首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3‐[18F]Fluoropropyl‐, 4‐[18F]fluorobenzyl‐triphenylphosphonium and 4‐[18F]fluorobenzyltris‐4‐dimethylaminophenylphosphonium cations were synthesized in multi‐step reactions from no carrier added (nca) [18F]fluoride. The time for synthesis, purification, and formulation was 56, 82, and 79 min with an average radiochemical yield of 12, 6 and 15%, respectively (not corrected for decay). The average specific radioactivity for the three radiolabeled compounds was 14.9 GB q/µmole (403 mCi/µmole) at end of synthesis (EOS). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
[18F]‐Fluoromisonidazole is the most widely used radiopharmaceutical for imaging hypoxia in tumors. The precursor for [18F]‐fluoromisonidazole was prepared from 1,3‐dibromo‐2‐propanol in 5 steps from available materials and straightforward purification steps. The overall yield for this synthesis was 18%. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
The use of microwave dielectric heating to reduce reaction times in organic transformations is rapidly increasing worldwide. Besides the time gains from simply performing reactions faster, other advantages have been noted, e.g. cleaner reaction mixtures due to decreased sample decomposition and altered product distributions as well as improved chemical flexibility due to the ability to accelerate typically sluggish reactions of less activated substrates. Microwave applications in radiolabelling tracers for positron emission tomography, paralleling and sometimes preceding developments in other areas of microwave‐enhanced chemistry, are reviewed here. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Labelled oligonucleotides are new imaging tools to study gene expression at the nucleic acid and protein levels. We have previously developed a universal method to label oligonucleotides at their 3′‐end with radiohalogens and particularly with fluorine‐18, the most widely used positron‐emitter, t1/2: 109.8 min. Using the same strategy, we herein report the fluorine‐18 labelling of oligonucleotides at their 5′‐end. A 18‐mer 2′O‐methyl modified oligoribonucleotide, bearing a phosphorothioate group at its 5′‐end, was conjugated to our fluorine‐18‐labelled reagent N‐(4‐[18F]fluorobenzyl)‐2‐bromoacetamide. The whole synthetic procedure yielded up to 1 GBq of fluorine‐18‐labelled oligonucleotide with a specific radioactivity of 37–74 GBq/μmol in 160 min. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The N1'‐(p‐fluorobenzyl)naltrindole 5 has been synthesized by reaction of 3‐O‐benzyl NTI 3 with p‐fluorobenzylbromide under phase transfer catalysis. The subsequent 3‐O‐benzyldeprotection of 4 in HBr/CH3COOH gave the target compound 5 in three steps from naltrindole 2 . p‐FBNTI 5 is a novel delta opioid receptor antagonist (Ki=0.00312 nM) and antagonizes the delta opioid (DOP) agonist, DPDPE, with a Ke=1.55 nM in the mouse vas deferens preparation. Using the same synthetic strategy the synthesis of p‐[18F]BNTI 10 was undertaken. The final yield was 4% and the specific activity varied in a range of 250–400 mCi/µmol. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
4‐[18F]Fluorobenzyltriphenylphosphonium cation (18F‐FBnTP) is a promising negative membrane potential targeting positron emission tomography tracer. However, the reported multistep radiolabeling approach for the synthesis of 18F‐FBnTP poses a challenge for routine clinical applications. In this study, we demonstrated that 18F‐FBnTP can be prepared in good conversion yields (~60%, nondecay corrected) in just one step via a copper‐mediated 18F‐fluorination reaction using a pinacolyl arylboronate precursor. In addition, our data suggest that 18F‐labeled (phosphonium) cations can be efficiently prepared via a copper‐mediated 18F‐fluoronation by using triflate as the counterion.  相似文献   

7.
The field of radiochemistry is moving toward exclusive use of automated synthesis modules for production of clinical radiopharmaceutical doses. Such a move comes with many advantages, but also presents radiochemists with the challenge of re‐configuring synthesis modules for production of radiopharmaceuticals that require nonconventional radiochemistry while maintaining full automation. This review showcases the versatility of the Tracerlab FXFN synthesis module by presenting simple, fully automated methods for producing [18F]FLT, [18F]FAZA, [18F]MPPF, [18F]FEOBV, [18F]sodium fluoride, [18F]fluorocholine and [18F]SFB. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The 4‐[18F]‐fluorobenzyltriphenylphosphonium cation was synthesized by a series of microwave reactions from no carrier added [18F]‐fluoride. The microwave procedure reduced the quantity of reagents used and synthesis time when compared with the original synthesis. In addition, problematic solid phase extraction, sodium borohydride reduction by column and inconsistent yields with excessive precipitate formation during the bromination step were eliminated. The 4‐[18F]‐fluorobenzyltriphenylphosphonium cation was produced radiochemically pure in 8.3% yield with a specific radioactivity of 534.5 ± 371.4 GBq/µmole at end of synthesis.  相似文献   

9.
6‐[18F]Fluorodopamine (6‐[18F]F‐DA) is a positron emission tomography radiopharmaceutical used to image sympathetic cardiac innervation and neuroendocrine tumors. Imaging with 6‐[18F]F‐DA is constrained, in part, by the bioactivity and neurotoxicity of 6‐[19F]fluorodopamine. Furthermore, routine access to this radiotracer is limited by the inherent difficulty of incorporation of [18F]fluoride into electron‐rich aromatic substrates. We describe the simple and direct preparation of high specific activity (SA) 6‐[18F]F‐DA from no‐carrier‐added (n.c.a.) [18F]fluoride. Incorporation of n.c.a. [18F]fluoride into a diaryliodonium salt precursor was achieved in 50–75% radiochemical yields (decay corrected to end of bombardment). Synthesis of 6‐[18F]F‐DA on the IBA Synthera® and GE TRACERlab FX‐FN automated platforms gave 6‐[18F]F‐DA in >99% chemical and radiochemical purities after HPLC purification. The final non‐corrected yields of 6‐[18F]F‐DA were 25 ± 4% (n = 4, 65 min) and 31 ± 6% (n = 3, 75 min) using the Synthera and TRACERlab modules, respectively. Efficient access to high SA 6‐[18F]F‐DA from a diaryliodonium salt precursor and n.c.a. [18F]fluoride is provided by a relatively subtle change in reaction conditions – replacement of a polar aprotic solvent (acetonitrile) with a relatively nonpolar solvent (toluene) during the critical radiofluorination reaction. Implementation of this process on common radiochemistry platforms should make 6‐[18F]F‐DA readily available to the wider imaging community.  相似文献   

10.
To develop a novel progesterone receptor‐targeting probe for positron emission tomography imaging, an ethisterone derivative [18F]EAEF was designed and prepared in high decay‐corrected radiochemical yield (30–35%) with good radiochemical purity (>98%). [18F]EAEF is a lipophilic tracer (logP = 0.53 ± 0.06) with very good stability in saline and serum. In the biodistribution study, high radioactivity accumulation of [18F]EAEF were found in uterus (5.73 ± 1.83% ID/g) and ovary (4.05 ± 0.73% ID/g) at 2 hr postinjection (p.i.), which have high progesterone receptor expression after treated with estradiol, while the muscle background has very low uptake (0.50 ± 0.17% ID/g). For positron emission tomography imaging, [18F]EAEF showed high uptake in progesterone receptor‐positive MCF‐7 tumor (3.15 ± 0.07% ID/g at 2 hr p.i.) with good tumor to muscle ratio (2.90), and obvious lower tumor uptakes were observed in MCF‐7 with EAEF blocking (1.84 ± 0.05% ID/g at 2 hr p.i.) or in progesterone receptor‐negative MDA‐MB‐231 tumor (1.80 ± 0.03% ID/g at 2 hr p.i.). Based on the good stability and specificity of [18F]EAEF, it may be a good candidate for imaging progesterone receptor and worth further investigation.  相似文献   

11.
Pitavastatin is an antihyperlipidemic agent, a potent inhibitor of 3‐hydroxymethyl‐glutaryl‐CoA reductase, which is selectively taken up into the liver mainly via hepatic organic anion transporting polypeptide 1B1 (OATP1B1). OATP1B1 can accept a variety of organic anions, and previous reports indicated that it is responsible for the hepatic clearance of several clinically used anionic drugs. Therefore, the pharmacokinetics and the hepatic distribution of pitavastatin provide an insight into the function of OATP1B1 in humans. For the development of the in vivo evaluation of OATP1B1 function by positron emission tomography imaging, we designed a novel [18F]pitavastatin derivative ([18F]PTV‐F1), in which a [18F]fluoroethoxy group is substituted for the [18F]fluoro group of [18F]pitavastatin, with the aim of convenient radiolabeling protocol and high radiochemical yield. In vitro studies suggested that transport activities of PTV‐F1 mediated by OATP1B1 and OATP1B3 were very similar to those of pitavastatin and PTV‐F1 was metabolically stable in human liver microsomes. In the radiosynthesis of [18F]PTV‐F1 from the tosylate precursor, nucleophilic fluorination and subsequent deprotection were performed using a one‐pot procedure. [18F]PTV‐F1 was obtained with a radiochemical yield of 45% ± 3% (n = 3), and the operating time for the radiosynthesis of [18F]PTV‐F1 is very short (30 minutes) compared with [18F]pitavastatin.  相似文献   

12.
18F‐labelled fluoromisonidazole [1H‐1‐(3‐[18F]fluoro‐2‐hydroxypropyl)‐2‐nitroimida‐zole; ([18F]FMISO)] is used as an in vivo marker of hypoxic cells in tumours and ischaemic areas of the heart and the brain. The compound plays an important role in evaluating the oxygenation status in tumours during radiotherapy. In this paper, we report experiments carried out in our laboratory in synthesizing [18F]FMISO using two different methods. The first method (I) for the [18F]FMISO synthesis was the fluorination of (2R)‐(?)‐glycidyl tosylate to [18F]epifluorohydrin. The subsequent nucleophilic ring opening, achieved with 2‐nitroimidazole, leads to labelled FMISO. The second method (II) was the fluorination of the protected precursor 1‐(2′‐nitro‐1′‐imidazolyl)‐2‐O‐tetrahydropyranyl‐3‐O‐toluenesulphonyl‐propanediol, followed by a rapid removal of the protecting group. With the first method, the radiochemical yield was about 10% at the end of the synthesis (EOS), and the radiochemical purity was over 99%. The radiochemical yield in the second method was 21% (EOS) on an average, and the radiochemical purity was over 97%. When an automated commercial synthesis module was used with method II, slightly better and more reproducible yields were achieved. The improvement in the synthesis yield with the automated apparatus will be valuable when working with high activities, and therefore it is under further development. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The potential for radiolabeled antisense oligonucleotides to image gene expression combined with the enhanced resolution of positron‐emission tomography justifies the continued interest in the development of oligonucleotides tagged with positron‐emitting radionuclides. The radiolabeling of oligonucleotides is a multi‐step process and may require handling large amounts of radioactivity initially. A previously reported method for radiolabeling oligonucleotides with N‐(4‐[18F]fluorobenzyl)‐2‐bromoacetamide was adapted for use in a commercially available automated synthesis unit by linking two reaction trains. The yield of N‐(4‐[18F]fluorobenzyl)‐2‐bromoacetamide ranged from 3 to 18% and the synthesis was completed within 1 h. Challenges in using this unit included the maintenance of anhydrous conditions for the effective reduction of 4‐[18F]fluorobenzonitrile. Preliminary results indicated that a mean yield of 36% could be obtained upon incubation of an oligonucleotide with N–(4‐[18F]fluorobenzyl)‐2‐bromoacetamide. The entire synthesis could be performed within 3 h. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The use of the key enzyme involved in carbon–fluorine bond formation in Streptomyces cattleya catalysing the formation of 5′‐fluoro‐5′‐deoxyadenosine (5′‐FDA) from fluoride ion and S‐adenosyl‐l‐methionine (SAM) was explored for its potential application in fluorine‐18 labelling of the adenosine derivative. Enzymatic radiolabelling of [18F]‐5′‐FDA was successfully carried out starting from SAM and [18F]HF when the concentration of the enzyme preparation was increased from sub‐mg/ml values to mg/ml values. The purity of the enzyme had no measurable effect on the radiochemical yield of the reaction and the radiochemical purity of [18F]‐5′‐FDA. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Inhibitors of tyrosine kinase enzymatic activity represent a promising new class of antineoplastic agents. Although clinical studies performed over the last decade give more insight on the potential therapeutic applications of such drugs, identification of the individual patients who might benefit from them remains a major challenge. We have developed a synthetic strategy for the production of a wide variety of radiolabeled 6,7‐disubstituted 4‐anilinoquinazolines suitable for noninvasive imaging of tyrosine kinase receptors to predict therapy effectiveness. Three new F‐18 labeled radiopharmaceuticals based on the therapeutic agents Tarceva, Iressa, and ZD6474 were synthesized. Decay‐corrected yields varied between 25 and 40% for a total synthesis time of 120 min, thus providing F‐18 labeled tyrosine kinase inhibitors in quantities and times practical for use as PET radiopharmaceuticals. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
There is still no efficient fluorine‐18‐labeled dopamine D3 subtype selective receptor ligand for studies with positron emission tomography. We aim at improving the D3 selectivity and hydrophilicity of a candidate ligand by changing the substitution pattern to a 2,3‐dichlorophenylpiperazine and hydroxylation of the butyl chain. The compound [18F]3 exhibited D3 affinity of Ki = 3.6 nM, increased subtype selectivity (Ki(D2/D3) = 60), and low affinity to 5‐HT1A and α1 receptors (Ki (5‐HT1A/D3) = 34; Ki1/D3) = 100). The two‐step radiosynthesis was optimized for analog [18F]4 by reducing the necessary concentration of the precursor amine (57 mM), which reacted with [18F]fluorophenylazocarboxylic tert‐butylester under basic conditions. The optimization of the base (Cs 2CO3, 23 mM) and the adjustment of reaction temperature led to the radiochemical yield of 63% after 5 min at 35°C. The optimized reaction conditions were transferred on to the synthesis of [18F]3 with an overall non‐decay corrected yield of 8‐12% in a specific activity of 32‐102 GBq/µmol after a total synthesis time of 30‐35 min. This provides a D 3 radioligand candidate with improved attributes concerning selectivity and radiosynthesis for further preclinical studies.  相似文献   

17.
2‐[18F]fluoroadenosine (2‐[18F]FAD), a potential radioligand for assessment of adenylate metabolism, was synthesized by carrier‐added and no‐carrier‐added procedures via nucleophilic radiofluorination of 2‐fluoroadenosine and 2‐iodoadenosine. The radiochemical yield, specific radioactivity and radiochemical purity of carrier‐added and no‐carrier‐added 2‐[18F]FAD were 5%, 22–30 mCi/µmol and 99%, and 0.5%, 1200–1700 mCi/µmol and 99%, respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
[18F]NS12137 (exo‐3‐[(6‐[18F]fluoro‐2‐pyridyl)oxy]8‐azabicyclo[3.2.1]octane) is a highly selective norepinephrine transporter (NET) tracer. NETs are responsible for the reuptake of norepinephrine and dopamine and are linked to several neurodegenerative and neuropsychiatric disorders. The aim of this study was to develop a copper‐mediated 18F‐fluorination method for the production of [18F]NS12137 with straightforward synthesis conditions and high radiochemical yield and molar activity. [18F]NS12137 was produced in two steps. Radiofluorination of [18F]NS12137 was performed via a copper‐mediated pathway starting with a stannane precursor and using [18F]F? as the source of the fluorine‐18 isotope. Deprotection was performed via acid hydrolysis. The radiofluorination reaction was nearly quantitative as was the deprotection based on HPLC analysis. The radiochemical yield of the synthesis was 15.1 ± 0.5%. Molar activity of [18F]NS12137 was up to 300 GBq/μmol. The synthesis procedure is straightforward and can easily be automated and adapted for clinical production.  相似文献   

19.
Peptide nucleic acids (PNAs) form a unique class of synthetic macromolecules, originally designed as ligands for the recognition of double‐stranded DNA, where the deoxyribose phosphate backbone of original DNA is replaced by a pseudo‐peptide N‐(2‐aminoethyl)glycyl backbone, while retaining the nucleobases of DNA. We have previously developed an original method to label oligonucleotide‐based macromolecules with the short‐lived positron‐emitter fluorine‐18 (t1/2: 109.8 min) using the N‐(4‐[18F]fluorobenzyl)‐2‐bromoacetamide reagent. Using this method, we herein report the fluorine‐18‐labelling of 13 decameric PNAs ( OLP_1‐13 ), of the same sequence (CTCATACTCT), but presenting selected modification of the pseudo‐peptidic backbone at two or three of the thymine residues (positions 2, 5 and 8). Structural characteristics of these backbone modifications include either an amino acid side chain (L ‐Lys, L ‐Glu, L ‐Leu and L ‐Arg) or a glycosyl moiety (mannose, galactose, fucose, N‐Ac‐galactosamine and N‐Ac‐glucosamine) attached via an appropriate spacer. N‐(4‐[18F]fluorobenzyl)‐2‐bromoacetamide was synthesized in three radiochemical steps from 4‐cyano‐N,N,N‐trimethylanilinium trifluoromethanesulfonate and HPLC‐purified in 85–90 min (typical production: 3.7–4.8 GBq starting from a batch of 29.6–31.4 GBq of [18F]fluoride). Conjugation of the fluorine‐18‐labelled bromoacetamide reagent with the PNAs was performed in a mixture of acetonitrile and HEPES buffer (0.1 M, pH 7.9) for 10 min at 60°C and gave the corresponding pure labelled conjugated PNAs ([18F] c‐OLP_1‐13 ) after RP‐HPLC purification. The whole synthetic procedure, including the preparation of the fluorine‐18‐labelled reagent, provides up to 0.9 GBq (25 mCi) of HPLC‐purified [18F] c‐OLP_1‐13 in 160 min with a specific radioactivity of 45–65 GBq/µmol (1.2–1.7 Ci/µmol) at the end of synthesis starting from 29.6 to 31.4 GBq (800–850 mCi) of [18F]fluoride. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
2′‐Deoxy‐2′‐[18F]fluoro‐5‐substituted‐1‐β‐D ‐arabinofuranosyluracils, including 2′‐deoxy‐2′‐[18F]fluoro‐5‐methyl‐1‐β‐D ‐arabinofuranosyluracil [18F]FMAU and [18F]FEAU are established radiolabeled probes to monitor cellular proliferation and herpes simplex virus type 1 thymidine kinase (HSV1‐tk) reporter gene expression with positron emission tomography. For clinical applications, a fully automated CGMP‐compliant radiosynthesis is necessary for production of these probes. However, due to multiple steps in the synthesis, no such automated synthetic protocols have been developed. We report here a fully automated synthesis of [18F]‐FEAU and [18F]‐FMAU on a prototype dual reactor module TRACERlab FX FN. The synthesis was performed by using a computer‐programmed standard operating procedure, and the product was purified on a semipreparative high‐performance liquid chromatography (HPLC) integrated with the synthesis module using 12% EtOH in 50 mM Na2HPO4. Finally, the percentage of alcohol was adjusted to 7% by adding Na2HPO4 and filtered through a Millipore filter to make dose for human. The radiochemical yield on the fluorination was 40±10% (n=10), and the overall yields were 4±1% (d. c.), from the end of the bombardment; [18F]FEAU (n=7) and [18F]FMAU (n=3). The radiochemical purity was >99%, specific activity was 1200–1300 mCi/µmol. The synthesis time was 2.5 h. This automated synthesis should be suitable for production of [18F]FIAU, [18F]FFAU, [18F]FCAU, [18F]FBAU and other 5‐substitued thymidine analogues. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号