首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is increasing evidence that ongoing T-cell recognition of alloantigen and activation are key mediators of chronic allograft rejection. The CD28-B7 pathway is unique among costimulatory pathways in that two alternate ligands for B7 exist: CD28 and CTLA4. Recently, it has been suggested that CTLA4 negative signaling may be required for induction of acquired tolerance in vivo. A strategy by which the T cell is targeted at the CD28 receptor rather than its ligands would theoretically allow the inhibitory functions of the CTLA4-B7-1/2 axis to remain intact. Using a rat-specific monoclonal antibody, we investigated the effect of targeting CD28 in a model of chronic rejection without the confounding variable of immunosuppression. We also used an acute cardiac allograft rejection model to investigate CD28 stimulation-based strategies to induce donor-specific tolerance. We demonstrated that anti-CD28 monoclonal antibody was as effective as CTLA4 immunoglobulin in protecting against chronic allograft vasculopathy. In addition, a short course of cyclosporine therapy synergized with either anti-CD28 monoclonal antibody or CTLA4 immunoglobulin, suggesting that it may be clinically relevant to combine low-dose calcineurin inhibitors with CTLA4 immunoglobulin or anti-B7 antibodies. Finally, we report on the potential mechanisms of action of targeting CD28 in vivo.  相似文献   

2.
BACKGROUND: The clinical application of composite tissue allograft transplants opened the discussion on the restoration of facial deformities by allotransplantation. We introduce a hemifacial allograft transplant model to investigate the rationale for the development of operational tolerance across a major histocompatibility complex (MHC) barrier. MATERIAL AND METHODS: Thirty rats were studied in five groups of six animals each. The composite hemiface isograft transplantations were performed in group 1. Allograft rejection controls included semi-allogenic transplantations from LBN (RT1(1+n) donors (group 2) and fully allogenic transplantations from ACI (RT1a) donors (group 3) to LEW (RT1(1)) recipients. In the allograft treatment groups, recipients of LBN (group 4) and ACI donors (group 5) were treated with cyclosporine A monotherapy (16 mg/kg/day, tapered to 2 mg/kg/day). Face allografts were evaluated clinically and histologically. Donor-specific chimerism for MHC class I RT1n and RT1a antigens was assessed by flow cytometry. Mixed lymphocyte reaction for donor-specific tolerance in vitro was tested at day 160 posttransplant. RESULTS: Isograft controls survived indefinitely. All nontreated allografts rejected within 5 to 8 days posttransplant. Long-term survival was achieved in 100% of LBN (up to 400 days) and ACI (up to 330 days) recipients. At day 160, posttransplant donor-specific chimerism was present in recipients of LBN (10.14% CD4/RT1n, 6.38% CD8/RT1n, 10.02% CD45RA/RT1n) and ACI (17.54% CD4/RT1a, 9.28% CD8/RT1a) transplants, and mixed lymphocyte reaction confirmed tolerance in recipients of LBN transplants and moderate reactivity in recipients of ACI allografts. CONCLUSION: Operational tolerance was induced in hemiface allograft transplants across an MHC barrier under cyclosporine A monotherapy protocol. It was associated directly with the presence of multilineage donor-specific chimerism.  相似文献   

3.
BACKGROUND: CD45RB is a potent immunomodulatory target to achieve long-term allograft survival. We evaluated the in vivo effect of anti-CD45RB monoclonal antibody (mAb) treatment in combination with conventional immunosuppression or costimulatory blockade strategies as a therapeutic modality for future clinical application. METHODS: A fully MHC-mismatched vascularized mouse cardiac allograft model was used to test the interactions between anti-CD45RB mAb and conventional immunosuppressive drugs or costimulatory blockade of the CD40/CD154 or B7/CD28 pathway. Chronic rejection was examined histologically for development of chronic allograft vasculopathy. RESULTS: Cyclosporine significantly abrogated the effect of anti-CD45RB therapy. In contrast, rapamycin acted synergistically with anti-CD45RB mAb in promoting long-term allograft survival. CD154 blockade further enhanced the tolerogenic efficacy of anti-CD45RB mAb. These synergistic effects of combination treatments also prevented the development of chronic allograft vasculopathy. CONCLUSION: CD45RB-targeting strategy in combination with the use of rapamycin or costimulatory blockade promotes allograft tolerance and prevents chronic rejection.  相似文献   

4.
PURPOSE: To study the effect of B7-CD28 costimulatory signal blockade by adenovirus-mediated cytotoxic T-lymphocyte-associated antigen 4 immunoglobulin (AdCTLA-4Ig) on cardiac allograft survival in DA (RT1(a)) to LEW (Lewis RT1(l)) rat combinations. METHODS: We evaluated the effect of combined AdCTLA-4Ig and anti-inducible costimulator (ICOS) antibody immunotherapy on rat cardiac allograft acceptance. RESULTS: Unlike AdCTLA-4Ig alone, anti-ICOS immunotherapy combined with AdCTLA-4Ig induced stable tolerance without causing chronic rejection. The combined immunotherapy also prevented the accelerated cardiac rejection caused by donor-type test skin grafting. Immunohistochemical analyses revealed remarkable inflammatory mononuclear cell infiltration with typical vasculopathy, especially ICOS-positive cells in the grafts, in recipients treated with AdCTLA-4Ig alone. In contrast, anti-ICOS therapy combined with AdCTLA-4Ig reduced the ICOS-positive inflammatory cell infiltration of the graft significantly. The most important finding is that possible cardiac arrest caused by secondary donor-type skin graft was prevented by combined immunotherapy of AdCTLA-4Ig and anti-ICOS antibody, despite skin graft rejection. CONCLUSIONS: Our results identified a major role played by the ICOS-ICOSL pathway in chronic and accelerated cardiac allograft rejection, providing a novel approach to preventing the chronic rejection of vascularized organ allografts.  相似文献   

5.
BACKGROUND: Costimulation through CD40-CD154 plays an important role in T-cell activation. Although systemic administration of anti-CD154 antibody prevents or delays rejection of organ allografts in animal models, the molecular mechanisms responsible for this effect are not well defined. METHODS: We have previously demonstrated that priming of mice (H2d) with CD40-/- but not with wildtype naive B cells (H2b) leads to alloantigen-specific T-cell hyporesponsiveness in vitro. In the present study, we investigated whether such priming modifies allograft rejection in a major histocompatibility complex-mismatched murine cardiac transplantation model. RESULTS: Priming of hosts with donor-specific CD40-/- B cells delayed rejection of subsequently transplanted wild-type cardiac allografts by 8.0 days (P<0.001). The lack of CD40 on the cardiac graft delayed rejection in unprimed or primed hosts by 3-5 days. Prolongation of graft survival correlated with the failure of infused CD40-/- B cells to express B7.2 and ICAM-1 in vivo. CONCLUSIONS: Our data suggest that CD40-CD154 costimulation contributes to T cell priming to alloantigens in vivo and to a second set rejection phase in which donor antigens are presented to primed T cells.  相似文献   

6.
BACKGROUND: The effectiveness of anti-CD154 monoclonal antibodies in prolonging the survival of mouse allografts is dependent on the strain combination. In this report, we examined the impact of the donor and the recipient strains on the success of CD40-CD154 blockade. MATERIALS AND METHODS: Cardiac allograft survival was monitored in different donor/recipient strain combinations. Morphometric analyses on the allograft coronary arteries allowed quantification of vessel intimal thickening. RESULTS: Prolonged cardiac allograft survival after the administration of an anti-CD154 monoclonal antibody was found to be dependent on the donor and the recipient strains. The influence of the donor and the recipient strains lay in the ability of CD8 T cells to cause graft rejection despite CD40-CD154 blockade. Elimination of CD8 T cells before transplantation resulted in similar graft prolongation irrespective of the genotype of the donor or the recipient strain. CONCLUSION: These data show that both donor and recipient strains contribute to CD40-CD154-independent CD8 T-cell-mediated rejection.  相似文献   

7.
BACKGROUND: Recent studies have demonstrated that treatment with alphabeta-T-cell receptor (TCR) monoclonal antibody and cyclosporine A (CsA) can extend survival in composite tissue allografts (CTA). The purpose of this study was to induce tolerance in fully major histocompatibility complex (MHC)-mismatched rat limb allografts under 7 days of a combined alphabeta-TCR-CsA protocol. METHODS: The authors performed 30 hind-limb allotransplantations across the MHC barrier between Brown Norway donors (BN; RT1n) and Lewis recipients (LEW; RT1l). Isograft and allograft controls received no treatment. The experimental groups received monotherapy of alphabeta-TCR and CsA or a combination of alphabeta-TCR and CsA for 7 days only. Donor-specific tolerance and immunocompetence were determined by standard skin grafting in vivo and mixed lymphocyte reaction (MLR) in vitro. The efficacy of immunosuppressive therapy and the level of donor-specific chimerism were determined by flow cytometry. RESULTS: Long-term survival (>350 days) was achieved in allograft recipients (n=6) under the 7-day protocol of combined alphabeta-TCR-CsA. Donor-specific tolerance and immunocompetence of long-term chimeras were confirmed by acceptance of skin grafts from the donors and rejection of the third-party alloantigens (AxC Irish). At day 120, MLR demonstrated unresponsiveness to the host and donor antigens but strong reactivity against third-party alloantigens. Flow cytometry confirmed the high efficacy of immunosuppressive treatment and the development of donor-specific chimerism (7.6% of CD4+-RT1n+ cells, 1.3% of CD8+-RT1n+ cells, and 16.5% of CD45RA+-RT1n+ cells) in the periphery of tolerated recipients. CONCLUSIONS: Combined therapy of alphabeta-TCR-CsA for 7 days resulted in tolerance induction in fully MHC-mismatched rat hind-limb allografts. Tolerance was directly associated with stable, donor-specific chimerism.  相似文献   

8.
In this study we examined the effect of cyclosporine on three distinct subsets of T suppressor (Ts) cells identified in a rat renal allograft model. Ts inducer (Ts1) cells having the CD4 marker are found in the spleens of DA rats undergoing acute rejection of LEW kidneys. Transducer (Ts2) and effector (Ts3) cells both carry the CD8 marker and are found in the spleens of long-term surviving DA rats bearing LEW kidney allografts made tolerant by donor-specific blood transfusions or by cyclosporine (in most cases). These latter cells are distinguished by their susceptibility to cyclophosphamide (CY), Ts2 cells being resistant while Ts3 cells are sensitive to CY. When Ts cells from DA rats undergoing acute graft rejection of LEW kidneys or bearing long-term-surviving LEW kidneys that had been treated with cyclosporine (10mg/kg/day) for 2 or 10 days, respectively, were adoptively transferred into lightly irradiated DA recipients, these cells were still able to specifically induce long-term survival of LEW kidneys. LEW kidney survival was not prolonged in DA rats given no cells or cells from rats treated with cyclosporine for 10 days. Thus it would appear that the three functional subsets of Ts cells demonstrated in this renal allograft model by adoptive transfer of spleen lymphocytes are not inhibited by cyclosporine, suggesting that this resistance of Ts cells to cyclosporine may be partly responsible for the immunosuppressive effect of this agent.  相似文献   

9.
BACKGROUND: In many situations, anti-CD154 (CD40 ligand) monoclonal antibody (mAb) treatment is very potent in producing allograft tolerance. In accordance to our previously reported results, combined donor specific transfusion (DST)3 plus anti-CD154 mAb (MR1) treatment enables the permanent engraftment of DBA/2 (H-2(d)) islets into B6AF1 (H-2(b/kd)) recipients in all cases. It has been widely assumed that the MR1 anti-154 is a noncytolytic neutralizing mAb, and it exerts immune suppressive effects by blockade of CD40/CD154 signal pathway. In this study, we sought to test the role of complement dependent cytotoxicity (CDC) immune effector mechanism in MR1 anti-CD154 induced immunosuppression. METHODS: We have evaluated the contributions of CDC in the context of the potent tolerizing effects of DST plus anti-CD154 mAb treatment regiment in recipients of islet allografts. We have used CD40 knockout (KO) mice and complement C5 deficient mice DBA/2 as islet allograft recipients as well as cobra venom factor (CVF), a complement blocker, treatment. RESULTS: The absence of direct and indirect CD40/CD154 pathway signals does not prevent islet allograft acute rejection. Interestingly, MR1 anti-CD154 induces islet allograft tolerance in the absence of CD40/CD154 pathway. In a wild-type major histocompatibility complex (MHC) mismatched strain combination, DST results in accelerated islet allograft rejection. Combination of DST and MR1 anti-CD154 treatment prevents presensitization and permits permanent engraftment. However, administration of CVF abolishes the tolerance induction. Moreover, DST plus MR1 anti-CD154 regiment, a potent tolerizing therapy, does not prevent acute islet allograft rejection when complement C5 deficient DBA/2 mice are used as recipients. Thus, the mechanisms of the tolerizing effects by MR1 anti-CD154 are not limited to blockade of CD40/CD154 signals. The CDC immune effector mechanism contributes to MR1 anti-CD154 induced immunosuppression.  相似文献   

10.
CD154-specific antibody therapy prevents allograft rejection in many experimental transplant models. However, initial clinical transplant trials with anti-CD154 have been disappointing suggesting the need for as of yet undetermined adjuvant therapy. In rodents, donor antigen (e.g., a donor blood transfusion), or mTOR inhibition (e.g., sirolimus), enhances anti-CD154's efficacy. We performed renal transplants in major histocompatibility complex-(MHC) mismatched rhesus monkeys and treated recipients with combinations of the CD154-specific antibody IDEC-131, and/or sirolimus, and/or a pre-transplant donor-specific transfusion (DST). Therapy was withdrawn after 3 months. Triple therapy prevented rejection during therapy in all animals and led to operational tolerance in three of five animals including donor-specific skin graft acceptance in the two animals tested. IDEC-131, sirolimus and DST are highly effective in preventing renal allograft rejection in primates. This apparently clinically applicable regimen is promising for human renal transplant trials.  相似文献   

11.
Composite tissue allograft (CTA) transplantation became a clinical reality despite major side effects associated with the administration of chronic immunosuppression. Development of new treatment modalities eliminating life-long immunosuppression is essential for the future of CTA transplantation. In this study, combined use of cyclosporine A (CsA) and antilymphocyte serum (ALS) was tested for the potential to induce tolerance in the rat hind-limb allograft recipients across a major histocompatibility (MHC) barrier (Lewis-Brown-Norway [LBN, RT1(l+n)] to Lewis [LEW, RT1(l)] rats). Thirty transplantations were performed in 5 experimental groups. Animals received CsA and ALS 12 hours before surgery for 21 days thereafter. Although the allograft controls rejected their limbs at day 7 combined treatment of CsA and ALS resulted in indefinite survival (over 420 d) in all allograft recipients. Long-term survivors showed 35% to 42% of donor-specific chimerism in the peripheral blood. Clinical tolerance was confirmed by acceptance of the donor-specific skin grafts and immunocompetence was confirmed by rejection of the third-party grafts. Mixed lymphocyte reaction revealed suppressed response against donor-type antigens and increased response to third-party antigens. Donor-specific tolerance across MHC barrier was induced in CTA allografts under 21 days protocol of ALS/CsA.  相似文献   

12.
BACKGROUND: Treatment with a donor-specific transfusion (DST) and a brief course of anti-mouse CD154 (anti-CD40-ligand) monoclonal antibody (mAb) prolongs the survival of both allografts and rat xenografts in mice. The mechanism by which allograft survival is prolonged is incompletely understood, but depends in part on the presence of CD4+ cells and the deletion of alloreactive CD8+ T cells. Less is known about the mechanism by which this protocol prolongs xenograft survival. METHODS: We measured rat islet and skin xenograft survival in euthymic and thymectomized mice treated with combinations of DST, anti-CD154 mAb, anti-CD4 mAb, and anti-CD8 mAb. Recipients included C57BL/6, C57BL/6-scid, C57BL/6-CD4null, and C57BL/6-CD8null mice. RESULTS: Pretreatment with a depleting anti-CD4 mAb markedly prolonged the survival of both skin and islet xenografts in mice given DST plus anti-CD154 mAb. Comparable prolongation of xenograft survival was obtained in C57BL/6-CD4null recipients treated with DST and anti-CD154 mAb. In contrast, anti-CD8 mAb did not prolong the survival of either islet or skin xenografts in mice treated with DST and anti-CD154 mAb. Thymectomy did not influence xenograft survival in any treatment group. Adoptive transfer of splenocytes from C57BL/6-CD4null recipients treated with DST and anti-CD154 mAb and bearing long-term skin xenografts revealed the presence of residual xenoreactive cells. CONCLUSIONS: These data suggest that treatment with DST and anti-CD154 mAb induces a state of "functional" transplantation tolerance. They also support the hypothesis that both the induction and maintenance of graft survival based on this protocol depend on different cellular mechanisms in allogeneic and xenogeneic model systems.  相似文献   

13.
Costimulatory blockade with anti-CD154 monoclonal antibody (aCD154) prolongs allograft survival in nonhuman primates, but has not reliably induced tolerance when used alone. In the current studies, we evaluated the effect of adding CD154 blockade to a chimerism inducing nonmyeloablative regimen in primates. We observed a significant improvement of donor bone marrow (DBM) engraftment, which has been associated with a lower incidence of acute rejection and long-term survival of renal allografts without the need for previously required splenectomy. Among the long-term survivors, four never showed evidence of rejection, with the longest survival exceeding 1700 days following discontinuation of immunosuppression. Nevertheless, late chronic rejection was observed in three of eight recipients, indicating the necessity of further modifications of the regimen. Control recipients receiving no DBM or donor splenocytes in place of DBM rejected their allografts. Thus, DBM engraftment with, at least, transient mixed chimerism appears essential for induction of allograft tolerance using this conditioning regimen. Modification of the original mixed chimerism approach, by the addition of costimulatory blockade, has been shown to enhance mixed chimerism and induce renal allograft tolerance with less morbidity in nonhuman primates.  相似文献   

14.
To find more effective and less toxic immunosuppressive strategies in long-term treatment for organ transplantation patients, we examined the effects on rat heart allograft survival of a novel sphigosine-1-phosphate receptor agonist, KRP-203, combined with a subtherapeutic dose of cyclosporine (CsA). Rat heart transplantation was performed across a major histocompatibility complex-incompatible (DA to LEW) rat combination. KRP-203 alone showed little or no effect on heart allograft survival. In contrast, KRP-203 combined with a subtherapeutic dose of CsA led to prolonged allograft survival. Histologic analyses showed that the combination completely suppressed acute rejection, as characterized by allograft vasculopathy, mononuclear cell infiltration, and myocardial necrosis in the heart allografts. RT-PCR analysis showed that the allografts treated with CsA or KRP-203 alone showed no suppression of IL-10, IFN-gamma, and TNF-alpha mRNA expression, but when combined with a subtherapeutic dose of CsA it completely suppressed their mRNA expressions. Furthermore, the combination treatment reduced donor-specific antibody production. KRP-203 combined with a subtherapeutic dose of CsA synergistically prolonged rat heart allograft survival. The combination of CsA with KRP-203 may provide an option to prevent allograft rejection and reduce adverse effects.  相似文献   

15.
16.
OBJECTIVE: To determine the precise in vivo interaction between T-cell costimulatory blockade and conventional immunosuppression in transplantation. SUMMARY BACKGROUND DATA: Blocking B7 or CD154 T-cell costimulatory activation pathways prevents allograft rejection in small and large animal transplant models and is considered a promising strategy for clinical organ transplantation. METHODS: A fully MHC-mismatched vascularized mouse cardiac allograft model was used to test the interactions between anti-CD154 or CTLA4Ig monotherapy and conventional immunosuppressive drugs in promoting long-term graft acceptance. The frequency of alloreactive T cell was measured by ELISPOT. Chronic rejection was examined by histology. RESULTS: Cyclosporine, tacrolimus, and anti-IL-2R monoclonal antibody therapy abrogated the effect of a single-dose protocol of anti-CD154 therapy. In contrast, rapamycin acted synergistically with anti-CD154 therapy in promoting long-term allograft survival. The addition of calcineurin inhibitors did not abolish this synergistic effect. Intense CD154-CD40 blockade by a multiple-dose schedule of anti-CD154 resulted in long-term graft survival and profound alloreactive T-cell unresponsiveness and overcame the opposite effects of calcineurin inhibitors. CTLA4Ig induced long-term graft survival, and the effect was not affected by the concomitant use of any immunosuppressive drugs. CONCLUSIONS: The widespread view that calcineurin inhibitors abrogate the effects of T-cell costimulatory blockade should be revisited. Sufficient costimulatory blockade and synergy induced by CD154 blockade and rapamycin promote allograft tolerance and prevent chronic rejection.  相似文献   

17.
BACKGROUND: Treatment with a single donor-specific transfusion (DST) plus a brief course of anti-CD154 monoclonal antibody (mAb) prolongs skin allograft survival in mice. It is known that prolongation of allograft survival by this method depends in part on deletion of alloreactive CD8(+) T cells at the time of tolerance induction. Recent data suggest that infection with lymphocytic choriomeningitis virus (LCMV) abrogates the ability of this protocol to prolong graft survival. METHODS: To study the mechanism by which viral infection abrogates allograft survival, we determined (1) the fate of tracer populations of alloreactive transgenic CD8(+) T cells and (2) the duration of skin allograft survival following treatment with DST and anti-CD154 mAb in the presence or absence of LCMV infection. RESULTS: We confirmed that treatment of uninfected mice with DST and anti-CD154 mAb leads to the deletion of alloreactive CD8(+) T cells and is associated with prolongation of skin allograft survival. In contrast, treatment with DST and anti-CD154 mAb in the presence of intercurrent LCMV infection was associated with the failure to delete alloreactive CD8(+) T cells and with the rapid rejection of skin allografts. The number of alloreactive CD8(+) cells actually increased significantly, and the cells acquired an activated phenotype. CONCLUSIONS: Interference with the deletion of alloreactive CD8(+) T cells mediated by DST and anti-CD154 mAb may in part be the mechanism by which viral infection abrogates transplantation tolerance induction.  相似文献   

18.
BACKGROUND: We have previously demonstrated that blockade of either CD80/86-CD28 or CD40-CD154 costimulatory pathways by using adenovirus vector coding CTLA4Ig (AdCTLA4Ig) or CD40Ig (AdCD40Ig) genes induced donor-specific tolerance in rat liver transplantation. In this study, we asked whether these gene-therapy-based costimulation blockade would induce tolerance in cardiac transplantation. METHODS: Heterotopic heart transplantation was performed in a full major histocompatibility complex (MHC) barrier combination of ACI (RT1avl) to Lewis (LEW, RT1l) rats. Vector (1 x 10(9) plaque forming unit [PFU]), AdLacZ, AdCTLA4Ig, or AdCD40Ig, was administered intravenously to recipient animals immediately after grafting, and graft survival, serum CTLA4Ig/CD40Ig levels, and graft histology were assessed. Tolerance was determined by secondary skin-graft challenging. RESULTS: Allografts of both untreated and AdLacZ controls were promptly rejected within 7 days, whereas a single treatment with AdCTLA4Ig or AdCD40Ig significantly prolonged median graft survival to 55.5 and 28.5 days, respectively. In contrast, the combined AdCTLA4Ig and AdCD40Ig gene therapy maintained high CTLA4Ig and CD40Ig levels through the posttransplant period and allowed long-term cardiac allograft survival for more than 270 days. However, both donor and third-party skin grafts were rejected in the animals who harbored cardiac grafts over 150 days. Also, typical features of chronic rejection were evident in the long-term surviving grafts. CONCLUSION: Simultaneous blockade of CD28 and CD154 pathways by AdCTLA4Ig plus AdCD40Ig induces a strong immunosuppression that allows long-term acceptance of full MHC mismatched cardiac graft in rats. This strategy, however, was not enough to induce tolerance to skin grafts and to avoid chronic rejection, as shown in the liver-transplantation model.  相似文献   

19.
Increasing evidence suggests that there may be a causal relationship between the development of donor-specific alloantibodies and chronic allograft vasculopathy (CAV). PVG.RT1(u) rat heart allografts spontaneously undergo chronic rejection when transplanted into unmodified PVG.R8 congenic recipients that differ only at the classical MHC class I RT1.A locus. Here we show that development of vasculopathy in this experimental model is associated with production of a strong anti-A(u) antibody response. Perioperative intravenous administration of recombinant soluble RT1.A(u) heavy chain that is sequence identical to donor MHC class I, or chimaeric A(u/a) (donor/recipient) protein had a variable effect resulting generally in either sensitisation and accelerated rejection, or abrogation of alloantibody and attenuation of chronic rejection. These findings highlight the potential for soluble donor MHC class I alloantigen given at the time of heart transplantation to influence alloantibody production and graft outcome.  相似文献   

20.
BACKGROUND: The major impediment to success in solid organ transplantation is chronic rejection (CR). The characteristic lesion of CR is transplant vascular sclerosis (TVS). Although the mechanism of TVS is thought to have an immunologic basis, in humans immunosuppression does not prevent or reverse it. One possible therapy to prevent TVS is induction of donor-specific tolerance. Bone marrow chimerism has been successful in inducing tolerance in acute and chronic rejection heart and kidney transplant models. The highly immunogenic small bowel (SB) allograft provides a rigorous test of the efficacy of this tolerance regimen. We examined whether induction of tolerance by bone marrow chimerism could prevent TVS in a model of Fisher 344 (F344) to Lewis (LEW) rat SB transplantation. METHODS: Bone marrow chimeras (BMC) were created by transplantation of T-cell-depleted F344 bone marrow into irradiated LEW rats. Chimerism was assessed by flow cytometric method. F344 SB, heterotopically transplanted into the chimeras, was clinically and histologically assessed for CR. F344 SB grafts, transplanted into cyclosporine-A-treated LEW recipients, served as control grafts for CR. RESULTS: Cyclosporine-A-treated LEW rats chronically rejected F344 SB grafts. By contrast, the BMC group demonstrated tolerance and had long-term SB graft survival (>120 days) without TVS. The BMC demonstrated immunocompetence by prompt rejection of third party ACI (RT1av1) SB allografts. CONCLUSIONS: Bone marrow chimerism prevents chronic graft failure secondary to TVS in a model of chronic SB rejection. TVS fails to develop when tolerance is established, suggesting that the mechanisms involved in TVS are, in part, immunologically mediated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号