首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emergence and spread of artemisinin-resistant Plasmodium falciparum is of huge concern for the global effort toward malaria control and elimination. Artemisinin resistance, defined as a delayed time to parasite clearance following administration of artemisinin, is associated with mutations in the Pfkelch13 gene of resistant parasites. To date, as many as 60 nonsynonymous mutations have been identified in this gene, but whether these mutations have been selected by artemisinin usage or merely reflect natural polymorphism independent of selection is currently unknown. To clarify this, we sequenced the Pfkelch13 propeller domain in 581 isolates collected before (420 isolates) and after (161 isolates) the implementation of artemisinin combination therapies (ACTs), from various regions of endemicity worldwide. Nonsynonymous mutations were observed in 1% of parasites isolated prior to the introduction of ACTs. Frequencies of mutant isolates, nucleotide diversity, and haplotype diversity were significantly higher in the parasites isolated from populations exposed to artemisinin than in those from populations that had not been exposed to the drug. In the artemisinin-exposed population, a significant excess of dN compared to dS was observed, suggesting the presence of positive selection. In contrast, pairwise comparison of dN and dS and the McDonald and Kreitman test indicate that purifying selection acts on the Pfkelch13 propeller domain in populations not exposed to ACTs. These population genetic analyses reveal a low baseline of Pfkelch13 polymorphism, probably due to purifying selection in the absence of artemisinin selection. In contrast, various Pfkelch13 mutations have been selected under artemisinin pressure.  相似文献   

2.
The decreasing effectiveness of antimalarial therapy due to drug resistance necessitates constant efforts to develop new drugs. Artemisinin derivatives are the most recent drugs that have been introduced and are considered the first line of treatment, but there are already indications of Plasmodium falciparum resistance to artemisinins. Consequently, drug combinations are recommended for prevention of the induction of resistance. The research here demonstrates the effects of novel combinations of the new artemisinin derivative, artemisone, a recently described 10-alkylamino artemisinin derivative with improved antimalarial activity and reduced neurotoxicity. We here investigate its ability to kill P. falciparum in a high-throughput in vitro assay and to protect mice against lethal cerebral malaria caused by Plasmodium berghei ANKA when used alone or in combination with established antimalarial drugs. Artemisone effects against P. falciparum in vitro were synergistic with halofantrine and mefloquine, and additive with 25 other drugs, including chloroquine and doxycycline. The concentrations of artemisone combinations that were toxic against THP-1 cells in vitro were much higher than their effective antimalarial concentration. Artemisone, mefloquine, chloroquine, or piperaquine given individually mostly protected mice against cerebral malaria caused by P. berghei ANKA but did not prevent parasite recrudescence. Combinations of artemisone with any of the other three drugs did completely cure most mice of malaria. The combination of artemisone and chloroquine decreased the ratio of proinflammatory (gamma interferon, tumor necrosis factor) to anti-inflammatory (interleukin 10 [IL-10], IL-4) cytokines in the plasma of P. berghei-infected mice. Thus, artemisone in combinations with other antimalarial drugs might have a dual action, both killing parasites and limiting the potentially deleterious host inflammatory response.  相似文献   

3.
Most current antimalarials for treatment of clinical Plasmodium falciparum malaria fall into two broad drug families and target the food vacuole of the trophozoite stage. No antimalarials have been shown to target the brief extracellular merozoite form of blood-stage malaria. We studied a panel of 12 drugs, 10 of which have been used extensively clinically, for their invasion, schizont rupture, and growth-inhibitory activity using high-throughput flow cytometry and new approaches for the study of merozoite invasion and early intraerythrocytic development. Not surprisingly, given reported mechanisms of action, none of the drugs inhibited merozoite invasion in vitro. Pretreatment of erythrocytes with drugs suggested that halofantrine, lumefantrine, piperaquine, amodiaquine, and mefloquine diffuse into and remain within the erythrocyte and inhibit downstream growth of parasites. Studying the inhibitory activity of the drugs on intraerythrocytic development, schizont rupture, and reinvasion enabled several different inhibitory phenotypes to be defined. All drugs inhibited parasite replication when added at ring stages, but only artesunate, artemisinin, cycloheximide, and trichostatin A appeared to have substantial activity against ring stages, whereas the other drugs acted later during intraerythrocytic development. When drugs were added to late schizonts, only artemisinin, cycloheximide, and trichostatin A were able to inhibit rupture and subsequent replication. Flow cytometry proved valuable for in vitro assays of antimalarial activity, with the free merozoite population acting as a clear marker for parasite growth inhibition. These studies have important implications for further understanding the mechanisms of action of antimalarials, studying and evaluating drug resistance, and developing new antimalarials.  相似文献   

4.
Parthenin and parthenolide are natural products that are closely related in structure to artemisinin, which is also a sesquiterpene lactone (SQL) and one of the most important antimalarial drugs available. Parthenin, like artemisinin, has an effect on Plasmodium blood stage development. We extended the evaluation of parthenin as a potential therapeutic for the transmissible stages of Plasmodium falciparum as it transitions between human and mosquito, with the aim of gaining potential mechanistic insight into the inhibitory activity of this compound. We posited that if parthenin targets different biological pathways in the parasite, this in turn could pave the way for the development of druggable compounds that could prevent the spread of artemisinin-resistant parasites. We examined parthenin''s effect on male gamete activation and the ookinete-to-oocyst transition in the mosquito as well as on stage V gametocytes that are present in peripheral blood. Parthenin arrested parasite development for each of the stages tested. The broad inhibitory properties of parthenin on the evaluated parasite stages may suggest different mechanisms of action between parthenin and artemisinin. Parthenin''s cytotoxicity notwithstanding, its demonstrated activity in this study suggests that structurally related SQLs with a better safety profile deserve further exploration. We used our battery of assays to test parthenolide, which has a more compelling safety profile. Parthenolide demonstrated activity nearly identical to that of parthenin against P. falciparum, highlighting its potential as a possible transmission-blocking drug scaffold. We discuss the context of the evidence with respect to the next steps toward expanding the current antimalarial arsenal.  相似文献   

5.
The emergence of drug-resistant parasites is a serious threat faced by malaria control programs. Understanding the genetic basis of resistance is critical to the success of treatment and intervention strategies. A novel locus associated with antimalarial resistance, ap2-mu (encoding the mu chain of the adaptor protein 2 [AP2] complex), was recently identified in studies on the rodent malaria parasite Plasmodium chabaudi (pcap2-mu). Furthermore, analysis in Kenyan malaria patients of polymorphisms in the Plasmodium falciparum ap2-mu homologue, pfap2-mu, found evidence that differences in the amino acid encoded by codon 160 are associated with enhanced parasite survival in vivo following combination treatments which included artemisinin derivatives. Here, we characterize the role of pfap2-mu in mediating the in vitro antimalarial drug response of P. falciparum by generating transgenic parasites constitutively expressing codon 160 encoding either the wild-type Ser (Ser160) or the Asn mutant (160Asn) form of pfap2-mu. Transgenic parasites carrying the pfap2-mu 160Asn allele were significantly less sensitive to dihydroartemisinin using a standard 48-h in vitro test, providing direct evidence of an altered parasite response to artemisinin. Our data also provide evidence that pfap2-mu variants can modulate parasite sensitivity to quinine. No evidence was found that pfap2-mu variants contribute to the slow-clearance phenotype exhibited by P. falciparum in Cambodian patients treated with artesunate monotherapy. These findings provide compelling evidence that pfap2-mu can modulate P. falciparum responses to multiple drugs. We propose that this gene should be evaluated further as a potential molecular marker of antimalarial resistance.  相似文献   

6.
Conventional 48-h in vitro susceptibility tests have low sensitivity in identifying artemisinin-resistant Plasmodium falciparum, defined phenotypically by low in vivo parasite clearance rates. We hypothesized originally that this discrepancy was explained by a loss of ring-stage susceptibility and so developed a simple field-adapted 24-h trophozoite maturation inhibition (TMI) assay focusing on the ring stage and compared it to the standard 48-h schizont maturation inhibition (WHO) test. In Pailin, western Cambodia, where artemisinin-resistant P. falciparum is prevalent, the TMI test mean (95% confidence interval) 50% inhibitory concentration (IC50) for artesunate was 6.8 (5.2 to 8.3) ng/ml compared with 1.5 (1.2 to 1.8) ng/ml for the standard 48-h WHO test (P = 0.001). TMI IC50s correlated significantly with the in vivo responses to artesunate (parasite clearance time [r = 0.44, P = 0.001] and parasite clearance half-life [r = 0.46, P = 0.001]), whereas the standard 48-h test values did not. On continuous culture of two resistant isolates, the artemisinin-resistant phenotype was lost after 6 weeks (IC50s fell from 10 and 12 ng/ml to 2.7 and 3 ng/ml, respectively). Slow parasite clearance in falciparum malaria in western Cambodia results from reduced ring-stage susceptibility.  相似文献   

7.
Artemisinin resistance in Plasmodium falciparum parasites in Southeast Asia is a major concern for malaria control. Its emergence at the China-Myanmar border, where there have been more than 3 decades of artemisinin use, has yet to be investigated. Here, we comprehensively evaluated the potential emergence of artemisinin resistance and antimalarial drug resistance status in P. falciparum using data and parasites from three previous efficacy studies in this region. These efficacy studies of dihydroartemisinin-piperaquine combination and artesunate monotherapy of uncomplicated falciparum malaria in 248 P. falciparum patients showed an overall 28-day adequate clinical and parasitological response of >95% and day 3 parasite-positive rates of 6.3 to 23.1%. Comparison of the 57 K13 sequences (24 and 33 from day 3 parasite-positive and -negative cases, respectively) identified nine point mutations in 38 (66.7%) samples, of which F446I (49.1%) and an N-terminal NN insertion (86.0%) were predominant. K13 propeller mutations collectively, the F446I mutation alone, and the NN insertion all were significantly associated with day 3 parasite positivity. Increased ring-stage survival determined using the ring-stage survival assay (RSA) was highly associated with the K13 mutant genotype. Day 3 parasite-positive isolates had ∼10 times higher ring survival rates than day 3 parasite-negative isolates. Divergent K13 mutations suggested independent evolution of artemisinin resistance. Taken together, this study confirmed multidrug resistance and emergence of artemisinin resistance in P. falciparum at the China-Myanmar border. RSA and K13 mutations are useful phenotypic and molecular markers for monitoring artemisinin resistance.  相似文献   

8.
The declining efficacy of artemisinin derivatives against Plasmodium falciparum in western Cambodia is a major concern. The knowledge gap in the understanding of the mechanisms involved hampers designing monitoring tools. Here, we culture-adapted 20 isolates from Pailin and Ratanakiri (areas of artemisinin resistance and susceptibility in western and eastern Cambodia, respectively) and studied their in vitro response to dihydroartemisinin. No significant difference between the two sets of isolates was observed in the classical isotopic test. However, a 6-h pulse exposure to 700 nM dihydroartemisinin (ring-stage survival assay -RSA]) revealed a clear-cut geographic dichotomy. The survival rate of exposed ring-stage parasites (ring stages) was 17-fold higher in isolates from Pailin (median, 13.5%) than in those from Ratanakiri (median, 0.8%), while exposed mature stages were equally and highly susceptible (0.6% and 0.7%, respectively). Ring stages survived drug exposure by cell cycle arrest and resumed growth upon drug withdrawal. The reduced susceptibility to artemisinin in Pailin appears to be associated with an altered in vitro phenotype of ring stages from Pailin in the RSA.  相似文献   

9.
Reduced Plasmodium falciparum sensitivity to short-course artemisinin (ART) monotherapy manifests as a long parasite clearance half-life. We recently defined three parasite founder populations with long half-lives in Pursat, western Cambodia, where reduced ART sensitivity is prevalent. Using the ring-stage survival assay, we show that these founder populations have reduced ART sensitivity in vitro at the early ring stage of parasite development and that a genetically admixed population contains subsets of parasites with normal or reduced ART sensitivity.  相似文献   

10.
Plasmodium falciparum has the capacity to escape the actions of essentially all antimalarial drugs. ATP-binding cassette (ABC) transporter proteins are known to cause multidrug resistance in a large range of organisms, including the Apicomplexa parasites. P. falciparum genome analysis has revealed two genes coding for the multidrug resistance protein (MRP) type of ABC transporters: Pfmrp1, previously associated with decreased parasite drug susceptibility, and the poorly studied Pfmrp2. The role of Pfmrp2 polymorphisms in modulating sensitivity to antimalarial drugs has not been established. We herein report a comprehensive account of the Pfmrp2 genetic variability in 46 isolates from Thailand. A notably high frequency of 2.8 single nucleotide polymorphisms (SNPs)/kb was identified for this gene, including some novel SNPs. Additionally, we found that Pfmrp2 harbors a significant number of microindels, some previously not reported. We also investigated the potential association of the identified Pfmrp2 polymorphisms with altered in vitro susceptibility to several antimalarials used in artemisinin-based combination therapy and with parasite clearance time. Association analysis suggested Pfmrp2 polymorphisms modulate the parasite''s in vitro response to quinoline antimalarials, including chloroquine, piperaquine, and mefloquine, and association with in vivo parasite clearance. In conclusion, our study reveals that the Pfmrp2 gene is the most diverse ABC transporter known in P. falciparum with a potential role in antimalarial drug resistance.  相似文献   

11.
Novel synthetic endoperoxides are being evaluated as new components of artemisinin combination therapies (ACTs) to treat artemisinin-resistant Plasmodium falciparum malaria. We conducted blinded ex vivo activity testing of fully synthetic (OZ78 and OZ277) and semisynthetic (artemisone, artemiside, artesunate, and dihydroartemisinin) endoperoxides in the histidine-rich protein 2 enzyme-linked immunosorbent assay against 200 P. falciparum isolates from areas of artemisinin-resistant malaria in western and northern Cambodia in 2009 and 2010. The order of potency and geometric mean (GM) 50% inhibitory concentrations (IC50s) were as follows: artemisone (2.40 nM) > artesunate (8.49 nM) > dihydroartemisinin (11.26 nM) > artemiside (15.28 nM) > OZ277 (31.25 nM) > OZ78 (755.27 nM). Ex vivo activities of test endoperoxides positively correlated with dihydroartemisinin and artesunate. The isolates were over 2-fold less susceptible to dihydroartemisinin than the artemisinin-sensitive P. falciparum W2 clone and showed sensitivity comparable to those with test endoperoxides and artesunate, with isolate/W2 IC50 susceptibility ratios of <2.0. All isolates had P. falciparum chloroquine resistance transporter mutations, with negative correlations in sensitivity to endoperoxides and chloroquine. The activities of endoperoxides (artesunate, dihydroartemisinin, OZ277, and artemisone) significantly correlated with that of the ACT partner drug, mefloquine. Isolates had mutations associated with clinical resistance to mefloquine, with 35% prevalence of P. falciparum multidrug resistance gene 1 (pfmdr1) amplification and 84.5% occurrence of the pfmdr1 Y184F mutation. GM IC50s for mefloquine, lumefantrine, and endoperoxides (artesunate, dihydroartemisinin, OZ277, OZ78, and artemisone) correlated with pfmdr1 copy number. Given that current ACTs are failing potentially from reduced sensitivity to artemisinins and partner drugs, newly identified mutations associated with artemisinin resistance reported in the literature and pfmdr1 mutations should be examined for their combined contributions to emerging ACT resistance.  相似文献   

12.
Malaria treatment in Southeast Asia is threatened with the emergence of artemisinin-resistant Plasmodium falciparum. Genome association studies have strongly linked a locus on P. falciparum chromosome 13 to artemisinin resistance, and recently, mutations in the kelch13 propeller region (Pfk-13) were strongly linked to resistance. To date, this information has not been shown in Indian samples. Pfk-13 mutations were assessed in samples from efficacy studies of artemisinin combination treatments in India. Samples were PCR amplified and sequenced from codon 427 to 727. Out of 384 samples, nonsynonymous mutations in the propeller region were found in four patients from the northeastern states, but their presence did not correlate with ACT treatment failures. This is the first report of Pfk-13 point mutations from India. Further phenotyping and genotyping studies are required to assess the status of artemisinin resistance in this region.  相似文献   

13.
14.
Emergence of artemisinin resistance in Cambodia highlights the importance of characterizing resistance to this class of drugs. Previously, intermediate levels of resistance in Plasmodium falciparum were generated in vitro for artelinic acid (AL) and artemisinin (QHS). Here we expanded on earlier selection efforts to produce levels of clinically relevant concentrations, and the resulting lines were characterized genotypically and phenotypically. Recrudescence assays determined the ability of resistant and parent lines to recover following exposure to clinically relevant levels of drugs. Interestingly, the parent clone (D6) tolerated up to 1,500 ng/ml QHS, but the resistant parasite, D6.QHS340×3, recovered following exposure to 2,400 ng/ml QHS. Resistant D6, W2, and TM91c235 parasites all exhibited elevated 50% inhibitory concentrations (IC(50)s) to multiple artemisinin drugs, with >3-fold resistance to QHS and AL; however, the degree of resistance obtained with standard methods was remarkably less than expected for parasite lines that recovered from 2,400-ng/ml drug pressure. A novel assay format with radiolabeled hypoxanthine demonstrated a greater degree of resistance in vitro than the standard SYBR green method. Analysis of merozoite number in resistant parasites found D6 and TM91c235 resistant progeny had significantly fewer merozoites than parent strains, whereas W2 resistant progeny had significantly more. Amplification of pfmdr1 increased proportionately to the increased drug levels tolerated by W2 and TM91c235, but not in resistant D6. In summary, we define the artemisinin resistance phenotype as a decrease in susceptibility to artemisinins along with the ability to recover from drug-induced dormancy following supraclinical concentrations of the drug.  相似文献   

15.
Proteome studies contribute markedly to our understanding of parasite biology, host-parasite interactions, and mechanisms of drug action. For most antimalarial drugs neither mode of action nor mechanisms of resistance development are fully elucidated although this would be important prerequisites for successfully developing urgently required novel antimalarials. Here, we establish a large-scale quantitative proteomic approach to examine protein expression changes in trophozoite stages of the malarial parasite Plasmodium falciparum following chloroquine and artemisinin treatment. For this purpose SIL (stable isotope labeling) using 14N-isoleucine and 13C6,15N1-isoleucine was optimized to obtain 99% atomic percent enrichment. Proteome fractionation with anion exchange chromatography was used to reduce sample complexity and increase quantitative coverage of protein expression. Tryptic peptides of subfractions were subjected to SCX/RP separation, measured by LC-MS/MS and quantified using the novel software tool Census. In drug treated parasites, we identified a total number of 1,253 proteins, thus increasing the overall number of proteins identified in the trophozoite stage by 30%. A relative quantification was obtained for more than 800 proteins. Under artemisinin and chloroquine treatment 41 and 38 proteins respectively were upregulated (>1.5) whereas 14 and 8 proteins were down-regulated (<0.5). Apart from specifically regulated proteins we also identified sets of proteins which were regulated as a general response to drug treatment. The proteomic data was confirmed by Western blotting. The methodology described here allows for the efficient large-scale differential proteome analysis of P. falciparum to study the response to drug treatment or environmental changes. Only 100 µg of protein is required for the analysis suggesting that the method can also be transferred to other apicomplexan parasites.  相似文献   

16.
17.
Artemisinin is a plant sesquiterpene lactone that has become an important drug for combating malaria, especially in regions where resistance to other drugs is widespread. While the mechanism of action is debated, artemisinin has been reported to inhibit the sarcoplasmic endoplasmic reticulum Ca(2+) ATPase (SERCA) in the malaria parasite. Artemisinin is also effective against Toxoplasma in vitro and in vivo, although it is less potent and, hence, is generally not used therapeutically to treat toxoplasmosis. To explore the mechanism of action, we generated chemically derived mutants of Toxoplasma gondii that were resistant to growth inhibition by this compound in vitro. Three artemisinin-resistant (ART(r)) mutant clones that differed in their sensitivities in vitro by three- to fivefold compared with that of the wild-type parasites were obtained. ART(r) mutants were cross-resistant to other derivatives of artemisinin, the most potent of which was artemisone. Resistance was not due to molecular alterations or differences in the expression of SERCA or other putative targets, such as proteins that code for multidrug resistance or translationally controlled tumor protein. ART(r) mutants were resistant to the induction of protein secretion from micronemes, a calcium-dependent process that is triggered by artemisinin. ART(r) mutants were not cross-resistant to secretion induced by thapsigargin but were more sensitive and were unable to regulate cytoslic calcium following treatment with this compound. These studies implicate calcium homeostasis in the mechanism of action of artemisinins against apicomplexan parasites.  相似文献   

18.
The reduced in vivo sensitivity of Plasmodium falciparum has recently been confirmed in western Cambodia. Identifying molecular markers for artemisinin resistance is essential for monitoring the spread of the resistant phenotype and identifying the mechanisms of resistance. Four candidate genes, including the P. falciparum mdr1 (pfmdr1) gene, the P. falciparum ATPase6 (pfATPase6) gene, the 6-kb mitochondrial genome, and ubp-1, encoding a deubiquitinating enzyme, of artemisinin-resistant P. falciparum strains from western Cambodia were examined and compared to those of sensitive strains from northwestern Thailand, where the artemisinins are still very effective. The artemisinin-resistant phenotype did not correlate with pfmdr1 amplification or mutations (full-length sequencing), mutations in pfATPase6 (full-length sequencing) or the 6-kb mitochondrial genome (full-length sequencing), or ubp-1 mutations at positions 739 and 770. The P. falciparum CRT K76T mutation was present in all isolates from both study sites. The pfmdr1 copy numbers in western Cambodia were significantly lower in parasite samples obtained in 2007 than in those obtained in 2005, coinciding with a local change in drug policy replacing artesunate-mefloquine with dihydroartemisinin-piperaquine. Artemisinin resistance in western Cambodia is not linked to candidate genes, as was suggested by earlier studies.Antimalarial drug resistance is the single most important threat to global malaria control. Over the past 40 years, as first-line treatments (chloroquine and sulfadoxine-pyrimethamine) failed, the malaria-attributable mortality rate rose, contributing to a resurgence of malaria in tropical countries (11). In the last decade, artemisinins, deployed as artemisinin combination therapies (ACTs), have become the cornerstone of the treatment of uncomplicated falciparum malaria (20) and, in conjunction with other control measures, have contributed to a remarkable decrease in malaria morbidity and mortality in many African and Asian countries (4). The recent confirmation of the reduced artemisinin sensitivity of Plasmodium falciparum parasites in western Cambodia has therefore alarmed the malaria community (6). A large containment effort has been launched by the World Health Organization, in collaboration with the national malaria control programs of Cambodia and neighboring Thailand. The resistant phenotype has not been well characterized and is not well reflected by the results of conventional in vitro drug susceptibility assays. No molecular marker has been identified, which impedes surveillance studies to monitor the spread of the resistant phenotype. Identification of molecular markers would give insight into the mechanisms underlying artemisinin resistance and the mechanism of antimalarial action of the artemisinins.Mutations in several candidate genes have been postulated to confer artemisinin resistance. (i) P. falciparum mdr1 (pfmdr1) encodes the P-glycoprotein homologue 1 (Pgh1), which belongs to the ATP-binding cassette transporter superfamily, members of which couple ATP hydrolysis to the translocation of a diverse range of drugs and other solutes across the food vacuole and plasma membranes of the parasite (Fig. (Fig.1)1) (5). The gene is located on chromosome 7, is 4.2 kb in length, and contains only one exon. Mutations in and, more importantly, amplification of the wild-type gene confer resistance to the 4-methanolquinoline mefloquine, presumably through an increased ability to efflux the drug (15, 16). Mutations and amplification of the gene have also been associated with reduced in vitro susceptibility to the artemisinins (7, 16). In vivo selection of the pfmdr1 86N allele after artemether-lumefantrine treatment has been observed in Africa (17).Open in a separate windowFIG. 1.Predicted structure and representative haplotypes of P. falciparum multidrug resistance transporter. PfMDR1 is predicted to have 12 transmembrane domains, with its N and C termini located on the cytoplasmic side of the digestive vacuole membrane (adapted from reference 19). Mutations identified in pfmdr1 full-length sequences from Pailin and WangPha are indicated by the red circles. aa, amino acid.(ii) P. falciparum ATPase6 (pfATPase6) encodes the calcium-dependent sarcoplasmic/endoplasmic reticulum calcium ATPase, which was shown to be a target for the artemisinin drugs in Xenopus oocytes (8). The gene is 4.3 kb in length and has three exons on chromosome 1. A single amino acid change in pfATPase6, L263E, is associated with resistance to artemisinins in this model (8, 18). Mutation S769N in pfATPase6 in P. falciparum isolates from French Guiana was associated with decreased in vitro sensitivity to artemether (10). However, it is unclear whether mutations in pfATPase6 are associated with artemisinin resistance in vivo (1).(iii) The electron transport chain in the mitochondrial inner membrane is key to the malaria parasite''s capacity to produce ATP. Since activation of the endoperoxide bridge in the artemisinins by an electron donor is central to their antimalarial activity, mitochondrial proteins are potential activation sites for the artemisinins. Mutations in the mitochondrial genome, which is 6 kb long and which contains three genes (cytochrome b, COXI, COXIII), could therefore potentially change susceptibility to the artemisinins.(iv) ubp-1, a 3.3-kb gene located on chromosome 2, encodes a deubiquitinating enzyme. Mutations V739F and V770F in ubp-1 of P. chabaudi were recently identified by linkage group analysis of an elegant genetic-cross experiment to confer resistance to artesunate in this rodent malaria parasite (9).(v) Laboratory-induced artemisinin resistance in the P. chabaudi model has been demonstrated in a chloroquine-resistant strain. This suggests that chloroquine resistance in this model might be a prerequisite for the subsequent development of artemisinin resistance. We therefore also assessed the parasite genome for the presence of the P. falciparum CRT (pfCRT) K76T mutation, which plays a central role in the chloroquine resistance of P. falciparum.We report here the molecular characteristics of these five groups of genes in P. falciparum isolates from western Cambodia, where most infections show reduced sensitivity to artesunate, compared to those of strains obtained from northwestern Thailand, where infections are artemisinin sensitive (6).  相似文献   

19.
Although artemisinin combination therapies have been deployed as a first-line treatment for uncomplicated malaria in almost all endemic countries, artemisinin-resistant parasites have emerged and have gradually spread across the Greater Mekong subregions. There is growing concern that the resistant parasites may migrate to or emerge indigenously in sub-Saharan Africa, which might provoke a global increase in malaria-associated morbidity and mortality. Therefore, development of molecular markers that enable identification of artemisinin resistance with high sensitivity is urgently required to combat this issue. In 2014, a potential artemisinin-resistance responsible gene, Plasmodium falciparum kelch13, was discovered. Here, we review the genetic features of P. falciparum kelch13 and discuss its related resistant mechanisms and potential as a molecular marker.  相似文献   

20.
Resistance to antimalarial therapies, including artemisinin, has emerged as a significant challenge. Reversal of acquired resistance can be achieved using agents that resensitize resistant parasites to a previously efficacious therapy. Building on our initial work describing novel chemoreversal agents (CRAs) that resensitize resistant parasites to chloroquine (CQ), we herein report new hybrid single agents as an innovative strategy in the battle against resistant malaria. Synthetically linking a CRA scaffold to chloroquine produces hybrid compounds with restored potency toward a range of resistant malaria parasites. A preferred compound, compound 35, showed broad activity and good potency against seven strains resistant to chloroquine and artemisinin. Assessment of aqueous solubility, membrane permeability, and in vitro toxicity in a hepatocyte line and a cardiomyocyte line indicates that compound 35 has a good therapeutic window and favorable drug-like properties. This study provides initial support for CQ-CRA hybrid compounds as a potential treatment for resistant malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号