首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Familial breast cancer accounts for 20–30 % of all breast cancer cases. Mutations in the BRCA1 and BRCA2 genes account for the majority of high risk families with both early onset breast cancer and ovarian cancer. Most of the families with less than six breast cancer cases and no ovarian cancer do not carry BRCA1 or BRCA2 mutations that can be detected using routine sequencing protocols. Here, we aimed to review the etiology of familial breast cancer in cases without BRCA1 and BRCA2 mutations.

Results

After excluding BRCA1 and BRCA2 mutations, factors proposed to contribute to familial breast cancer include: chance clustering of apparently sporadic cases, shared lifestyle, monogenic inheritance, i.e., dominant gene mutations associated with a high risk (TP53, PTEN, STK11), dominant gene mutations associated with a relatively low risk (ATM, BRIP1, RLB2), recessive gene mutations associated with horizontal inheritance patterns (sister-sister), and polygenic inheritance where susceptibility to familial breast cancer is thought to be conferred by a large number of low risk alleles.

Conclusions

Current evidence suggests that in the majority of cases with BRCA1 and BRCA2 negative familial breast cancer the etiology is due to interactions of intermediate or low risk alleles with environmental and lifestyle factors. Thus, a careful selection of patients submitted to genetic testing is needed. Clearly, further research is required to fully elucidate the etiology of non-BRCA familial breast cancer.  相似文献   

2.
To assess the need for adjustment in the likelihood of germline BRCA1/2 mutations in women with HER2+ breast cancers. We analysed primary mutation screens on women with breast cancer with unequivocal HER2 overexpression and assessed the likelihood of BRCA1/BRCA2 mutations by age, oestrogen receptor status and Manchester score. Of 1111 primary BRCA screens with confirmed HER2 status only 4/161 (2.5%) of women with HER2 amplification had a BRCA1 mutation identified and 5/161 (3.1%) a BRCA2 mutation. The pathology adjusted Manchester score between 10 and 19% and 20%+ thresholds resulted in a detection rate of only 6.5 and 15% respectively. BOADICEA examples appeared to make even less downward adjustment. There is a very low detection rate of BRCA1 and BRCA2 mutations in women with HER2 amplified breast cancers. The Manchester score and BOADICEA do not make sufficient downward adjustment for HER2 amplification. For unaffected women, assessment of breast cancer risk and BRCA1/2 probability should take into account the pathology of the most relevant close relative. Unaffected women undergoing mutation testing for BRCA1/2 should be advised that there is limited reassurance from a negative test result if their close relative had a HER2+ breast cancer.  相似文献   

3.

Background

The prognostic significance of germline mutations in BRCA1 and BRCA2 in women with breast cancer remains unclear. A combined analysis was performed to address this uncertainty.

Methods

Two retrospective cohorts of Ashkenazi Jewish women undergoing breast-conserving treatment for invasive cancer between 1980 and 1995 (n = 584) were established. Archived tissue blocks were used as the source of DNA for Ashkenazi Jewish BRCA1/BRCA2 founder mutation analysis. Paraffin-embedded tissue and follow-up information was available for 505 women.

Results

Genotyping was successful in 496 women, of whom 56 (11.3%) were found to carry a BRCA1/BRCA2 founder mutation. After a median follow-up period of 116 months, breast cancer specific survival was worse in women with BRCA1 mutations than in those without (62% at 10 years versus 86%; P < 0.0001), but not in women with the BRCA2 mutation (84% versus 86% at 10 years; P = 0.76). Germline BRCA1 mutations were an independent predictor of breast cancer mortality in multivariate analysis (hazard ratio 2.4, 95% confidence interval 1.2–4.8; P = 0.01). BRCA1 status predicted breast cancer mortality only among women who did not receive chemotherapy (hazard ratio 4.8, 95% confidence interval 2.0–11.7; P = 0.001). The risk for metachronous ipsilateral cancer was not greater in women with germline BRCA1/BRCA2 founder mutations than in those without mutations (P = 0.68).

Conclusion

BRCA1 mutations, but not BRCA2 mutations, are associated with reduced survival in Ashkenazi women undergoing breast-conserving treatment for invasive breast cancer, but the poor prognosis associated with germline BRCA1 mutations is mitigated by adjuvant chemotherapy. The risk for metachronous ipsilateral disease does not appear to be increased for either BRCA1 or BRCA2 mutation carriers, at least up to 10 years of follow up.  相似文献   

4.

Introduction

BRCA1 and BRCA2 mutation carriers are at increased risk for developing both breast and ovarian cancer. It has been suggested that carriers of BRCA1/2 mutations may also be at increased risk of having recurrent (three or more) miscarriages. Several reproductive factors have been shown to influence the risk of breast cancer in mutation carriers, but the effects of spontaneous and therapeutic abortions on the risk of hereditary breast cancer risk have not been well studied to date.

Methods

In a matched case-control study, the frequencies of spontaneous abortions were compared among 1,878 BRCA1 mutation carriers, 950 BRCA2 mutation carriers and 657 related non-carrier controls. The rates of spontaneous and therapeutic abortions were compared for carriers with and without breast cancer.

Results

There was no difference in the rate of spontaneous abortions between carriers of BRCA1 or BRCA2 mutations and non-carriers. The number of spontaneous abortions was not associated with breast cancer risk among BRCA1 or BRCA2 mutation carriers. However, BRCA2 carriers who had two or more therapeutic abortions faced a 64% decrease in the risk of breast cancer (odds ratio = 0.36; 95% confidence interval 0.16–0.83; p = 0.02).

Conclusion

Carrying a BRCA1 or BRCA2 mutation is not a risk factor for spontaneous abortions and spontaneous abortions do not appear to influence the risk of breast cancer in carriers of BRCA1 or BRCA2 mutations. However, having two or more therapeutic abortions may be associated with a lowered risk of breast cancer among BRCA2 carriers.  相似文献   

5.

Introduction

Given that breast cancers in germline BRCA1 carriers are predominantly estrogen-negative and triple-negative, it has been suggested that women diagnosed with triple-negative breast cancer (TNBC) younger than 50 years should be offered BRCA1 testing, regardless of family cancer characteristics. However, the predictive value of triple-negative breast cancer, when taken in the context of personal and family cancer characteristics, is unknown. The aim of this study was to determine whether TNBC is a predictor of germline BRCA1 mutations, in the context of multiple predictive factors.

Methods

Germline mutations in BRCA1 and BRCA2 were analyzed by Sanger sequencing and multiple ligation-dependent probe amplification (MLPA) analysis in 431 women from the Malaysian Breast Cancer Genetic Study, including 110 women with TNBC. Logistic regression was used to identify and to estimate the predictive strength of major determinants. Estrogen receptor (ER) and phosphatase and tensin homologue (PTEN) status were assessed and included in a modified Manchester scoring method.

Results

Our study in an Asian series of TNBC patients demonstrated that 27 (24.5%) of 110 patients have germline mutations in BRCA1 (23 of 110) and BRCA2 (four of 110). We found that among women diagnosed with breast cancer aged 36 to 50 years but with no family history of breast or ovarian cancer, the prevalence of BRCA1 and BRCA2 mutations was similar in TNBC (8.5%) and non-TNBC patients (6.7%). By contrast, in women diagnosed with breast cancer, younger than 35 years, with no family history of these cancers, and in women with a family history of breast cancer, the prevalence of mutations was higher in TNBC compared with non-TNBC (28.0% and 9.9%; P = 0.045; and 42.1% and 14.2%; P < 0.0001, respectively]. Finally, we found that incorporation of estrogen-receptor and TNBC status improves the sensitivity of the Manchester Scoring method (42.9% to 64.3%), and furthermore, incorporation of PTEN status further improves sensitivity (42.9% to 85.7%).

Conclusions

We found that TNBC is an important criterion for highlighting women who may benefit from genetic testing, but that this may be most useful for women with early-onset breast cancer (35 years or younger) or with a family history of cancers. Furthermore, addition of TNBC and PTEN status improves the sensitivity of the Manchester scoring method and may be particularly important in the Asian context, where risk-assessment models underestimate the number of mutation carriers.  相似文献   

6.

Introduction

Individuals with germline mutations in the BRCA1 gene have an elevated risk of developing breast cancer, and often display characteristic clinicopathological features. We hypothesised that inactivation of BRCA1 by promoter methylation could occur as a germline or an early somatic event that predisposes to breast cancer with the phenotype normally associated with BRCA1 germline mutation.

Methods

We examined seven cases from breast-ovarian cancer families with tumours that showed BRCA1-like pathology but did not have detectable BRCA1 or BRCA2 germline mutations present. Methylation levels were tested by several quantitative techniques including MethyLight, methylation-sensitive high resolution melting (MS-HRM) and a newly developed digital MS-HRM assay.

Results

In one patient, methylation of 10% of the BRCA1 alleles was detected in the peripheral blood DNA, consistent with 20% of cells having one methylated allele. Buccal mucosa DNA from this individual displayed approximately 5% BRCA1 methylation. In two other patients, methylation of BRCA1 was detected in the peripheral blood at significantly lower but still readily detectable levels (approximately 1%). Tumour DNAs from these three patients were heavily methylated at BRCA1. The other patients had no detectable BRCA1 methylation in their peripheral blood. One of seven age-matched controls showed extremely low levels of methylation in their peripheral blood (approximately 0.1%).

Conclusion

These results demonstrate that in some cases of breast cancer, low-level promoter methylation of BRCA1 occurs in normal tissues of the body and is associated with the development of BRCA1-like breast cancer.  相似文献   

7.

Background

Germline mutations in the BRCA1 and BRCA2 genes have been shown to account for the majority of hereditary breast and ovarian cancers. The purpose of our study was to estimate the incidence and spectrum of pathogenic mutations in BRCA1/2 genes in high-risk Czech families.

Methods

A total of 96 Czech families with recurrent breast and/or ovarian cancer and 55 patients considered to be at high-risk but with no reported family history of cancer were screened for mutations in the BRCA1/2 genes. The entire coding sequence of each gene was analyzed using a combination of the protein truncation test and direct DNA sequencing.

Results

A total of 35 mutations in the BRCA1/2 genes were identified in high-risk families (36.5%). Pathogenic mutations were found in 23.3% of breast cancer families and in 59.4% of families with the occurrence of both breast and ovarian cancer. In addition, four mutations were detected in 31 (12.9%) women with early onset breast cancer. One mutation was detected in seven (14.3%) patients affected with both a primary breast and ovarian cancer and another in three (33.3%) patients with a bilateral breast cancer. A total of 3 mutations in BRCA1 were identified among 14 (21.4%) women with a medullary breast carcinoma. Of 151 analyzed individuals, 35 (23.2%) carried a BRCA1 mutation and 9 (6.0%) a BRCA2 mutation. One novel truncating mutation was found in BRCA1 (c.1747A>T) and two in BRCA2 (c.3939delC and c.5763dupT). The 35 identified BRCA1 mutations comprised 13 different alterations. Three recurrent mutations accounted for 71.4% of unrelated individuals with detected gene alterations. The BRCA1 c.5266dupC (5382insC) was detected in 51.4% of mutation positive women. The mutations c.3700_3704del5 and c.181T>G (300T>G) contributed to 11.4% and 8.6% of pathogenic mutations, respectively. A total of eight different mutations were identified in BRCA2. The novel c.5763dupT mutation, which appeared in two unrelated families, was the only recurrent alteration of the BRCA2 gene identified in this study.

Conclusion

Mutational analysis of BRCA1/2 genes in 151 high-risk patients characterized the spectrum of gene alterations and demonstrated the dominant role of the BRCA1 c.5266dupC allele in hereditary breast and ovarian cancer.  相似文献   

8.

Introduction

The Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab) is a multidisciplinary, collaborative framework for the investigation of familial breast cancer. Based in Australia, the primary aim of kConFab is to facilitate high-quality research by amassing a large and comprehensive resource of epidemiological and clinical data with biospecimens from individuals at high risk of breast and/or ovarian cancer, and from their close relatives.

Methods

Epidemiological, family history and lifestyle data, as well as biospecimens, are collected from multiple-case breast cancer families ascertained through family cancer clinics in Australia and New Zealand. We used the Tyrer-Cuzick algorithms to assess the prospective risk of breast cancer in women in the kConFab cohort who were unaffected with breast cancer at the time of enrolment in the study.

Results

Of kConFab's first 822 families, 518 families had multiple cases of female breast cancer alone, 239 had cases of female breast and ovarian cancer, 37 had cases of female and male breast cancer, and 14 had both ovarian cancer as well as male and female breast cancer. Data are currently held for 11,422 people and germline DNAs for 7,389. Among the 812 families with at least one germline sample collected, the mean number of germline DNA samples collected per family is nine. Of the 747 families that have undergone some form of mutation screening, 229 (31%) carry a pathogenic or splice-site mutation in BRCA1 or BRCA2. Germline DNAs and data are stored from 773 proven carriers of BRCA1 or BRCA1 mutations. kConFab's fresh tissue bank includes 253 specimens of breast or ovarian tissue – both normal and malignant – including 126 from carriers of BRCA1 or BRCA2 mutations.

Conclusion

These kConFab resources are available to researchers anywhere in the world, who may apply to kConFab for biospecimens and data for use in ethically approved, peer-reviewed projects. A high calculated risk from the Tyrer-Cuzick algorithms correlated closely with the subsequent occurrence of breast cancer in BRCA1 and BRCA2 mutation positive families, but this was less evident in families in which no pathogenic BRCA1 or BRCA2 mutation has been detected.  相似文献   

9.

Introduction

Finding new immunohistochemical markers that are specific to hereditary breast cancer could help us to select candidates for BRCA1/BRCA2 mutation testing and to understand the biological pathways of tumour development.

Methods

Using breast cancer tumour microarrays, immunohistochemical expression of cytokeratin (CK)-5/6, CK-14 and CK-17 was evaluated in breast tumours from BRCA1 families (n = 46), BRCA2 families (n = 40), non-BRCA1/BRCA2 families (n = 358) and familial breast cancer patients with one first-degree relative affected by breast or ovarian cancer (n = 270), as well as from patients with sporadic breast cancer (n = 364). Staining for CK-5/6, CK-14 and CK-17 was compared between these groups and correlated with other clinical and histological factors.

Results

CK-5/6, CK-14 and CK-17 were detected mostly among oestrogen receptor (ER)-negative, progesterone receptor (PR)-negative and high-grade tumours. We found the highest percentages of samples positive for these CKs among ER-negative/HER2-negative tumours. In univariate analysis, CK-14 was significantly associated with tumours from BRCA1 (39%; P < 0.0005), BRCA2 (27%; P = 0.011), and non-BRCA1/BRCA2 (21%; P < 0.005) families, as compared with sporadic tumours (10%). However, in multivariate analysis, CKs were not found to be independently associated with BRCA1 or BRCA2 mutation status, and the most effective predictors of BRCA1 mutations were age at onset, HER2 status, and either ER or PR status.

Conclusion

Although our study confirms that basal CKs can help to identify BRCA1 mutation carriers, this effect was weaker than previously suggested and CKs did not independently predict BRCA1 mutation either from sporadic or familial breast cancer cases. The most effective, independent predictors of BRCA1 mutations were age at onset, HER2 status, and either ER or PR status, as compared with sporadic or non-BRCA1/BRCA2 cancers.  相似文献   

10.

Introduction

Increasing parity and age at first full-term pregnancy are established risk factors for breast cancer in the general population. However, their effects among BRCA1 and BRCA2 mutation carriers is still under debate. We used retrospective data on BRCA1 and BRCA2 mutation carriers from the UK to assess the effects of parity-related variables on breast cancer risk.

Methods

The data set included 457 mutation carriers who developed breast cancer (cases) and 332 healthy mutation carriers (controls), ascertained through families seen in genetic clinics. Hazard ratios were estimated by using a weighted cohort approach.

Results

Parous BRCA1 and BRCA2 mutation carriers were at a significantly lower risk of developing breast cancer (hazard ratio 0.54, 95% confidence interval 0.37 to 0.81; p = 0.002). The protective effect was observed only among carriers who were older than 40 years. Increasing age at first live birth was associated with an increased breast cancer risk among BRCA2 mutation carriers (p trend = 0.002) but not BRCA1 carriers. However, the analysis by age at first live birth was based on small numbers.

Conclusion

The results suggest that the relative risks of breast cancer associated with parity among BRCA1 and BRCA2 mutation carriers may be similar to those in the general population and that reproductive history may be used to improve risk prediction in carriers.  相似文献   

11.

Introduction

Germline TP53 mutations cause an increased risk to early-onset breast cancer in Li-Fraumeni syndrome (LFS) families and the majority of carriers identified through breast cancer cohorts have LFS or Li-Fraumeni-like (LFL) features. However, in Asia and in many low resource settings, it is challenging to obtain accurate family history and we, therefore, sought to determine whether the presence of early-onset breast cancer is an appropriate selection criteria for germline TP53 testing.

Methods

A total of 100 patients with early-onset breast cancer (?? 35 years) treated at University Malaya Medical Centre between 2003 and 2009, were analyzed for germline mutations in BRCA1, BRCA2 and TP53 by full DNA sequencing. Of the mutations identified, we examined their likely pathogenicity on the basis of prevalence in a case-control cohort, co-segregation analyses and loss of heterozygosity (LOH) in tumor tissues.

Results

We identified 11 BRCA1 (11%) and 6 BRCA2 (6%) germline carriers among early-onset breast cancer patients. Of the 83 BRCA-negative patients, we identified four exonic variants and three intronic variants in TP53. Of these, two exonic variants are clinically relevant (E346X and p. G334_R335dup6) and two novel missense mutations (A138V and E285K) are likely to be clinically relevant, on the basis of co-segregation and loss of heterozygosity (LOH). Notably, E285K was found in two unrelated individuals and haplotype analyses suggest a founder effect. Two of the three intronic variants are likely benign based on their prevalence in a control population. Clinically relevant TP53 germline mutations were identified in three of the four patients (75%) with a family history of at least two LFS-linked cancers (breast, bone or soft tissue sarcoma, brain tumors or adrenocortical cancer); 1 of the 17 patients (6%) with a family history of breast cancer only, and 1 of the 62 patients (< 2%) with no family history of breast or LFS-linked cancers.

Conclusions

Our study reports germline BRCA1, BRCA2 and TP53 mutations are found in early-onset breast cancer patients at 11%, 6% and 5% respectively, suggesting that TP53 mutation screening should be considered for these patients. However, we find that even in low resource Asian settings where family history is poorly reported, germline TP53 mutations are found predominantly among breast cancer patients with a family history of LFS-linked cancers.  相似文献   

12.

Background

Pathogenic BRCA1 founder mutations (c.4035delA, c.5266dupC) contribute to 3.77% of all consecutive primary breast cancers and 9.9% of all consecutive primary ovarian cancers. Identifying germline pathogenic gene variants in patients with primary breast and ovarian cancer could significantly impact the medical management of patients. The aim of the study was to evaluate the rate of pathogenic mutations in the 26 breast and ovarian cancer susceptibility genes in patients who meet the criteria for BRCA1/2 testing and to compare the accuracy of different selection criteria for second-line testing in a founder population.

Methods

Fifteen female probands and 1 male proband that met National Comprehensive Cancer Network (NCCN) criteria for BRCA1/2 testing were included in the study and underwent 26-gene panel testing. Fourteen probands had breast cancer, one proband had ovarian cancer, and one proband had both breast and ovarian cancer. In a 26-gene panel, the following breast and/or ovarian cancer susceptibility genes were included: ATM, BARD1, BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, FAM175A, MEN1, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALB2, PMS2, PTEN, RAD50, RAD51C, RAD51D, STK11, TP53, and XRCC2. All patients previously tested negative for BRCA1 founder mutations.

Results

In 44% (7 out of 16) of tested probands, pathogenic mutations were identified. Six probands carried pathogenic mutations in BRCA1, and one proband carried pathogenic mutations in BRCA2. In patients, a variant of uncertain significance was found in BRCA2, RAD50, MRE11A and CDH1. The Manchester scoring system showed a high accuracy (87.5%), high sensitivity (85.7%) and high specificity (88.9%) for the prediction of pathogenic non-founder BRCA1/2 mutations.

Conclusion

A relatively high incidence of pathogenic non-founder BRCA1/2 mutations was observed in a founder population. The Manchester scoring system predicted the probability of non-founder pathogenic mutations with high accuracy.
  相似文献   

13.

Introduction

Efforts are ongoing to determine the significance of unclassified variants (UVs) in the breast cancer susceptibility genes BRCA1/BRCA2, but no study has systematically assessed whether women carrying the suspected deleterious UVs have characteristics commonly seen among women carrying known deleterious or disease-causing mutations in BRCA1/BRCA2.

Methods

We sequenced BRCA1/BRCA2 in 1,469 population-based female breast cancer patients diagnosed between the ages of 20 and 49 years. We used existing literature to classify variants into known deleterious mutations, polymorphic variants, and UVs. The UVs were further classified as high risk or low risk based on five methods: allele frequency, Polyphen algorithm, sequence conservation, Grantham matrix scores, and a combination of the Grantham matrix score and sequence conservation. Furthermore, we examined whether patients who carry the variants classified as high risk using these methods have risk characteristics similar to patients with known deleterious BRCA1/BRCA2 mutations (early age at diagnosis, family history of breast cancer or ovarian cancer, and negative estrogen receptor/progesterone receptor).

Results

We identified 262 distinct BRCA1/BRCA2 variants, including 147 UVs, in our study population. The BRCA1 UV carriers, but not the BRCA2 UV carriers, who were classified as high risk using each classification method were more similar to the deleterious mutation carriers with respect to family history than those carriers classified as low risk. For example, the odds ratio of having a first-degree family history for the high-risk women classified using Polyphen was 3.39 (95% confidence interval = 1.16 to 9.94) compared with normal/polymorphic BRCA1 carriers. The corresponding odds ratio of low-risk women was 1.53 (95% confidence interval = 1.07 to 2.18). The odds ratio for high-risk women defined by allele frequency was 2.00 (95% confidence interval = 1.14 to 3.51), and that of low-risk women was 1.30 (95% confidence interval = 0.87 to 1.93).

Conclusion

The results suggest that the five classification methods yielded similar results. Polyphen was particularly better at isolating BRCA1 UV carriers likely to have a family history of breast cancer or ovarian cancer, and may therefore help to classify BRCA1 UVs. Our study suggests that these methods may not be as successful in classifying BRCA2 UVs.  相似文献   

14.

Introduction

While it has been reported that the risk of contralateral breast cancer in patients from BRCA1 or BRCA2 positive families is elevated, little is known about contralateral breast cancer risk in patients from high risk families that tested negative for BRCA1/2 mutations.

Methods

A retrospective, multicenter cohort study was performed from 1996 to 2011 and comprised 6,235 women with unilateral breast cancer from 6,230 high risk families that had tested positive for BRCA1 (n = 1,154) or BRCA2 (n = 575) mutations or tested negative (n = 4,501). Cumulative contralateral breast cancer risks were calculated using the Kaplan-Meier product-limit method and were compared between groups using the log-rank test. Cox regression analysis was applied to assess the impact of the age at first breast cancer and the familial history stratified by mutation status.

Results

The cumulative risk of contralateral breast cancer 25 years after first breast cancer was 44.1% (95%CI, 37.6% to 50.6%) for patients from BRCA1 positive families, 33.5% (95%CI, 22.4% to 44.7%) for patients from BRCA2 positive families and 17.2% (95%CI, 14.5% to 19.9%) for patients from families that tested negative for BRCA1/2 mutations. Younger age at first breast cancer was associated with a higher risk of contralateral breast cancer. For women who had their first breast cancer before the age of 40 years, the cumulative risk of contralateral breast cancer after 25 years was 55.1% for BRCA1, 38.4% for BRCA2, and 28.4% for patients from BRCA1/2 negative families. If the first breast cancer was diagnosed at the age of 50 or later, 25-year cumulative risks were 21.6% for BRCA1, 15.5% for BRCA2, and 12.9% for BRCA1/2 negative families.

Conclusions

Contralateral breast cancer risk in patients from high risk families that tested negative for BRCA1/2 mutations is similar to the risk in patients with sporadic breast cancer. Thus, the mutation status should guide decision making for contralateral mastectomy.  相似文献   

15.

Background:

In most Western populations, 5–10% of all breast cancer cases can be attributed to major genetic factors such as predisposing mutations in BRCA1 and BRCA2, with early-onset cases generally considered as an indicator of genetic susceptibility. Specific BRCA1 and BRCA2 mutations or different mutation frequencies have been identified in specific populations and ethnic groups. Previous studies in Greek breast and/or ovarian cancer patients with family history have shown that four specific BRCA1 mutations, c.5266dupC, G1738R, and two large genomic rearrangements involving deletions of exons 20 and 24, have a prominent function in the population''s BRCA1 and BRCA2 mutation spectrum.

Methods:

To estimate the frequency of the above mutations in unselected Greek breast cancer women, we screened 987 unselected cases independently of their family history, collected from major Greek hospitals.RESULTS: Of the 987 patients, 26 (2.6%) were found to carry one of the above mutations in the BRCA1 gene: 13 carried the c.5266dupC mutation (1.3%), 6 carried the exon 24 deletion (0.6%), 3 carried the exon 20 deletion (0.3%), and 4 carried the G1738R mutation (0.4%). Among 140 patients with early-onset breast cancer (<40 years), 14 carried one of the four mutations (10.0%).

Conclusion:

These results suggest that a low-cost genetic screening for only the four prominent BRCA1 mutations may be advisable to all early-onset breast cancer patients of Greek origin.  相似文献   

16.

Introduction

Certain rare, familial mutations in the ATM, BRCA1, BRCA2, CHEK2 or TP53 genes increase susceptibility to breast cancer but it has not, until now, been clear whether common polymorphic variants in the same genes also increase risk.

Methods

We have attempted a comprehensive, single nucleotide polymorphism (SNP)- and haplotype-tagging association study on each of these five genes in up to 4,474 breast cancer cases from the British, East Anglian SEARCH study and 4,560 controls from the EPIC-Norfolk study, using a two-stage study design. Nine tag SNPs were genotyped in ATM, together with five in BRCA1, sixteen in BRCA2, ten in CHEK2 and five in TP53, with the aim of tagging all other known, common variants. SNPs generating the common amino acid substitutions were specifically forced into the tagging set for each gene.

Results

No significant breast cancer associations were detected with any individual or combination of tag SNPs.

Conclusion

It is unlikely that there are any other common variants in these genes conferring measurably increased risks of breast cancer in our study population.  相似文献   

17.

Background

Molecular screening for BRCA1 and BRCA2 mutations is now an established component of risk evaluation and management of familial breast cancer. Features of hereditary breast cancer include an early age-of-onset and over-representation of the 'triple-negative' phenotype (negative for estrogen-receptor, progesterone-receptor and HER2). The decision to offer genetic testing to a breast cancer patient is usually based on her family history, but in the absence of a family history of cancer, some women may qualify for testing based on the age-of-onset and/or the pathologic features of the breast cancer.

Methods

We studied 54 women who were diagnosed with high-grade, triple-negative invasive breast cancer at or before age 40. These women were selected for study because they had little or no family history of breast or ovarian cancer and they did not qualify for genetic testing using conventional family history criteria. BRCA1 screening was performed using a combination of fluorescent multiplexed-PCR analysis, BRCA1 exon-13 6 kb duplication screening, the protein truncation test (PTT) and fluorescent multiplexed denaturing gradient gel electrophoresis (DGGE). All coding exons of BRCA1 were screened. The two large exons of BRCA2 were also screened using PTT. All mutations were confirmed with direct sequencing.

Results

Five deleterious BRCA1 mutations and one deleterious BRCA2 mutation were identified in the 54 patients with early-onset, triple-negative breast cancer (11%).

Conclusion

Women with early-onset triple-negative breast cancer are candidates for genetic testing for BRCA1, even in the absence of a family history of breast or ovarian cancer.  相似文献   

18.
Since the identification of the BRCA1 and BRCA2 breast–ovarian cancer susceptibility genes, mutation analyses have been carried out in different populations. Here we screened 15 Turkish breast and breast–ovarian cancer families for mutations in both genes by conformation-sensitive gel electrophoresis (CSGE) and the protein truncation test (PTT), followed by DNA sequencing. Three families included a male breast cancer case, one without family history. Three germline mutations were identified, two in BRCA1 and one in BRCA2. The two BRCA1 mutations, 5382insC and 5622C→T, were found in breast–ovarian cancer families. The BRCA2 3414delTCAG is a novel mutation detected in a site-specific breast cancer family that included 1 case of male breast cancer. These first results of Turkish families show that the frequency of germline BRCA1 or BRCA2 mutations appears to be high in families with at least 3 breast and/or ovarian cancer cases.  相似文献   

19.

Introduction

Ancestral mutations in BRCA1 and BRCA2 are common in people of Ashkenazi Jewish descent and are associated with a substantially increased risk of breast and ovarian cancer. Women considering mutation testing usually have several personal and family cancer characteristics, so predicting mutation status from one factor alone could be misleading. The aim of this study was to develop a simple algorithm to estimate the probability that an Ashkenazi Jewish woman carries an ancestral mutation, based on multiple predictive factors.

Methods

We studied Ashkenazi Jewish women with a personal or family history of breast or ovarian cancer and living in Melbourne or Sydney, Australia, or with a previous diagnosis of breast or ovarian cancer and living in the UK. DNA samples were tested for the germline mutations 185delAG and 5382insC in BRCA1, and 6174delT in BRCA2. Logistic regression was used to identify, and to estimate the predictive strength of, major determinants.

Results

A mutation was detected in 64 of 424 women. An algorithm was developed by combining our findings with those from similar analyses of a large study of unaffected Jewish women in Washington. Starting with a baseline score, a multiple of 0.5 (based on the logistic regression estimates) is added for each predictive feature. The sum is the estimated log odds ratio that a woman is a carrier, and is converted to a probability by using a table. There was good internal consistency.

Conclusions

This simple algorithm might be useful in the clinical and genetic counselling setting. Comparison and validation in other settings should be sought.  相似文献   

20.

Background

The risk of breast cancer in carriers of BRCA1 and BRCA2 mutations is influenced by factors other than the genetic mutation itself. Modifying factors include a woman’s reproductive history and family history of cancer. Risk factors are more likely to be present in women with breast cancer than in women without breast cancer, and therefore the risk of cancer in the two breasts should not be independent. It is not clear to what extent modifying factors influence the risk of a first primary or a contralateral breast cancer in BRCA carriers.

Methods

We conducted a matched case–control study of breast cancer among 3920 BRCA1 or BRCA2 mutation carriers. We asked whether a past history of breast cancer in the contralateral breast was a risk factor for breast cancer.

Results

After adjustment for age, country of residence, and cancer treatment, a previous cancer of the right breast was found to be a significant risk factor for cancer of the left breast among BRCA1 or BRCA2 carriers (relative risk: 2.1; 95% confidence interval: 1.4 to 3.0; p < 0.0001).

Conclusions

In a woman with a BRCA1 or BRCA2 mutation who is diagnosed with breast cancer, the risk of cancer in the contralateral breast depends on the first diagnosis. That observation supports the hypothesis that there are important genetic or non-genetic modifiers of cancer risk in BRCA carriers. Discovering risk modifiers might lead to greater personalization of risk assessment and management recommendations for BRCA-positive patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号