首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sgk, an aldosterone-induced gene in mineralocorticoid target cells, regulates the epithelial sodium channel. Aldosterone increases sodium reabsorption in tight epithelia. The early phase of this stimulatory effect is thought to involve activation of apical sodium channels. To identify immediate-early genes that initiate this effect, we used a combination of polymerase chain reaction-based subtractive hybridization and differential display techniques. This review summarizes our recent findings. Aldosterone rapidly increases mRNA levels of a putative Ser/Thr kinase, sgk (or serum- and glucocorticoid-regulated kinase), in the native mineralocorticoid target cells, that is, in cortical collecting duct (CCD) cells. The induction of sgk mRNA occurs within 30 minutes of the addition of aldosterone and does not require de novo protein synthesis, indicating that sgk is an immediate/early aldosterone-induced gene. Induction of sgk by aldosterone is mediated through mineralocorticoid receptors (MRs), since it is prevented by ZK91857, an MR antagonist, but not by RU486, a glucocorticoid antagonist. In addition to aldosterone, RU28362, a pure glucocorticoid receptor agonist, also induced sgk mRNA, both in primary cultures of rabbit CCD cells and in the M-1 mouse CCD cell line. Sgk mRNA levels are also influenced by changes in the osmolality of the medium. In M-1 cells, incubation of cells for one hour in a mildly hypotonic medium decreased sgk mRNA levels, whereas incubation in hypertonic medium brought about opposite changes. To determine whether sgk is involved in the regulation of the epithelial sodium channel (ENaC), we coexpressed the full-length sgk cRNA in Xenopus oocytes with the three ENaC subunits. Expression of sgk resulted in a significant increase in the amiloride-sensitive Na current, suggesting that this protein kinase plays an important role in the early phase of aldosterone-stimulated Na transport. These results indicate that sgk is an aldosterone-induced immediate/early gene in native MR target cells, and is involved in the regulation of ion transport and possibly cell volume.  相似文献   

2.
3.
4.
5.
PURPOSE OF REVIEW: Aldosterone and its mineralocorticoid receptor represent an ancient signaling system. Indeed, the mineralocorticoid receptor is older than its agonist. Both have probably served various functions through the eons and salt preservation may be relatively recent. A large body of evidence suggests that aldosterone conducts signaling in vascular cells and contributes substantially to vascular remodeling and target organ damage. A blood pressure and salt balance-independent effect was first observed in two large heart failure trials. RECENT FINDINGS: Mineralocorticoid receptor blockade has now been shown to reduce proteinuria even in the face of angiotensin converting enzyme inhibition and AT1 receptor blockade. Mineralocorticoid receptor blockade effectively reduces target organ damage in every hypertensive model tested, irrespective of circulating renin and aldosterone levels. Protection is also observed in nonhypertensive diabetic and hyperlipidemic models. Signaling in vascular cells involves primarily the mitogen activated protein kinase pathway with participation of the epidermal growth factor receptor. Novel signaling molecules have been shown to participate in aldosterone-mediated actions including the murine double-minute type 2 protein that participates in antiapoptotic and proliferative effects. Clinically, mutations in the mineralocorticoid receptor have shed additional light on its importance. SUMMARY: A resurgence of interest in aldosterone reflects its importance and clinical relevance for vascular remodeling and target organ damage.  相似文献   

6.
Aim: Aldosterone plays a crucial role in renal fibrosis by inducing mesangial cell proliferation and promoting collagen synthesis in renal fibroblasts. However, renal proximal tubule involvement in aldosterone-induced collagen synthesis has not yet been identified. The aim of this study was to examine the potential role of aldosterone in collagen expression and its possible mineralocorticoid receptor (MR)-dependent pathway, mediated by activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in cultured human renal proximal tubular epithelial (HKC) cells. Methods: After HKC cells were stimulated by aldosterone with different concentrations for various time and periods, the gene expression and protein synthesis of collagen I, II, III and IV were measured by real-time polymerase chain reaction and western blot, respectively. ERK1/2 activation, α-smooth muscle actin (α-SMA), and E-cadherin were also detected by western blot. Results: Aldosterone can increase ERK1/2 phosphorylation of human renal proximal tubular epithelial cells in a time- and dose-dependent manner. Although aldosterone had no effect on collagen I and II expression, it increased expression of α-SMA and collagen III and IV and decreased that of E-cadherin in HKC cells after 48 h. These effects could be prevented by a ERK pathway inhibitor, U0126, or by a selective MR antagonist, spironolactone. Conclusion: The results suggest that aldosterone plays a pivotal role in tubulointerstitial fibrosis by promoting tubular epithelial–mesenchymal transition and collagen synthesis in proximal tubular cells. The process is MR-dependent, and mediated by ERK1/2 mitogen-activated protein kinase pathway.  相似文献   

7.
Background/Aims: The mineralocorticoid hormone, aldosterone, has pro-fibrotic properties which can cause kidney damage. The severity of kidney interstitial fibrosis is dependent on the accumulation of fibroblasts, which result largely from local proliferation; however, it is unknown whether aldosterone stimulates kidney fibroblast proliferation. Therefore, we examined the effects of aldosterone on the proliferation of cultured kidney fibroblasts. Methods: Uptake of (3)H-thymidine and cell number quantitation were used to determine the proliferative effects of aldosterone on a rat kidney fibroblast cell line (NRK49F cells) and interstitial fibroblasts extracted from mouse kidneys after unilateral ureter obstruction. The role of different mitogenic signalling pathways in aldosterone-induced proliferation was assessed using specific inhibitors of receptors and kinases. Results: Physiological levels of aldosterone induced a doubling of proliferation of kidney fibroblasts (p < 0.0001), which was inhibited by pre-treatment with the mineralocorticoid receptor antagonist, eplerenone. Aldosterone-induced fibroblast proliferation was dependent upon the kinase activity of growth factor receptors [platelet-derived growth factor receptor (PDGFR) and epidermal growth factor receptor]. Notably, PDGF ligands were not involved in aldosterone-induced PDGFR activation, indicating receptor transactivation. Aldosterone-induced fibroblast proliferation also required signalling via PI3K, JNK and ERK pathways, but not via the transforming growth factor-β(1) receptor. Conclusion: Aldosterone ligation of the mineralocorticoid receptor in kidney fibroblasts results in rapid activation of growth factor receptors and induction of PI3K/MAPK signalling, which stimulates proliferation. This suggests that increased levels of aldosterone during disease may promote the severity of kidney fibrosis by inducing fibroblast proliferation.  相似文献   

8.
9.
Objective To determine the role of extracellular signal-regulated kinases (ERK1/2) in aldosterone-induced rat mesangial cells (RMCs) proliferation. Methods RMCs were obtained from intact glomeruli of 4- to 6-week-old Sprague-Dawley rats and characterized according to published methods. RMCs between passages 5 and passages 10 were used. Protein levels of mineralocorticoid receptor(MR) in RMCs were analyzed by Western blotting. The cells were divided into the following groups: control group, PD98059(10 ?滋mol/L) group, eplerenone (1 ?滋mol/L) group, aldosterone (100 nmol/L) group, aldosterone (100 nmol/L) +PD98059 (10 ?滋mol/L) group, aldosterone(100 nmol/L)+eplerenone (1 ?滋mol/L) group. ERK1/2 activity was measured by Western blotting. Cell proliferation of RMCs was evaluated by [3H]-thymidine uptake measurements. Results MR protein expression in RMCs was confirmed by Western blotting. Aldosterone activated ERK1/2, and the maximal ERK1/2 activation induced by aldosterone was at a concentration of 100 nmol/L. Aldosterone (100 nmol/L)-induced activation of ERK1/2 peaked at 10 minutes (P<0.05). Pretreatment with a selective MR antagonist eplerenone (1 ?滋mol/L) significantly attenuated aldosterone-induced ERK1/2 phosphorylation. Aldosterone (100 nmol/L) treatment for 30 hours increased [3H]-thymidine incorporation of RMCs (135%±8% of controls, P<0.05). Cellular proliferation induced by aldosterone could be prevented by pretreatment with eplerenone or an ERK (MEK) inhibitor PD988059. Conclusion Aldosterone induces RMCs proliferation through MR and ERK1/2 activation, which may contribute to the pathogenesis of glomerular mesangial injury.  相似文献   

10.
It has recently been shown that glomerular mesangial injury is associated with increases in renal cortical reactive oxygen species (ROS) levels in rats treated chronically with aldosterone and salt. This study was conducted to determine the mechanisms responsible for aldosterone-induced ROS production in cultured rat mesangial cells (RMC). Oxidative fluorescent dihydroethidium was used to evaluate intracellular production of superoxide anion (O(2)(-)) in intact cells. The lucigenin-derived chemiluminescence assay was used to determine NADPH oxidase activity. The staining of dihydroethidium was increased in a dose-dependent manner by aldosterone (1 to 100 nmol/L) with a peak at 3 h in RMC. Aldosterone (100 nmol/L for 3 h) also significantly increased NADPH oxidase activity from 232 +/- 18 to 346 +/- 30 cpm/5 x 10(4) cells. Immunoblotting data showed that aldosterone (100 nmol/L for 3 h) increased p47phox and p67phox protein levels in the membrane fraction by approximately 2.1- and 2.3-fold, respectively. On the other hand, mRNA expression of NADPH oxidase membrane components, p22phox, Nox-1, and Nox-4, were not altered by aldosterone (for 3 to 12 h) in RMC. Pre-incubation with the selective mineralocorticoid receptor (MR) antagonist, eplerenone (10 micromol/L), significantly attenuated aldosterone-induced O(2)(-) production, NADPH oxidase activation and membranous translocation of p47phox and p67phox. These results suggest that aldosterone-induced ROS generation is associated with NAPDH oxidase activation through MR-mediated membranous translocation of p47phox and p67phox in RMC. These cellular actions of aldosterone may play a role in the pathogenesis of glomerular mesangial injury.  相似文献   

11.
Mineralocorticoid selectivity: molecular and cellular aspects   总被引:2,自引:0,他引:2  
  相似文献   

12.
Adrenalectomy in rats is associated with urinary concentrating and diluting defects. This study tested the effect of adrenal steroids on the UT-A1 urea transporter because it is involved in the urine-concentrating mechanism. Rats were adrenalectomized and given normal saline for 14 d, after which they received (1) vehicle, (2) aldosterone, or (3) spironolactone plus aldosterone. Adrenalectomy alone significantly increased UT-A1 protein in the inner medullary tip after 7 d, whereas aldosterone repletion reversed the effect. Spironolactone blocked the aldosterone-induced decrease in UT-A1, indicating that aldosterone was working via the mineralocorticoid receptor. For verifying that glucocorticoids downregulate UT-A1 protein through a different receptor, three groups of adrenalectomized rats were prepared: (1) vehicle, (2) adrenalectomy plus dexamethasone, and (3) adrenalectomy plus dexamethasone and spironolactone. Dexamethasone significantly reversed UT-A1 protein abundance increase in the inner medullary tip of adrenalectomized rats. When spironolactone was given with dexamethasone, it did not affect the dexamethasone-induced decrease in UT-A1. There was no significant change in serum vasopressin level, aquaporin 2, or Na(+)-K(+)-2Cl(-) co-transporter NKCC2/BSC1 protein abundances or UT-A1 mRNA abundance in any of the groups. In conclusion, either mineralocorticoids or glucocorticoids can downregulate UT-A1 protein. The decrease in UT-A1 does not require both steroid hormones, and each works through a different receptor.  相似文献   

13.
14.
BACKGROUND: Patients who undergo total colectomy with ileopouch anal reconstruction often have persistent diarrhea and frequent bowel movements. Analysis of the intestinal adaptation after total colectomy may lead to developing novel therapies for postoperative diarrhea. METHODS: Sprague-Dawley rats underwent total colectomy with ileoanal reconstruction and were sacrificed 4 and 8 weeks later. Mucosal response to aldosterone was evaluated with the use of ileal mucosa in an Ussing chamber by measuring short circuit current after in vitro stimulation with aldosterone. We investigated the expression of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD 2) in intestinal epithelial cells. To examine the role of hyperaldosteronism, we also evaluated rats treated with a sodium-deficient diet or subcutaneous aldosterone infusion. RESULTS: Aldosterone levels increased 80-fold after total colectomy. A comparable amount of aldosterone dramatically increased aldosterone-mediated, amiloride-sensitive short circuit current in the mucosa from colectomized rats, but not in control rats. We measured an increase in 11beta-HSD 2 messenger RNA and protein in the distal ileum from colectomized rats. Circulating aldosterone appears to be essential for these functional and molecular changes because similar results were obtained by using the mucosa from both dietary sodium-depleted and aldosterone-infused rats. CONCLUSIONS: Induction of 11beta-HSD 2 is essential for enhanced mineralocorticoid action in the remnant ileum after total colectomy in rats.  相似文献   

15.
16.
Aldosterone controls sodium balance by regulating an epithelial sodium channel (ENaC)-mediated sodium transport along the aldosterone-sensitive distal nephron, which expresses both mineralocorticoid (MR) and glucocorticoid receptors (GR). Mineralocorticoid specificity is ensured by 11beta-hydroxysteroid dehydrogenase type 2, which metabolizes cortisol or corticosterone into inactive metabolites that are unable to bind MR and/or GR. The fractional occupancy of MR and GR by aldosterone mediating the sodium transport response in the aldosterone-sensitive distal nephron cannot be studied in vivo. For answering this question, a novel mouse cortical collecting duct cell line (mCCD(cl1)), which expresses significant levels of MR and GR and a robust aldosterone sodium transport response, was used. Aldosterone elicited a biphasic response: Low doses (K(1/2) = approximately 0.5 nM) induced a transient and early increase of sodium transport (peaking at 3 h), whereas high doses (K(1/2) = approximately 90 nM) entailed an approximately threefold larger, long-lasting response. At 3 h, the corticosterone dose-response curve was shifted to the right compared with that of aldosterone by more than two log concentrations, an effect that was fully reverted in the presence of the 11beta-hydroxysteroid dehydrogenase type 2 inhibitor carbenoxolone. Low doses of dexamethasone (0.1 to 1 nM) failed to induce an early response, but high doses elicited a long-lasting response (K(1/2) = approximately 8 nM), similar to that observed for high aldosterone concentrations. Equilibrium binding assays showed that both aldosterone and corticosterone bind to a high-affinity, low-capacity site, whereas dexamethasone binds to one site. Within the physiologic range of aldosterone concentrations, sodium transport is predicted to be controlled by MR occupancy during circadian cycles and by MR and GR occupancy during salt restriction or acute stress.  相似文献   

17.
目的通过切除5/6肾切除大鼠的肾上腺,探讨醛固酮对慢性肾脏疾病发生及发展的作用。方法雄性Wister大鼠分成5组:(1)假手术组(SHAM组);(2)5/6肾切除组(SNX组); (3)SNX+双肾上腺切除组(ADX组);(4)ADX+地塞米松组(DXM组);(5)ADX+地塞米松+醛固酮组(ALDO组)。所有大鼠自由饮用生理盐水,于成模第8周测定大鼠收缩压、各项血尿指标及肾小球硬化程度。应用Western印迹和实时定量PCR检测大鼠肾皮质TGF-β1、醛固酮受体 (MR)及保护MR的酶11β-羟类固醇脱氢酶2(11β-HSD2)的mRNA表达水平。结果 SNX组大鼠表现为明显的白蛋白尿、高血压、肾小球硬化、肾皮质TGF-β1表达升高,血醛固酮水平是 SHAM组的4倍以上。与SNX组比较,ADX组大鼠血浆醛固酮水平明显下降,同时病变明显改善 [尿白蛋白(mg/24 h)19.7±2.0比31.7±1.7,P<0.01;收缩压(mmHg)173.8±4.3比210.4±4.1,P <0.01;肾小球硬化指数38.2±7.9比92.3±6.7,P<0.01;TGF-β1 3.8±0.6比10.3±1.2,P< 0.01]。ALDO组的血浆醛固酮水平为SHAM组的近2倍,与ADX组比较,以上病变又加重[尿白蛋白(mg/24 h)24.9±1.4,收缩压(mmHg)201.5±4.5,肾小球硬化指数88.1±7.2,TGF-β1 5.8± 0.6,P均<0.01]。肾脏皮质MR mRNA在SNX组的表达明显增加;在ADX组明显下降[SNX(复制数/百万GAPDH)39866.7±10579.0比SHAM 2366.7±446.3,P<0.05;比ADX 22100.0±4435.7, P<0.05]。然而,11β-HSD2 mRNA表达和MR相反,SNX组为9150.0±969.9,明显低于SHAM组 (48100.0±9315.2,P<0.05);而ADX组的表达比SNX组显著升高(30066.7±5150.2,P<0.05)。 4个实验组大鼠肾脏Ccr和肾重/体重无显著性差别。结论醛固酮参与慢性肾脏病变的进展, 其对肾小球损伤的作用除血流动力学效应外,还可能存在非血流动力学的直接致纤维化作用。  相似文献   

18.
Effects of aldosterone on its target cells have long been considered to be mediated exclusively through the genomic pathway; however, evidence has been provided for rapid effects of the hormone that may involve nongenomic mechanisms. Whether an interaction exists between these two signaling pathways is not yet established. In this study, the authors show that aldosterone triggers both early nongenomic and late genomic increase in sodium transport in the RCCD(2) rat cortical collecting duct cell line. In these cells, the early (up to 2.5 h) aldosterone-induced increase in short-circuit current (Isc) is not blocked by the mineralocorticoid receptor (MR) antagonist RU26752, it does not require mRNA or protein synthesis, and it involves the PKCalpha signaling pathway. In addition, this early response is reproduced by aldosterone-BSA, which acts at the cell surface and presumably does not enter the cells (aldo-BSA is unable to trigger the late response). The authors also show that MR is rapidly phosphorylated on serine and threonine residues by aldosterone or aldosterone-BSA. In contrast, the late (4 to 24 h) aldosterone-induced increase in ion transport occurs through activation of the MR and requires mRNA and protein synthesis. Interestingly, nongenomic and genomic aldosterone actions appear to be interdependent. Blocking the PKCalpha pathway results in the inhibition of the late genomic response to aldosterone, as demonstrated by the suppression of aldosterone-induced increase in MR transactivation activity, alpha1 Na(+)/K(+)/ATPase mRNA, and Isc. These data suggest cross-talk between the nongenomic and genomic responses to aldosterone in renal cells and suggest that the aldosterone-MR mediated increase in mRNA/protein synthesis and ion transport depends, at least in part, upon PKCalpha activation. E-mail: marcel.blot-chabaud@pharmacie.univ-mrs.fr  相似文献   

19.
Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis by acting on the distal nephron. Accumulating evidence suggests that aldosterone also plays pathogenetic roles in cardiovascular and renal injury. For example, aldosterone is a potent inducer of proteinuria. We demonstrated that podocyte injury underlies the pathogenesis of proteinuria in aldosterone-infused rats on a high salt diet. Mineralocorticoid receptor was detected in the podocytes in vivo and in vitro, and aldosterone caused induction of its effector kinase Sgk1, activation of NADPH oxidase and generation of reactive oxygen species. Selective aldosterone blocker eplerenone, as well as antioxidant tempol, ameliorated aldosterone-induced podocyte injury and proteinuria. Aldosterone was also involved in the podocyte damage and proteinuria of metabolic syndrome model SHR/NDmcr-cp. Adipocyte-derived aldosterone releasing factors were suggested to contribute to the aldosterone excess of this model. Furthermore, high salt diet markedly worsened the renal injury of SHR/NDmcr-cp. Although salt lowered serum aldosterone levels, it caused MR activation in the kidney. Accordingly, eplerenone dramatically improved the salt-evoked nephropathy. Taken together, aldosterone blockers can be an excellent therapeutic strategy for the treatment of podocyte injury, proteinuria, and cardiovascular and renal complications, not only in high aldosterone states but also in patients with activated MR signaling in the target tissue, whose circulating aldosterone level is not necessarily high. Addition of aldosterone blockers in patients treated with ACEIs or ARBs are also promising, because of "aldosterone breakthrough" phenomenon. Careful monitoring of hyperkalemia is necessary, especially in patients with impaired renal function.  相似文献   

20.
Aldosterone and end-organ damage   总被引:7,自引:0,他引:7  
PURPOSE OF REVIEW: This review highlights recent clinical studies demonstrating the contribution of aldosterone to cardiovascular mortality, vascular dysfunction, and renal injury in the context of advances in our understanding of the molecular biology of aldosterone. RECENT FINDINGS: Mineralocorticoid receptor antagonism reduces mortality in patients with congestive heart failure and following myocardial infarction. Studies in animal models and in patients with congestive heart failure or hypertension indicate that aldosterone induces oxidative stress and impairs endothelial nitric oxide synthase through a mineralocorticoid receptor-dependent mechanism. Furthermore, aldosterone can cause vasoconstriction and vasodilation through rapid nongenomic mechanisms. The contribution of the nongenomic effects of aldosterone to vascular tone may depend on underlying endothelial function. In the heart and kidney, aldosterone stimulates oxidative stress and increases expression of inflammatory markers leading to fibrosis. The induction of inflammation and fibrosis appears to be both sodium and mineralocorticoid receptor dependent. The mechanisms underlying the progression from inflammation to fibrosis remain to be elucidated. Studies measuring circulating markers of collagen turnover suggest that mineralocorticoid antagonism reduces extracellular matrix turnover and cardiac remodeling in humans as well. Similarly, mineralocorticoid receptor antagonism reduces urinary albumen excretion in clinical trials in humans. SUMMARY: Aldosterone induces oxidative stress, endothelial dysfunction, inflammation and fibrosis in the vasculature, heart and kidney. While most of these effects appear to be mediated via the mineralocorticoid receptor, better understanding of the mineralocorticoid receptor-independent effects of aldosterone, the role of nonaldosterone mineralocorticoid receptor agonists, and the mechanisms involved in the progression from inflammation to fibrosis and remodeling would enable the development of new strategies to slow the progression of cardiovascular and renal disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号