首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The defective von Willebrand Factor (vWF) in type IIA von Willebrand disease (vWD) has decreased binding affinity for platelet membrane glycoprotein Ib (GPIb) while in type IIB vWD, the abnormal vWF has increased affinity for this receptor. Segments of exon 28 of the vWF gene were amplified by the polymerase chain reaction and sequenced in two patients with type IIA and two patients with type IIB vWD. One type IIB patient showed an arginine to tryptophan substitution at amino acid residue 543 in the mature vWF and the other patient had a valine to methionine change at residue 553. Including these two new cases, substitutions at residues 543 and 553 now account for more than half of the documented mutations in patients with type IIB vWD. One patient with type IIA vWD showed an isoleucine to threonine change at amino acid 865. This substitution has been reported in another patient with type IIA vWD. The other patient showed a novel proline to serine change at residue 885. The C to T nucleotide transition which causes the amino acid change was not found in over 100 normal chromosomes tested by allele specific oligonucleotide hybridization and was linked to type IIA vWD in the family. This potential mutation is more carboxyterminal in the vWF subunit than other reported mutations in type IIA vWD. It is apparent that mutations associated with type IIA vWD are not as tightly grouped as defects in type IIB vWD, supporting the evidence that the type IIA vWD phenotype is generated by diverse mechanisms.  相似文献   

2.
Type IIA and IIB von Willebrand disease (vWD) result from qualitative abnormalities of von Willebrand factor (vWF) characterized by an absence in plasma of high molecular weight vWF multimers and an abnormal reactivity of vWF towards platelet glycoprotein (GP) Ib, which is decreased in type IIA and increased in type IIB. In this report, we describe the case of a patient having a IIA vWD phenotype associated with an intermittent thrombocytopenia atypical in this subtype but observed in type IIB vWD. The patient plasma vWF showed an absence of high molecular weight and intermediate multimers and had a decreased binding capacity to GPIb. The affinity of botrocetin was normal for plasma vWF from the propositus. Analysis of the propositus vWF gene showed the presence of a substitution Val 551 to Phe of the mature vWF subunit. This mutation is localized within a 509-695 disulphide loop of the vWF that plays an important role in the binding to GPIb and is where most of the molecular defects described so far were associated with type-IIB vWD. We have reproduced the Val 551 Phe substitution onto the vWF cDNA, expressed it in COS-7 cells, and performed structural and functional analysis of the mutant recombinant protein (rvWFPhe 551). The rvWFPhe 551 had a normal multimeric structure and showed the capacity to spontaneously interact with GPIb. Botrocetin had a decreased affinity for rvWFPhe 551. In conclusion, the Val 551 Phe mutation modifies the affinity of vWF for platelet GPIb, as does a type IIB mutation, and may be responsible for the thrombocytopenia of the patient and the clearance of the high molecular weight and intermediate- sized multimers of vWF from the plasma. The study of the rvWFPhe 551 has confirmed the discrepancy between the IIA phenotype and the IIB genotype of the patient.  相似文献   

3.
Type IIA von Willebrand disease (vWD) is characterized by the loss of high and intermediate weight multimers of von Willebrand factor (vWF) from plasma. The 3' end of exon 28 in the vWF gene from four type IIA vWD patients was amplified by the polymerase chain reaction, cloned and sequenced. Sequencing identified two potential missense mutations resulting in the amino acid substitutions Arg 834-->Gln and Glu 875-->Lys in the mature vWF subunit within an area of vWF where mutations in type IIA vWD have been reported. Neither of these amino acid substitutions was found in over 100 normal alleles tested by allele specific oligonucleotide hybridization. A polymorphism (Val 802-->Leu) was identified in another patient. Other areas of exon 28 were analysed by denaturing gradient gel electrophoresis (DGGE) and DNA from one patient demonstrated an irregular DGGE pattern on the 5' end of the exon. Sequencing demonstrated an amino acid substitution of an arginine for cysteine at position 509 adjacent to an area of vWF where defects associated with type IIB vWD have been found. This substitution was not found in 100 normal chromosomes tested by restriction enzyme digestion. The Cys 509-->Arg substitution eliminates an intramolecular disulphide bridge formed by Cys 509 and Cys 695 which is important to maintain the configuration of vWF functional domains that interact with platelet glycoprotein Ib-IX.  相似文献   

4.
von Willebrand factor (vWF) and factor VIII (FVIII) circulate in plasma as a noncovalently linked protein complex. The FVIII/vWF interaction is required for the stabilization of procoagulant FVIII activity. Recently, we reported a new variant of von Willebrand disease (vWD) tentatively named "Normandy," characterized by plasma vWF that appears to be structurally and functionally normal except that it does not bind FVIII. Three patients from one family were found to be homozygous for a C----T transition at codon 816 converting Arg 53 to Trp in the mature vWF subunit. To firmly establish a causal relationship between this missense mutation and vWD Normandy phenotype, we have characterized the corresponding recombinant mutant vWF(R53W). Expressed in COS-7 cells or CHO cell lines, normal vWF and vWF(R53W) were processed and formed multimers with equal efficiency. However, vWF(R53W) exhibited the same defect in FVIII binding as did plasma vWF from patients with vWD Normandy, confirming that this mutation is responsible for the vWD Normandy phenotype. These results illustrate the importance of Arg 53 of the mature vWF subunit for the binding of FVIII to vWF, and identify an amino acid residue within a disulfide loop not previously known to be involved in this interaction.  相似文献   

5.
6.
No defects have been reported in moderately severe type 1 von Willebrand disease (vWD) with a clear autosomal dominant inheritance pattern, and the mechanism underlying this form of vWD remains obscure. We have studied a type 1 vWD family with such a dominant phenotype. The entire coding sequence of the von Willebrand factor (vWF) gene was analyzed by direct sequencing of DNA fragments amplified by polymerase chain reaction. Only one candidate mutation T(3445)-->C in exon 26 was detected that predicts a replacement of cysteine (C) at position 386 of the mature vWF subunit by arginine (R). Both mutant and normal vWF alleles were expressed as shown by analysis of platelet mRNA. This substitution segregates with vWD in the family and was not found in 100 unrelated individuals. The recombinant mutant vWF(C386R) was characterized by expression in 293T cells. The secretion of vWF(C386R) was greatly impaired due to retention in the endoplasmic reticulum. In cotransfections of normal and mutant vWF constructs, the vWF(C386R) subunits caused a dose-dependent decrease in the secretion of vWF. The multimer pattern remained nearly normal and consistent with a dominant vWD type 1 phenotype. The importance of the cysteine residues in the D3 domain of vWF in the pathogenesis of dominant type 1 vWD was further shown by the detection of another cysteine mutation, Cys367-->Phe, in two additional unrelated patients with a similar dominant type 1 vWD phenotype. We conclude that the loss of cysteine pairing in the D3 domain, leaving one free cysteine, can induce a purely quantitative deficiency of vWF by dominantly suppressing the secretion of normal vWF.  相似文献   

7.
Summary In order to investigate the respective role of plasma and platelet von Willebrand factor (vWF) in mediating platelet adhesion and thrombus formation, we performed ex vivo perfusion studies with native blood from patients with various subtypes of type I von Willebrand disease (vWD). We studied 34 patients with type I vWD (19 'platelet normal', five 'platelet low', two 'platelet discordant', eight 'Vicenza'). Parallel studies were carried out on nine patients with severe vWD (type III). At high shear rate (2600 s-1) we found that the defect in platelet-vessel wall interactions in patients having a normal platelet vWF content ('platelet normal' and 'Vicenza') involved thrombus formation, whereas platelet adhesion was normal. At this high shear rate, platelet adhesion and thrombus volume were significantly decreased in patients with subtypes 'platelet low' and 'platelet discordant', i.e. when platelet vWF is either low or dysfunctional. These results indicate that platelet vWF may substitute for plasma vWF to promote platelet adhesion. emphasizing the important role of platelet vWF. They also confirm the role of vWF in thrombus formation at high shear rate because an abnormal thrombus volume was observed in all patients. even when platelet adhesion was normal.  相似文献   

8.
Summary Type IIA von Willebrand disease (vWD) is a heterogeneous disorder for which two different pathogenetic mechanisms have been proposed: increased proteolytic susceptibility of von Willebrand factor (vWF), and/or interference of its post-translational processing. Subunit analysis of vWF in type-IIA vWD has revealed an increased relative proportion of the 176- and 140-kDa subunit-derived fragments, suggesting an augmented fragmentation of vWF, even in the resting state. We analyzed the subunit pattern of vWF in plasma from five previously described patients with type-IIA vWD. All of them showed the above-mentioned pattern. In addition, the presence of a new band with an apparent molecular mass of 200 kDa, not described in normal individuals or in patients with vWD, was repeatedly observed in one of these patients. This patient also exhibited an abnormal vWF multimeric structure in platelets and in plasma, before and after desmopressin administration, when the blood was collected either in the presence or in the absence of proteinase inhibitors. We believe that an abnormal primary structure of vWF could be responsible for this abnormal proteolytic fragmentation pattern, as well as for the abnormal multimerization of vWF. Moreover, an abnormal susceptibility to proteolysis appears to be present, as suggested by the increase in the relative proportion of the 176-kDa fragment observed in the same patient. Future sequencing studies and genetic analysis may clarify whether there are one or two different defects related to the vWF of that patient. Our results indicate that the subunit analysis of vWF may reveal additional defects present in type-IIA vWD that may help our understanding of the pathogenesis of such disease.Supported in part by grants 90/3229, 91-92/0372, 94/1509 (FIS, INSALUD, Spain).  相似文献   

9.
Ribba  AS; Lavergne  JM; Bahnak  BR; Derlon  A; Pietu  G; Meyer  D 《Blood》1991,78(7):1738-1743
von Willebrand disease (vWD) type IIB is characterized by an increased reactivity of von Willebrand factor (vWF) with platelets and a lack of large multimers. Exon 28 of the vWF gene encodes for functional domains involved in the binding of vWF to GPIb, and it is presumed that the defects in type IIB vWD lie within or adjacent to these functional domains. We screened overlapping DNA fragments generated by the polymerase chain reaction (PCR) that spanned the 1,379 bp of exon 28 of a type IIB vWD patient using denaturing gradient gel electrophoresis (DGGE). To increase the power of DGGE to detect base changes, we used the PCR to attach a G + C-rich sequence. In the type IIB patient, a DNA fragment at the 5' end of exon 28 demonstrated homoduplex and heteroduplex complexes after DGGE, a pattern characteristic of heterozygous genes after melting and reannealing during the PCR. Sequencing of the cloned insert from the patient showed a duplication of an ATG in one gene coding for a Met at amino acids 540 to 541 in the mature vWF subunit. This duplication leads to three consecutive methionines in the patient's sequence. The duplicated Met resides within a disulfide bond loop proposed to be important in the function of the GPIb binding domain of vWF. The patient's nephew, who also has type IIB vWD, showed the same duplicated codon, linking the defect to the abnormal phenotype in this family. These nucleotide changes were not found in 100 chromosomes analyzed either by DGGE or hybridization with an allele specific oligonucleotide containing the duplicated ATG codon. In addition, the same oligonucleotide hybridized only to DNA from type IIB vWD individuals and not to DNA from normal members of the family. Therefore, we conclude that this duplicated Met modifies the GPIb binding domain of vWF and causes type IIB vWD in this family.  相似文献   

10.
A variant of von Willebrand disease (vWD) was identified in six members of a kindred spanning four generations. The proband was a 46-year-old woman with a lifelong history of bleeding, a prolonged bleeding time (> 15 minutes), markedly elevated von Willebrand factor (vWF) antigen (vWF:Ag = 2.09 U/mL), slightly reduced ristocetin cofactor activity, and a plasma vWF multimer pattern similar to that of vWD type IIC. Similar findings were observed in her three children, mother, and brother. In affected family members, platelet and plasma vWF multimer patterns were discrepant with higher molecular weight multimers observed in platelet vWF. Following a 1-Des-amino-8-D-arginine vasopressin (DDAVP) challenge, the proband failed to normalize her bleeding time even though vWF: Ag rose by 70% and higher molecular weight multimers were increased slightly. Genetic studies were consistent with autosomal dominant inheritance of a mutation within the vWF gene. By sequencing of cloned genomic DNA, mutations were excluded in exons 4, 5, 14, and 15, which encode regions of the vWF propeptide proposed to be important in multimer biosynthesis. Mutations also were excluded in exons 28 to 31, which encompass the known mutations that cause vWD types IIA, IIB, and B. This new variant of vWD, characterized by autosomal dominant inheritance, a qualitative defect that resembles vWD type IIC, and increased plasma vWF:Ag, was tentatively designated vWD type IIC Miami.  相似文献   

11.
Menache 《Haemophilia》1998,4(S3):44-47
Nine patients with von Willebrand disease type 3, six with type 2B, one with type 2A, and one patient with type 1/2N were infused with one dose of ≈50 or 100 IU ristocetin cofactor activity (RCoF) per kg body weight of von Willebrand factor (vWF) (Human), a product with a very low content of factor VIII (FVIII). Blood samples were collected over 96 h. The data for RCoF and vWF antigen (vWF:Ag) were fitted to a 1-compartment model decay. The data for FVIII:C were fitted to a model with a linear time 'synthesis' term and a 1-compartment decay. Results in von Willebrand disease type 3 patients (nine patients; 10 infusions) indicated a volume of distribution of 39.9 and 39.8 mL kg−1 for RCoF and vWF:Ag, respectively. The FVIII:C rate of synthesis was 6.4 U dL−1 h−1 (range: 4.4–8.8). The decay rates for FVIII:C, RCoF, and vWF:Ag were 0.041 (h−1) [ t 1/2: 16.9 h]; 0.061 (h−1) [ t 1/2: 11.3 h] and 0.006 (h−1) [ t 1/2: 12.4 h], respectively. In patients with von Willebrand disease type 2 ( n  = 8) the RCoF mean volume of distribution was 46 mL kg−1. The factor VIIIC mean rate of synthesis was 5.5 U dL−1h−1 and the decay rate 0.043 (h−1) [ t 1/2: 16.1 h]. The rate of decay for RCoF and vWF:Ag were 0.050 (h−1) [ t 1/2: 13.9 h] and 0.044 (h−1) [ t 1/2: 15.7 h], respectively.  相似文献   

12.
Recent reports of the mutations resulting in von Willebrand disease (vWD) have indicated that some cases of type IIA vWD are caused by single nucleotide substitutions in the gene encoding von Willebrand factor (vWF). However, the molecular pathogenesis of type IIB vWD remains unresolved and, with the complex posttranslational processing required for fully functional vWF, the mutations responsible for this phenotype may occur at loci other than the vWF gene. This study has used six intragenic vWF polymorphisms to assess the linkage of type IIB vWD to this gene in three families (48 individuals). The results of these studies indicate that there is significant linkage between the vWF gene and the type IIB phenotype (logarithm of the odds ratio of 7.2 at theta = 0), suggesting that the mutations responsible for this disorder frequently occur at this locus. Results from one of these families indicates that the disorder has been transmitted from an unaffected parent to two children who have inherited the same vWF gene as seven unaffected siblings. This finding is suggestive of the presence of germinal mosaicism for the mutation in the father.  相似文献   

13.
Dimerization defects of von Willebrand factor (vWF) protomers underlie von Willebrand disease (vWD) type 2A, subtype IID (vWD 2A/IID), and corresponding mutations have been identified at the 3' end of the vWF gene in exon 52. This study identified and expressed 2 additional mutations in this region, a homozygous defect in a patient with vWD type 3 (C2754W) and a heterozygous frameshift mutation (8566delC) in a patient with vWD type 2A, subtype IIE. Both mutations involve cysteine residues that we propose are possibly essential for dimerization. To prove this hypothesis, transient recombinant expression of each of the 2 mutations introduced in the carboxy-terminal vWF fragment II and in the complete vWF complementary DNA, respectively, were carried out in COS-7 cells and compared with expression of vWD 2A/IID mutation C2773R and the wild-type (WT) sequence in COS-7 cells. Recombinant WT vWF fragment II assembled correctly into a dimer, whereas recombinant mutant fragments were monomeric. Homozygous expression of recombinant mutant full-length vWF resulted in additional dimers, probably through disulfide bonding at the amino-terminal multimerization site, whereas recombinant WT vWF correctly assembled into multimers. Coexpression of recombinant mutant and recombinant WT vWF reproduced the multimer patterns observed in heterozygous individuals. Our results suggest that a common defect of vWF biosynthesis--lack of vWF dimerization--may cause diverse types and subtypes of vWD. We also confirmed previous studies that found that disulfide bonding at the vWF amino-terminal is independent of dimerization at the vWF carboxy-terminal. (Blood. 2001;97:2059-2066)  相似文献   

14.
We compared the properties of plasma von Willebrand factor (vWF) from normal individuals and from two patients with type IIA (Glu875Lys) and type IIB (duplication of Met 540) von Willebrand disease (vWD) with the corresponding fully multimerized recombinant proteins. We included cryosupernatant from normal human plasma and type IIA plasma (Cys509Arg). Functions of vWF were analyzed by binding assays to platelets in the presence of ristocetin or botrocetin. Parameters of binding (number of binding sites per vWF subunit, and dissociation constant Kd) were quantitatively estimated from the binding isotherms of 125I-botrocetin or glycocalicin to vWF, independently of the size of the multimers. We found that ristocetin- or botrocetin-induced binding to platelets was correlated in all cases with the size of vWF multimers. In the absence of inducer, only type IIB rvWF Met-Met540 spontaneously bound to platelets. No significant difference of binding of purified botrocetin to vWF was found between normal and patients' plasma, or between wild-type rvWF (rvWF-WT) and rvWF-Lys875. In contrast, affinity of botrocetin for type IIB rvWF Met-Met540 was decreased. Botrocetin-induced binding of glycocalicin to vWF from all plasma and cryosupernatant was similar. Compared with rvWF-WT, binding of glycocalicin to rvWF-Lys875 was normal. In contrast, the affinity for type IIB rvWF Met-Met540 was 10-fold greater. Thus, our data suggest that, in the patients tested, the abnormal IIA phenotype results from the lack of large-sized multimers and is independent of the point mutations. In contrast, the type IIB mutation is directly involved by providing a conformation to the vWF subunits that allows the high molecular weight multimers to spontaneously interact with platelet glycoprotein Ib.  相似文献   

15.
Twelve infusions of plasma concentrates of von Willebrand factor (vWF) were given to four patients with severe (type III) von Willebrand disease (vWD). Their prolonged bleeding times were either completely or partially corrected after five infusions and had not changed after the remaining seven. In contrast, the low platelet coverage of the subendothelial surface of rabbit aorta perfused with normal washed platelets and red cells resuspended in preinfusion patient plasma was completely or partially corrected in ten instances by replacing preinfusion plasma with postinfusion plasma and remained unchanged in two. Postinfusion improvement in surface coverage was greater than that in bleeding time, suggesting that vWF from normal platelets is needed to support optimal platelet-vessel wall interactions in vWD. This possibility was further explored through other perfusion experiments. The subendothelial surface covered by platelets from an untreated patient with type III vWD (containing no measurable vWF) or from a type IIA vWD patient (containing dysfunctional vWF) resuspended in normal plasma was much smaller than that covered by normal platelets resuspended in normal plasma. These results establish that platelet vWF is important in supporting platelet-vessel wall interactions in vWD and also provide experimental support in favour of the therapeutic transfusion of normal platelets in addition to vWF concentrates to correct the bleeding time in vWD patients.  相似文献   

16.
Type IIA von Willebrand disease (vWD), the most common type II vWD variant, is characterized by decreased binding of von Willebrand factor (vWF) to platelet glycoprotein Ib (Gplb) and by a decrease in large and intermediate vWF multimers. Mutations reported to cause vWD type IIA are clustered within the A2 domain of vWF, which is encoded by exon 28. Genomic DNA from affected members of 12 unrelated families with type IIA vWD were screened for these mutations by a rapid, nonradioactive, allele-specific oligonucleotide (ASO) hybridization method. Oligonucleotides containing each of eight mutations were cross-linked onto a nylon membrane by UV irradiation. A fragment of vWF exon 28 was amplified from peripheral blood leukocyte DNA using biotinylated primers and hybridized to the immobilized oligonucleotides. Positive signals were detected with an avidin-alkaline phosphatase conjugate and chemiluminescent substrate. Thus, in a single hybridization reaction, a patient sample could be analyzed for a large number of mutations simultaneously. Polymerase chain reaction (PCR) products from four patients did not contain any of the tested mutations and therefore were sequenced. Three additional candidate missense mutations, two of them novel, were identified: Arg(834)-->Gln in one patient, Gly(846)-->Arg in one patient, and Val(902)-->Glu in three ostensibly unrelated patients. By ASO hybridization, the mutations were confirmed in the affected patients and excluded in unaffected relatives and 50 normal controls. In one family, the Val(902)-->Glu mutation was shown to be a de novo mutation. This rapid screening method is applicable to other subtypes of vWD for which mutations have been identified.  相似文献   

17.
Circulating inhibitors against von Willebrand factor (vWF) that show the properties of heterologous IgG antibodies have been described in a few patients with severe von Willebrand disease (vWD). The present study provides further characterization of inhibitors from two patients with severe vWD. Inhibitors in both, like polyclonal rabbit antibody, detected all sizes of multimers and the complex structure of each multimer from platelets and plasma of normal individuals as well as from plasma of patients with IIA, IIB, and IIC vWD. Both inhibitors and the rabbit antibody reacted mainly with the intact 225-Kd vWF subunit and the 189-H and 140-Kd fragments in contrast to monoclonal antibodies specific for vWF fragments that detected a higher relative proportion of 176-Kd fragment. Furthermore, all these antibodies recognized fragment III, although one inhibitor and rabbit polyclonal antibody reacted poorly and the other inhibitor did not react at all with reduced fragment II of vWF digested with Staphylococcus aureus V-8 protease. These data suggest that although human inhibitors from severe vWD patients may behave, to some extent, as polyclonal heterologous antibodies against native vWF, the former show striking differences in their target specificity as well as a much broader specificity than that described for human factor VIII inhibitors.  相似文献   

18.
Cooney  KA; Ginsburg  D 《Blood》1996,87(6):2322-2328
von Willebrand factor (vWF) is a multimeric glycoprotein that forms an adhesive link following vascular injury between the vessel wall and its primary ligand on the platelet surface, glycoprotein Ib (GpIb). Type 2b von Willebrand disease (vWD) is a qualitative form of vWD resulting from enhanced binding of vWF to platelets. Molecular characterization of the vWF gene in patients with type 2b vWD has resulted in identification of a panel of mutations associated with this disorder, all clustered within the GpIb binding domain in exon 28 of the vWF gene. We have expressed six of the most common type 2b vWD mutations in recombinant vWF and show that each mutation produces a similar increase in vWF binding to platelets in the absence or presence of ristocetin. Furthermore, expression of more than one type 2b vWD mutation in the same molecule (cis) or in different molecules within the same multimer (trans) failed to produce an increase in vWF platelet binding compared with any of the individually expressed mutations. Taken together, these data support the hypothesis that the vWF GpIb binding domain can adopt either a discrete "on" or "off" conformation, with most type 2b vWD mutations resulting in vWF locked in the on conformation. This model may have relevance to other adhesive proteins containing type A domains.  相似文献   

19.
C Gaucher  S Jorieux  B Mercier  D Oufkir  C Mazurier 《Blood》1991,77(9):1937-1941
We previously reported a functional defect of von Willebrand factor (vWF) in a new variant of von Willebrand disease (vWD) tentatively named vWD "Normandy." The present work has attempted to characterize the molecular abnormality of this vWF that fails to bind factor VIII (FVIII). The immunopurified vWF from normal and patient's plasma were digested by trypsin and the resulting peptides were compared. The electrophoresis of "vWF Normandy" showed a shift in the band corresponding to a polypeptide from amino acid 1 to 272. Consequently, we performed the molecular analysis of the portion of the vWF gene of this patient encoding this amino acid sequence. Exons 18-24 were amplified by the use of polymerase chain reaction and their nucleotide sequences corresponding to 1.8 kb were determined. Our analysis showed a point mutation C to T at codon 791, resulting in the substitution of Methionine for Threonine at position 28 of the mature vWF subunit. Because this nucleotide substitution destroyed a Mae II restriction site, this mutation was conveniently sought in various individual DNAs. The patterns obtained were consistent with the homozygous and heterozygous state of this mutation in the patient and in her son, respectively, and with its absence in 28 normal individuals. We conclude that Threonine at position 28 in plasma vWF may be crucial for the conformation and FVIII-binding capacity of its cystine-rich N-terminal domain.  相似文献   

20.
Type 2B von Willebrand disease (vWD) is a von Willebrand factor (vWF) subtype with increased binding affinity for platelet glycoprotein (GP) Ib and is characterized by increased ristocetin-induced platelet agglutination at low concentrations of ristocetin. Usually there are no high molecular weight multimers of vWF, and platelet counts are within normal ranges in patients with type 2B vWD. We identified a variant of type 2B vWD showing the full range of vWF multimers in plasma accompanied by thrombocytopenia, which seemed to be caused by circulating platelet aggregation. Since the A1 domain and surrounding region of vWF alleles, in which mutation sites are known to be clustered in type 2B vWD, appeared normal on nucleotide sequencing, this increased binding affinity of vWF for GPIb may be due to a novel mechanism differing from that which usually underlies type 2B vWD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号