首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alterations in the hepatic metabolism of sulfur amino acids in experimental cholestasis induced by alpha-naphthylisothiocyanate (ANIT) (100 mg/kg, po) were monitored in male mice for 1 week. We also examined the effects of betaine supplementation (1% in drinking water) for 2 weeks on the hepatotoxicity and changes in the sulfur amino acid metabolism induced by ANIT treatment. Acute ANIT challenge elevated the serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) activities, and total bilirubin contents from 5 h after the treatment, reaching a peak at t = 48-72 h. Hepatic S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) levels were decreased significantly in a manner almost inversely proportional to the changes in serum parameters measured to determine the ANIT-induced toxicity. Hepatic glutathione and cysteine levels were elevated at t = 120 h after the treatment. Betaine supplementation blocked or significantly attenuated induction of the hepatotoxicity by ANIT. The decrease in SAM and SAH levels was also inhibited by betaine intake. The results indicate that betaine supplementation may antagonize the induction of experimental cholestasis and changes in the metabolism of sulfur amino acids associated with ANIT treatment. The underlying mechanism and pharmacological significance of its action are discussed.  相似文献   

2.
The study investigated the protective effects of carnosic acid (CA), the principal constituent of rosemary, on lipopolysaccharide (LPS)-induced oxidative/nitrosative stress and hepatotoxicity in rats. CA was administered orally to rats at doses of 15, 30 and 60 mg/kg body weight before LPS challenge (single intraperitoneal injection, 1 mg/kg body weight). The results revealed that CA inhibited LPS-induced liver damage and disorder of lipid metabolism, which were mainly evidenced by decreased serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase. CA also inhibited LPS-induced oxidative/nitrosative stress by decreasing lipid peroxidation, protein carbonylation, and serum levels of nitric oxide. Histopathological examination demonstrated that CA could improve pathological abnormalities and reduce the immigration of inflammatory cells in liver tissues with LPS challenge. Concurrently, CA potently inhibited the LPS-induced rise in serum levels of the pro-inflammatory cytokines tumor necrosis factor-α and interleukin-6. CA supplementation markedly enhanced the body’s cellular antioxidant defense system by restoring the levels of superoxide dismutase, glutathione peroxidase, and glutathione in serum and liver after the LPS challenge. In conclusion, the present study suggests that CA successfully and dose dependently attenuates LPS-induced hepatotoxicity possibly by preventing cytotoxic effects of oxygen free radicals, NO and cytokines.  相似文献   

3.
Hagar HH 《Toxicology letters》2004,151(2):335-343
Cyclosporine A (CsA) is the immunosuppressor which is most frequently used in transplant surgery and in the treatment of autoimmune diseases. Oxidative stress has been implicated as one of the possible mechanisms of CsA-induced hepatotoxicity. The present investigation examined the ability of taurine as an antioxidant to protect against CsA-induced oxidative stress and hepatotoxicity. CsA hepatotoxicity was induced by subcutaneous injection of CsA at a dose of 20mg/kg body weight daily for 21 days. Hepatotoxicity was assessed by reduced serum total protein level and increased serum levels of gamma glutamyl transferase (GGT), alanine aminotransferase (ALT), and aspartate aminotransaminase (AST). CsA treatment increased lipid peroxidation measured as thiobarbituric acid reactive substances (TBARS) concentration and decreased reduced glutathione (GSH) content and activities of catalase and glutathione peroxidase (GSH-Px) in the rat liver. Taurine administration (1% in the drinking water) for 3 days before and concurrently during CsA injections improved liver functions, as indicated by decline of serum transaminases and GGT levels and elevation of serum total protein. Moreover, taurine significantly reduced hepatic TBARS and increased GSH content and catalase and GSH-Px activities in the hepatic tissue. These results indicate that taurine has a protective action against CsA hepatotoxicity and suggest that taurine may find clinical application against a variety of toxins where cellular damage is a consequence of reactive oxygen species.  相似文献   

4.
Lipopolysaccharide (LPS) is a major cell wall molecule of Gram-negative bacteria known to stimulate the synthesis and secretion of several toxic metabolites, such as reactive oxygen species. In this study, the effect of pyrrolidine dithiocarbamate (PDTC), an antioxidant with nuclear factor-κB inhibitor activity, was evaluated in LPS-induced oxidative stress and acute hepatic injury in rats. Animals were pretreated for 3 consecutive days with PDTC (200 mg/kg/day, i.p.) or saline and animals were then challenged with LPS (6 mg/kg, i.p.) or saline. Six hours after LPS injection, animals were decapitated and blood and liver samples were collected to assess the chosen biochemical parameters. Saline-pretreated animals challenged with LPS revealed extensive liver damage, as evidenced by increases in serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma glutamyl transferase (γ-GT). Also, LPS treatment resulted in significant increases in serum lactate dehydrogenase (LDH), tumor necrosis factor-alpha (TNF-α) and nitrite levels. Furthermore, LPS challenge caused oxidative stress as indicated by an increase in hepatic lipid peroxidation measured as thiobarbituric acid reactive substances (TBARS) and a decrease in hepatic reduced glutathione concentration (GSH) as well as decreased activities of superoxide dismutase (SOD) and catalase in hepatic tissues. The administration of PDTC prior to LPS challenge resulted in improved liver functions as evidenced by the decline in serum AST, ALT, γ-GT levels and reduction in serum LDH, TNF-α and nitrite levels. Moreover, PDTC reduced the chosen lipid peroxidation marker, TBARS and increased GSH concentration, and SOD and catalase activities in hepatic tissues. These results indicate that PDTC may be a useful pharmacological agent in alleviating LPS-induced oxidative stress and acute hepatic injury.  相似文献   

5.
In this study, we evaluated whether taurine treatment has a protective effect on the prooxidant-antioxidant state following chronic ethanol treatment in rats. Rats were given water containing 20% ethanol (v/v) as drinking water for 3 months. Chronic ethanol treatment in drinking water resulted in increased oxidative stress in the liver of rats. Taurine treatment was performed by adding 1% taurine (w/v) to the drinking water plus injection (400 mg/kg body weight) intraperitoneally 3 times/week for 28 d after ethanol cessation in chronically ethanol-treatad rats. This treatment starting after ethanol cessation caused a significant decreases in serum transaminase activities and hepatic total lipid, triglyceride, malondialdehyde, and diene conjugate levels and significant increases in hepatic glutathione, vitamin E, and vitamin C levels, but did not alter the activities of superoxide dismutase, glutathione peroxidase, and glutathione transferase in the liver as compared with chronically ethanol-treated rats. Accordingly, we propose that taurine has a restorative effect on ethanol-induced hepatic damage by decreasing oxidative stress.  相似文献   

6.
Amiodarone [2-butyl-3-(3',5'-diiodo-4'α-diethylaminoethoxybenzoyl)-benzofuran] (AMD), a class III antiarrhythmic drug, is known to cause idiosyncratic hepatotoxic reactions in human patients. One hypothesis for the etiology of idiosyncratic adverse drug reactions is that a concurrent inflammatory stress results in decreased threshold for drug toxicity. To explore this hypothesis in an animal model, male Sprague-Dawley rats were treated with nonhepatotoxic doses of AMD or its vehicle and with saline vehicle or lipopolysaccharide (LPS) to induce low-level inflammation. Elevated alanine aminotransferase (ALT), aspartate aminotransferase, alkaline phosphatase, and gamma-glutamyltransferase activities as well as increased total bile acid concentrations in serum and midzonal hepatocellular necrosis were observed only in AMD/LPS-cotreated rats. The time interval between AMD and LPS administration was critical: AMD injected 16 h before LPS led to liver injury, whereas AMD injected 2-12 h before LPS failed to cause this response. The increase in ALT activity in AMD/LPS cotreatment showed a clear dose-response relationship with AMD as well as LPS. The metabolism and hepatic accumulation of AMD were not affected by LPS coexposure. Serum concentration of tumor necrosis factor-alpha (TNF) was significantly increased by LPS and was slightly prolonged by AMD. In Hepac1c7 cells, addition of TNF potentiated the cytotoxicity of both AMD and its primary metabolite, mono-N-desethylamiodarone. In vivo inhibition of TNF signaling by etanercept attenuated the AMD/LPS-induced liver injury in rats. In summary, AMD treatment during modest inflammation induced severe hepatotoxicity in rats, and TNF contributed to the induction of liver injury in this animal model of idiosyncratic AMD-induced liver injury.  相似文献   

7.
The effect of taurine intake on the biliary disposition and toxicity of acetaminophen (APAP) was examined in male Golden-Syrian hamsters. Animals were provided with taurine (5 mM) in drinking water for 1 week followed by APAP treatment (250 mg/kg, i.p.). Biliary excretion and plasma concentrations of APAP and its major metabolites were determined for up to 360 min. Taurine increased the bile flow, whereas the concentration of APAP or the metabolites in bile was not altered significantly. Accordingly the total biliary excretion of APAP and the metabolites was increased in hamsters fed taurine. Taurine increased the plasma concentrations of APAP-glutathione (GSH) and APAP-mercapturate, but the APAP-glucuronide or APAP-sulfate concentration was not changed. The area under the curve of the plasma APAP concentration was reduced significantly, suggesting that the elimination of APAP was enhanced by taurine intake. However, the hepatotoxicity resulting from a dose of APAP (450 mg/kg, i.p.) was not altered by taurine intake as determined by the elevation of serum alanine aminotransferase, aspartate aminotransferase, and sorbitol dehydrogenase activities. The results suggest that taurine administration could affect the disposition of APAP by enhancing its metabolism through the GSH-dependent pathway and also by increasing the biliary excretion of this drug and its metabolites. The pharmacological significance of this finding remains to be examined.  相似文献   

8.
Free radical scavenging and protective actions against chemically induced hepatotoxicity of Crassocephalum crepidioides were investigated. A water extract of C. crepidioides strongly scavenged superoxide anion, hydroxyl radical and also stable radical 1,1-diphenyl-2-picrylhydrazyl. Galactosamine (GalN, 400 mg/kg) and lipopolysaccharide (LPS, 0.5 microg/kg) induced hepatotoxicity of rats as seen by an elevation of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and of lipid peroxidation in liver homogenates was significantly depressed when the herbal extract was given intraperitoneally 1 and 15 h before GalN and LPS treatment. Similarly, carbon tetrachloride (CCl4) induced liver injury as evidenced by an increase in AST and ALT activities in serum was also inhibited by the extract pretreatment. Isochlorogenic acids, quercetin and kaempferol glycosides were identified as active components of C. crepidioides with strong free radical scavenging action. These results demonstrate that C. crepidioides is a potent antioxidant and protective against GalN plus LPS- or CCl4-induced hepatotoxicity.  相似文献   

9.
BackgroundCisplatin is a major anti-cancer drug commonly used in the treatment of various cancers; nevertheless, the associated hepatotoxicity has limited its clinical application. The aim of this investigation is to test the impact of betaine supplementation on cisplatin-induced hepatotoxicity.MethodsAnimals were allocated into four groups; normal control group (control betaine group (250 mg/kg/day, po for twenty six days), cisplatin group (single injection of 7 mg/kg, ip) and betaine + cisplatin group (received betaine for twenty one days before cisplatin injection and daily after cisplatin for five days).ResultsCisplatin-induced liver injury was confirmed by increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. Cisplatin elevated lipid peroxides, and reduced the concentrations of reduced glutathione (GSH), glutathione peroxidase (GSH-Px), catalase and superoxide dismutase (SOD) in hepatic tissues. Cisplatin increased the inflammatory mediators; nitrite and tumor necrosis factor-α (TNF- α) in hepatic tissues. Increased gene expressions of the apoptotic marker, caspase-3 and nuclear factor-kappa B (NF-κB) were observed in hepatic tissues of cisplatin-treated rats. All these changes were further confirmed by histopathological findings in cisplatin group. Pre-treatment with betaine reduced serum aminotransferases (ALT and AST), and lowered hepatic concentrations of lipid peroxides, nitrite and TNF-α while increased SOD, GSH, catalase, and GSH-Px concentrations. Moreover, the histological and immunohistochemical changes were improved.ConclusionThe suppression of NF-κβ-mediated inflammation, oxidative stress, and caspase-3 induced apoptosis are possible mechanisms to the observed hepatoprotective effect of betaine.  相似文献   

10.
Small amounts of exogenous lipopolysaccharide (LPS) (10 ng/kg-100 microg/kg) enhance the hepatotoxicity of allyl alcohol in male Sprague-Dawley rats. This augmentation of allyl alcohol hepatotoxicity appears to be linked to Kupffer cell function, but the mechanism of Kupffer cell involvement is unknown. Since Kupffer cells produce tumor necrosis factor-alpha (TNF alpha) upon exposure to LPS, and this cytokine has been implicated in liver injury from large doses of LPS, we tested the hypothesis that TNF alpha contributes to LPS enhancement of allyl alcohol hepatotoxicity. Rats were treated with LPS (10-100 microg/kg iv) 2 h before allyl alcohol (30 mg/kg ip). Co-treatment with LPS and allyl alcohol caused liver injury as assessed by an increase in activity of alanine aminotransferase in plasma. Treatment with LPS caused an increase in plasma TNF alpha concentration, which was prevented by administration of either pentoxifylline (PTX) (100 mg/kg iv) or anti-TNF alpha serum (1 ml/rat iv) one h prior to LPS. Only PTX protected rats from LPS-induced enhancement of allyl alcohol hepatotoxicity; anti-TNF alpha serum had no effect. Exposure of cultured hepatocytes to LPS (1-10 microg/ml) or to TNF alpha (15-150 ng/ml) for 2 h did not increase the cytotoxicity of allyl alcohol (0.01-200 microM). These data suggest that neither LPS nor TNF alpha alone was sufficient to increase the sensitivity of isolated hepatocytes to allyl alcohol. Furthermore, hepatocytes isolated from rats treated 2 h earlier with LPS (i.e., hepatocytes which were exposed in vivo to TNF alpha and other inflammatory mediators) were no more sensitive to allyl alcohol-induced cytotoxicity than hepatocytes from na?ve rats. These data suggest that circulating TNF alpha is not involved in the mechanism by which LPS enhances hepatotoxicity of allyl alcohol and that the protective effect of PTX may be due to another of its biological effects.  相似文献   

11.
Kaur G  Tirkey N  Chopra K 《Toxicology》2006,226(2-3):152-160
Hesperidin (HDN) is a flavanone glycoside abundantly found in citrus fruits. HDN has been reported to possess significant activities against allergy, haemorrhoids, hormonal disorders and ulcers. Other reported activities include anti-inflammatory, analgesic, antibacterial, antifungal, antiviral, antioxidant and free radical scavenger activity. A potentially important effect of endotoxin is the increased production of reactive oxygen intermediates as O(2)(-), peroxides and nitric oxide. The study reported here show a beneficial effect of HDN in amelioration of endotoxin-induced hepatic dysfunction and oxidative stress in the liver of rats. Hepatotoxicity was induced by administering lipopolysaccharide (LPS), in a single dose of 1mg/kg intraperitoneally to the rats. A marked hepatic dysfunction evident by rise in serum levels of liver enzymes (ALT, AST, ALP) and total bilirubin (p<0.05) was observed. Serum and tissue nitrite levels were also increased. LPS challenge further increased thiobarbituric acid reactive substances (TBARS) levels, whereas glutathione (GSH) content and superoxide dismutase (SOD) activity were decreased in the liver homogenates of the rats showing a marked oxidative stress. HDN administration successfully and dose dependently attenuated these effects of LPS. In conclusion, these findings suggest that HDN attenuates LPS-induced hepatotoxicity possibly by preventing cytotoxic effects of NO and oxygen free radicals.  相似文献   

12.
Exposure to a nontoxic dose of bacterial lipopolysaccharide (LPS) increases the hepatotoxicity of the histamine-2 (H2) receptor antagonist, ranitidine (RAN). Because some of the pathophysiologic effects associated with LPS are mediated through the expression and release of inflammatory mediators such as tumor necrosis factor alpha (TNF), this study was designed to gain insights into the role of TNF in LPS/RAN hepatotoxicity. To determine whether RAN affects LPS-induced TNF release at a time near the onset of liver injury, male Sprague-Dawley rats were treated with 2.5 x 10(6) endotoxin units (EU)/kg LPS or its saline vehicle (iv) and 2 h later with either 30 mg/kg RAN or sterile phosphate-buffered saline vehicle (iv). LPS administration caused an increase in circulating TNF concentration. RAN cotreatment enhanced the LPS-induced TNF increase before the onset of hepatocellular injury, an effect that was not produced by famotidine, a H2-receptor antagonist without idiosyncrasy liability. Similar effects were observed for serum interleukin (IL)-1beta, IL-6, and IL-10. To determine if TNF plays a causal role in LPS/RAN-induced hepatotoxicity, rats were given either pentoxifylline (PTX; 100 mg/kg, iv) to inhibit the synthesis of TNF or etanercept (Etan; 8 mg/kg, sc) to impede the ability of TNF to reach cellular receptors, and then they were treated with LPS and RAN. Hepatocellular injury, the release of inflammatory mediators, hepatic neutrophil (PMN) accumulation, and biomarkers of coagulation and fibrinolysis were assessed. Pretreatment with either PTX or Etan resulted in the attenuation of liver injury and diminished circulating concentrations of TNF, IL-1beta, IL-6, macrophage inflammatory protein-2, and coagulation/fibrinolysis biomarkers in LPS/RAN-cotreated animals. Neither PTX nor Etan pretreatments altered hepatic PMN accumulation. These results suggest that TNF contributes to LPS/RAN-induced liver injury by enhancing inflammatory cytokine production and hemostasis.  相似文献   

13.
14.
Hibiscus protocatechuic acid (PCA), a phenolic compound found in the dried flowers of Hibiscus sabdariffa L. (Malvaceae), was demonstrated to have an antioxidant effect in vitro and in vivo, and an antitumor property in our previous study. In the present study, we used lipopolysaccharide (LPS, an endotoxin) to induce rat liver inducible nitric oxide synthase (iNOS), and found that pretreatment with PCA decreased the liver iNOS and the serum total nitrite induced by LPS. Our investigation showed that pretreatment of rats with PCA (0.2 and 0.5 mmol/kg dosed by gavage) for 5 days significantly decreased the serum levels of the hepatic enzyme markers alanine- and aspartate aminotransferase (ALT, alanine aminotransferase; AST, aspartate aminotransferase) induced by the 6-h treatment with LPS (i.p.; 5 mg/kg). Histopathological evaluation of the rat livers revealed that PCA reduced the incidence of liver lesions induced by LPS, including neutrophil infiltration, congestion, and liver cell swelling induced by LPS in rats. We conclude that PCA, an antioxidant, presents an inhibitory potential on iNOS and hepatic damage induced by LPS.  相似文献   

15.
Bacterial endotoxin (lipopolysaccharide; LPS) given to animals in large doses results in pronounced, midzonal liver injury. Exposure to smaller, non-injurious doses of LPS augments the toxicity of certain hepatotoxicants. This study was conducted to delineate the development of injury in a rat model of augmentation of aflatoxin B(1) (AFB(1)) hepatotoxicity by LPS. At large doses (i.e., > 1 mg/kg, ip), AFB(1) administration resulted in pronounced injury to the periportal regions of the liver. Male, Sprague-Dawley rats (250-350 g) were treated with 1 mg AFB(1)/kg, ip or its vehicle (0.5% DMSO/saline) and 4 h later with either E. coli LPS (7.4 x 106 EU/kg, iv) or its saline vehicle. Liver injury was assessed 6, 12, 24, 48, 72, or 96 h after AFB(1) administration. Hepatic parenchymal cell injury was evaluated as increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in serum and from histologic examination of liver sections. Biliary tract alterations were evaluated as increased concentration of serum bile acids and activities of gamma-glutamyltransferase (GGT), alkaline phosphatase (ALP), and 5'-nucleotidase (5'-ND) in serum. At all times and for all markers, injury in rats treated with either AFB(1) or LPS alone was absent or modest. In the AFB(1)/LPS cotreated group, hepatic parenchymal cell injury was pronounced by 24 h and had returned to control values by 72 h. The injury began in the periportal region and spread midzonally with time. Furthermore, changes in serum markers indicative of biliary tract alterations were evident by 12 h and had returned to control values by 72 h. Thus, the nature of the hepatic lesions suggested that LPS potentiated the effects of AFB(1) on both parenchymal and bile duct epithelial cells.  相似文献   

16.
Cocaine produces hepatotoxicity by a mechanism that remains undefined but has been linked to its oxidative metabolism. Endotoxin (lipopolysaccharide, LPS) is also a well-known cause of hepatic damage, and exposure to noninjurious doses of LPS increases the toxicity of certain hepatotoxins. Previously it was demonstrated that exposure to noninjurious doses of LPS dramatically increases cocaine-mediated hepatotoxicity (CMH). This study was conducted to investigate whether pretreatment with N-acetylcysteine (NAC), a glutathione (GSH) precursor and an antioxidant agent, inhibits LPS potentiation of CMH. For 5 consecutive days, male CF-1 mice were administered daily oral NAC (200 mg/kg) or sterile saline followed an hour later by cocaine (20 mg/kg) or sterile saline. Four hours following the last cocaine or saline treatment, the mice were administered 12 x 10(6) EU LPS/kg or sterile saline. For the cocaine alone and cocaine and LPS groups, NAC pretreatment significantly decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities with absence of necrotic hepatic lesions, indicating a reduction of liver injury. In addition, in all groups pretreated with NAC, hepatic GSH concentration was significantly increased, as were hepatic and blood glutathione peroxidase (GPx) and catalase (CAT) activities. In conclusion, the results demonstrate that NAC pretreatment exerted a protective effect against LPS potentia-tion of CMH.  相似文献   

17.
The effects of 1,8-cineole on D-galactosamine/lipopolysaccharide (GalN/LPS)-induced shock model of liver injury was investigated in mice. The co-administration of GalN (700 mg kg(-1), i.p.) and LPS (5 microg kg(-1), i.p.) greatly elevated serum concentrations of tumour necrosis factor-alpha (TNF-alpha), alanine aminotransferase and aspartate aminotransferase, and induced massive hepatic necrosis and lethality in 100% of control mice. Pretreatment with 1,8-cineole (400 mg kg(-1), p.o.) and dexamethasone (1 mg kg(-1), s.c.), 60 min before GalN/LPS, offered complete protection (100%) against the lethal shock and acute elevation in serum TNF-alpha and serum transaminases. Hepatic necrosis induced by GalN/LPS was also greatly reduced by both 1,8-cineole and dexamethasone treatment. The results indicate that 1,8-cineole protects mice against GalN/LPS-induced liver injury through the inhibition of TNF-alpha production, and suggest that 1,8-cineole may be a promising agent to combat septic-shock-associated pathologies.  相似文献   

18.
Exposure to small, noninjurious doses of the inflammagen, bacterial endotoxin (lipopolysaccharide, LPS) augments the toxicity of certain hepatotoxicants including aflatoxin B(1) (AFB(1)). Mediators of inflammation, in particular neutrophils (PMNs), are responsible for tissue injury in a variety of animal models. This study was conducted to examine the role of PMNs in the pathogenesis of hepatic injury after AFB(1)/LPS cotreatment. Male, Sprague-Dawley rats (250-350 g) were treated with either 1 mg AFB(1)/kg, ip or its vehicle (0.5% DMSO/saline), and 4 h later with either E. coli LPS (7. 4 x 10(6) EU/kg, iv) or its saline vehicle. Over a course of 6 to 96 h after AFB(1) administration, rats were killed and livers were stained immunohistochemically for PMNs. LPS resulted in an increase in PMN accumulation in the liver that preceded the onset of liver injury. To assess if PMNs contributed to the pathogenesis, an anti-PMN antibody was administered to reduce PMN numbers in blood and liver, and injury was evaluated. Hepatic parenchymal cell injury was evaluated as increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in serum and from histologic examination of liver sections. Biliary tract alterations were evaluated as increased concentration of serum bile acids and activities of gamma-glutamyltransferase (GGT), alkaline phosphatase (ALP), and 5'-nucleotidase (5'-ND) in serum. Neutrophil depletion protected against hepatic parenchymal cell injury caused by AFB(1)/LPS cotreatment but not against markers of biliary tract injury. This suggests that LPS augments AFB(1) hepatotoxicity through two mechanisms: one of which is PMN-dependent, and another that is not.  相似文献   

19.
N-乙酰半胱氨酸对小鼠免疫性肝损伤的影响   总被引:5,自引:0,他引:5  
目的研究N-乙酰半胱氨酸(NAC)对卡介苗(BCG)与细菌脂多糖(LPS)引起小鼠免疫性肝损伤的影响。方法建立BCG/LPS引起的小鼠免疫性肝损伤模型。采用两种处理方式给予NAC:方式A,于LPS处理前4h和15min分别经腹腔注射给予NAC(预处理);方式B,于LPS处理后0h和4h分别经腹腔注射NAC(后处理)。LPS处理后8h剖杀动物,取血和肝脏,并检测血清丙氨酸氨基转移酶(ALT)活性与一氧化氮(NO)水平、肝脏组织谷胱甘肽(GSH)与丙二醛(MDA)含量以及肿瘤坏死因子α(TNF-α) mRNA表达水平。结果与模型组比较,NAC预处理组小鼠血清ALT活性下降,肝脏TNF-α mRNA表达明显减少,而体内NO生成和肝脏脂质过氧化水平无改变;NAC后处理组与模型组相比,小鼠死亡率升高,血清NO生成增加,肝脏GSH含量进一步下降,而小鼠血清ALT活性未见明显改变。结论NAC对小鼠免疫性肝损伤有双重效应,NAC预处理对抗BCG/LPS引起的小鼠免疫性肝脏损伤,NAC后处理加重BCG/LPS引起的氧化应激并升高动物死亡率。  相似文献   

20.
目的:研究F1013对D-氨基半乳糖(D-Gal N)及脂多糖(LPS)所致大鼠急性肝损伤模型的治疗作用,并对其机制进行初步探讨。方法:60只雄性W istar大鼠随机分成对照组、模型组、阳性药组(N-乙酰半胱氨酸,155 m·gkg-1)和F1013给药组(5,2.5,1.25 m·gkg-1)。除对照组外,各组大鼠均腹腔注射D-GalN/LPS建立大鼠急性肝损伤模型,造模后2 h,阳性药组和F1013给药组分别腹腔注射NAC和F1013,其余组腹腔注射等体积生理盐水。造模后10 h,留取血清和肝组织,用全自动生化分析仪检测血清丙氨酸转氨酶(ALT)、天冬氨酸转氨酶(AST)和总胆红素(T-Bil)含量;用苏木素-伊红(HE)染色,观察肝组织病理学变化;采用流式细胞学技术和原位末端标记(TUNEL)法检测肝细胞凋亡情况。结果:在D-GalN/LPS诱导大鼠急性肝损伤模型,各剂量F1013均明显改善肝脏病理组织损伤;明显降低血清ALT,AST,T-Bil水平及肝细胞凋亡率(P<0.05)。结论:F1013对D-GalN/LPS所致大鼠急性肝损伤具有较好的治疗作用,其机制可能与抑制肝细胞异常凋亡有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号