract

1.?The objectives of this study were to evaluate the pharmacokinetics and metabolism of fimasartan in rats.

2.?Unlabeled fimasartan or radiolabeled [14C]fimasartan was dosed by intravenous injection or oral administration to rats. Concentrations of unlabeled fimasartan in the biological samples were determined by a validated LC/MS/MS assay. Total radioactivity was quantified by liquid scintillation counting and the radioactivity associated with the metabolites was analyzed by using the radiochemical detector. Metabolite identification was conducted by product ion scanning using LC/MS/MS.

3.?After oral administration of [14C]fimasartan, total radioactivity was found primarily in feces. In bile duct cannulated rats, 58.8?±?14.4% of the radioactive dose was excreted via bile after oral dosing. Major metabolites of fimasartan including the active metabolite, desulfo-fimasartan, were identified, yet none represented more than 7.2% of the exposure of the parent drug. Fimasartan was rapidly and extensively absorbed and had an oral bioavailability of 32.7–49.6% in rats. Fimasartan plasma concentrations showed a multi-exponential decline after oral administration. Double peaks and extended terminal half-life were observed, which was likely caused by enterohepatic recirculation.

4.?These results provide better understanding on the pharmacokinetics of fimasartan and may aid further development of fimasartan analogs.  相似文献   

12.
1. Nufenoxole, a novel antidiarrhoeal agent, was well absorbed in rat, monkey and human after oral administration. Systemic availability of nufenoxole was 85% in monkey and 102% in man.

2. The elimination rate was much faster in rat (t1/2 of 1.8?h) and monkey (t1/2 of 4.9?h) compared with human (t1/2 of 35.8?h).

3. After oral and i.v. 14C-nufenoxole, concentrations of 14C in human erythrocytes and saliva were approx. 3- and 4-fold lower, respectively, than plasma concentrations.

4. Nufenoxole was metabolized to metabolites hydroxylated on the methyl substituent and isoquinuclidine ring in rat and monkey. The isoquinuclidine ring hydroxylation, a major pathway in human, was stereospecific.

5. Following oral doses of 14C-nufenoxole the urinary excretion of radioactivity (about 8%) was less than the faecal excretion (66.6%) in rat, while urinary excretion was the major route of drug elimination (about 60%) in man. In monkey, urinary and faecal excretion were equally important.  相似文献   

13.
1. After oral or intravenous doses (0.25?mg/kg) of [14C]lormetazepam to rats, most of the urinary radioactivity was associated with polar components and < 1% dose was excreted as unconjugated lormetazepam. About 30% of an oral dose was excreted in rat bile as a conjugate of lormetazepam and about 50% dose as polar metabolites. Plasma also contained mainly polar metabolites, and unchanged lormetazepam represented at most 10% of total plasma radioactivity after an oral dose.

2. Almost all the radioactivity in dog, rhesus monkey and rabbit urine, after oral or intravenous doses (0.5–0.7?mg/kg) of [14C]lormetazepam, was associated with conjugated material. In the dog there were only two major components, conjugates of lormetazepam and lorazepam (N-desmethyl-lormetazepam) which accounted for about 24% and 14% respectively of the oral dose in the 0–24?h urine. The same two conjugated components were also present in dog bile. Conjugated lormetazepam was the only major component in monkey and rabbit urine and accounted for about 60% dose in the 0–24?h urine of each species, while conjugated lorazepam accounted for only about 0.5% and 4% respectively.

3. Dog and monkey plasma contained mostly conjugated material after oral and intravenous doses (0.05–0.07?mg/kg of [14C]lormetazepam. Dog plasma after an oral dose contained conjugates of both lormetazepam and lorazepam with peak concn. at 1?h of 130 and 47 ng/ml respectively. Concn. of these conjugates in plasma declined with apparent terminal half-lives of about 17 and 27?h respectively after oral doses, and 13?h in both cases after intravenous doses. Conjugated lormetazepam was the only major component in monkey plasma representing a peak concn. of 180 ng/ml at 1?h after an oral dose, and declined with an apparent terminal half-life of about 11?h after oral or intravenous doses.

4. Lormetazepam crosses the placental ‘barrier’ of rabbits: its concn. in the foetus were similar to those in maternal plasma after intravenous doses.  相似文献   

14.
1.?Omarigliptin (MARIZEV®) is a once-weekly DPP-4 inhibitor approved in Japan for the treatment of type 2 diabetes. The objective of this study was to investigate the absorption, metabolism and excretion of omarigliptin in humans.

2.?Six healthy subjects received a single oral dose of 25?mg (2.1?μCi) [14?C]omarigliptin. Blood, plasma, urine and fecal samples were collected at various intervals for up to 20?days post-dose. Radioactivity levels in excreta and plasma/blood samples were determined by accelerator mass spectrometry (AMS).

3.?[14?C]Omarigliptin was rapidly absorbed, with peak plasma concentrations observed at 0.5–2?h post-dose. The majority of the radioactivity was recovered in urine (~74.4% of the dose), with less recovered in feces (~3.4%), suggesting the compound was well absorbed.

4.?Omarigliptin was the major component in urine (~89% of the urinary radioactivity), indicating renal excretion of the unchanged drug as the primary clearance mechanism. Omarigliptin accounted for almost all the circulating radioactivity in plasma, with no major metabolites detected.

5.?The predominantly renal elimination pathway, combined with the fact that omarigliptin is not a substrate of key drug transporters, suggest omarigliptin is unlikely to be subject to pharmacokinetic drug-drug interactions with other commonly prescribed agents.  相似文献   

15.
Abstract

1.?The metabolism and pharmacokinetics of S-777469 were investigated after a single oral administration of [14C]-S-777469 to healthy human subjects.

2.?Total radioactivity was rapidly and well absorbed in humans, with Cmax of 11?308?ng eq. of S-777469/ml at 4.0?h. The AUCinf ratio of unchanged S-777469 to total radioactivity was approximately 30%, indicating that S-777469 was extensively metabolized in humans.

3.?The metabolite profiling in human plasma showed that S-777469 5-carboxymethyl (5-CA) and S-777469 5-hydroxymethyl (5-HM) were the main circulating metabolites, and the AUCinf ratio of 5-CA and 5-HM to total radioactivity were 24 and 9.1%, respectively. These data suggest that S-777469 was subsequently metabolized to 5-CA in humans although the production amount of 5-CA was extremely low in human hepatocytes.

4.?Total radioactivity was mainly excreted via the feces, with 5-CA and 5-HM being the main excretory metabolites in feces and urine. Urinary excretion of 5-CA was comparable with that of 5-HM, whereas fecal excretion of 5-CA was lower than that of 5-HM.

5.?In conclusion, the current mass balance study revealed the metabolic and pharmacokinetic properties of S-777469 in humans. These data should be useful to judge whether or not the safety testing of metabolite of S-777469 is necessary.  相似文献   

16.
1. The disposition and urinary metabolic pattern of 14C-cabergoline was studied in rat, monkey and man after oral administration of the labelled drug.

2. In all species radioactivity was mainly excreted in faeces, with urinary excretion accounting for 11, 13 and 22% of the dose in rat, monkey and man, respectively.

3. After oral treatment, biliary excretion of radioactivity in rat accounted for 19% of the dose within 24?h.

4. Unchanged drug in 0-24-h urine samples of rat, monkey and man amounted to 20, 9 and 10% of urinary radioactivity, respectively. In the 24-72-h urine samples of all species the relative percentage of unchanged drug increased compared with that measured in the 0-24-h urine.

5. The main metabolite was the acid derivative (FCE21589), which in 0-24-h urine samples of rat, monkey and man accounted for 30, 21 and 41% of urinary radioactivity, respectively.

6. Other metabolites identified in urine of all species resulted from hydrolysis of the urea moiety, the loss of the 3-dimethylaminopropyl group and the deallylation of the piperidine nitrogen.  相似文献   

17.
1.?Absorption, distribution, metabolism, transport and elimination properties of omadacycline, an aminomethylcycline antibiotic, were investigated in vitro and in a study in healthy male subjects.

2.?Omadacycline was metabolically stable in human liver microsomes and hepatocytes and did not inhibit or induce any of the nine cytochrome P450 or five transporters tested. Omadacycline was a substrate of P-glycoprotein, but not of the other transporters.

3.?Omadacycline metabolic stability was confirmed in six healthy male subjects who received a single 300?mg oral dose of [14C]-omadacycline (36.6 μCi). Absorption was rapid with peak radioactivity (~610 ngEq/mL) between 1–4?h in plasma or blood. The AUClast of plasma radioactivity (only quantifiable to 8?h due to low radioactivity) was 3096 ngEq?h/mL and apparent terminal half-life was 11.1?h. Unchanged omadacycline reached peak plasma concentrations (~563?ng/mL) between 1–4?h. Apparent plasma half-life was 17.6?h with biphasic elimination. Plasma exposure (AUCinf) averaged 9418?ng?h/mL, with high clearance (CL/F, 32.8?L/h) and volume of distribution (Vz/F 828?L). No plasma metabolites were observed.

4.?Radioactivity recovery of the administered dose in excreta was complete (>95%); renal and fecal elimination were 14.4% and 81.1%, respectively. No metabolites were observed in urine or feces, only the omadacycline C4-epimer.  相似文献   

18.
Prasugrel is converted to the pharmacologically active metabolite after oral dosing in vivo. In this study, 14C-prasugrel or prasugrel was administered to rats at a dose of 5?mg?kg–1. After oral and intravenous dosing, the values of AUC0–∞ of total radioactivity were 36.2 and 47.1?µg?eq.?h?ml–1, respectively. Oral dosing of unlabeled prasugrel showed the second highest AUC0–8 of the active metabolite of six metabolites analyzed. Quantitative whole body autoradiography showed high radioactivity concentrations in tissues for absorption and excretion at 1?h after oral administration, and were low at 72?h. The excretion of radioactivity in the urine and feces were 20.2% and 78.7%, respectively, after oral dosing. Most radioactivity after oral dosing was excreted in bile (90.1%), which was reabsorbed moderately (62.4%). The results showed that orally administered prasugrel was rapidly and fully absorbed and efficiently converted to the active metabolite with no marked distribution in a particular tissue.  相似文献   

19.
1.?The pharmacokinetics and metabolism of 14C-levetiracetam, a new anti-epileptic agent, in mouse, rat, rabbit and dog after a single oral dose were investigated. Moreover, the in vitro hydrolysis of levetiracetam to its major carboxylic metabolite by rat tissue homogenates was investigated to identify tissues involved in the production of the metabolite. Data are also presented on the induction of the enzyme(s) involved in levetiracetam hydrolysis in the rat.

2.?Levetiracetam was rapidly and almost completely absorbed. The unchanged drug accounted for a very high percentage of plasma radioactivity. Levetiracetam did not bind to plasma proteins. Although brain radioactivity concentrations were lower than those of whole blood at early time points, brain-to-blood ratios increased over time. The predominant route of elimination of total 14C was excretion via urine, accounting for about 81, 93, 87 and 89% of the dose in the mouse, rat, rabbit and dog, respectively. Consequently, levetiracetam was poorly metabolized. It was submitted in vivo to hydrolysis and/or oxidation. Hydrolysis of the amide function of levetiracetam produced the corresponding acid. However, levetiracetam could also be oxidized at positions 3 and 4 of the 2-oxopyrrolidine ring. Finally, the compound and the corresponding acid metabolite could be oxidized at position 5 of the 2-oxopyrrolidine ring and then hydrolysed with the opening of the ring.

3.?All the investigated rat tissues (liver, kidney, lung, brain, small intestine mucosa) had the potential to produce the acid metabolite. By contrast, the acid was undetectable following incubation of levetiracetam with buffer alone or heat-denaturated liver fractions.

4.?No marked species or sex differences were observed in the absorption, disposition and metabolism of levetiracetam.

5.?The hydrolysis of levetiracetam is carried out by an enzymatic process characterized by a broad tissue distribution. In the rat, the enzyme system hydrolysing levetiracetam is not induced by phenobarbital, at least under the experimental conditions used herein, whereas the enzyme system(s) involved in the other metabolic pathways is induced.  相似文献   

20.
Abstract

1. GTx-024, a novel selective androgen receptor modulator, is currently being investigated as an oral treatment for muscle wasting disorders associated with cancer and other chronic conditions.

2. Absorption of GTx-024 was rapid and complete, with high oral bioavailability. A wide tissue distribution of [14C]GTx-024 derived radioactivity was observed. [14C]GTx-024-derived radioactivity had a moderate plasma clearance (117.7 and 74.5?mL/h/kg) and mean elimination half-life of 0.6?h and 16.4?h in male and female rats, respectively.

3. Fecal excretion was the predominant route of elimination, with ~70% of total radioactivity recovered in feces and 21–25% in urine within 48?h. Feces of intact rats contained primarily unchanged [14C]GTx-024 (49.3–64.6%). Metabolites were identified in urine and feces resulting from oxidation of the cyanophenol ring (M8, 17.6%), hydrolysis and/or further conjugation of the amide moiety (M3, 8–12%) and the cyanophenol ring (M4, 1.3–1.5%), and glucuronidation of [14C]GTx-024 at the tertiary alcohol (M6, 3.5–3.7%). There was no quantifiable metabolite in plasma.

4. In summary, in the rat GTx-024 is completely absorbed, widely distributed, biotransformed through several metabolic pathways, and eliminated in feces primarily as an unchanged drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号