共查询到20条相似文献,搜索用时 16 毫秒
1.
The development of strategies to optimize T‐cell responses in previously immunodeficient HIV patients with a stable virological response to ART requires an understanding of the factors that affect responsiveness. Chemokines direct the migration of dendritic cells (DC) to non‐lymphoid tissues infected by secondary pathogens and to lymph nodes where they prime T‐cells. Quantitation of mRNA is a sensitive technique enabling assessment of chemokine receptors by CD14+ monocytes, myeloid (m)DCs, plasmacytoid (p)DCs, and M‐DC8+ cells. MDC8+ cells invariably expressed less CCR2, CCR5, and CXCR4 than the other cells, but expression of CCR2, CCR5, CCR6, CCR7, CXCR3, and CXCR4 was similar in patients and healthy controls. However plasma levels of CXCL10, CCL5, and CCL2 remained higher in patients than controls. Overall, it appears that chemokine directed migration of DC may not limit immune responses in these patients. J. Med. Virol. 83:1128–1133, 2011. © 2011 Wiley‐Liss, Inc. 相似文献
2.
Sphingosine kinase inhibitor suppresses dendritic cell migration by regulating chemokine receptor expression and impairing p38 mitogen-activated protein kinase 总被引:1,自引:0,他引:1 下载免费PDF全文
The migration of dendritic cells (DCs) to secondary lymphoid organs plays a crucial role in the initiation of adaptive immune responses. Although lipopolysaccharide enhances chemokine receptor 7 (CCR7) expression on DCs, the second signal for the migration of DCs toward the chemokine CCL19 remains unknown. In this study, we show that sphingosine kinase inhibitor (SKI) inhibits the migration of DCs toward CCL19 through the down-regulation of CCR7. Inhibition of p38 mitogen-activated protein kinase (MAPK) activation by SKI may be responsible for the SKI-mediated effects on the regulation of chemokine receptor expression. Impairment of DC migration by the inhibition of p38 MAPK and down-regulation of CCR7 expression may contribute to the protective effects of SKI in DC-related disorders. These results suggest that sphingosine kinase-mediated signalling plays a role in the innate and adaptive immune responses by altering DC migration. 相似文献
3.
Peter-Paul A. Unger Laura C. Lighaam Ellen Vermeulen Simone Kruithof Mateusz Makuch Emma L. Culver Robin van Bruggen Ester B.M. Remmerswaal Ineke J.M. ten Berge Reindert W. Emmens Hans W.M. Niessen Eleanor Barnes Gerrit J. Wolbink S. Marieke van Ham Theo Rispens 《European journal of immunology》2020,50(8):1113-1125
IgG4 antibodies are unique to humans. IgG4 is associated with tolerance during immunotherapy in allergy, but also with pathology, as in pemphigus vulgaris and IgG4-related disease. Its induction is largely restricted to nonmicrobial antigens, and requires repeated or prolonged antigenic stimulation, for reasons poorly understood. An important aspect in generating high-affinity IgG antibodies is chemokine receptor-mediated migration of B cells into appropriate niches, such as germinal centers. Here, we show that compared to IgG1 B cells, circulating IgG4 B cells express lower levels of CXCR3, CXCR4, CXCR5, CCR6, and CCR7, chemokine receptors involved in GC reactions and generation of long-lived plasma cells. This phenotype was recapitulated by in vitro priming of naive B cells with an IgG4-inducing combination of TFH/TH2 cytokines. Consistent with these observations, we found a low abundance of IgG4 B cells in secondary lymphoid tissues in vivo, and the IgG4 antibody response is substantially more short-lived compared to other IgG subclasses in patient groups undergoing CD20+ B cell depletion therapy with rituximab. These results prompt the hypothesis that factors needed to form IgG4 B cells restrain at the same time the induction of a robust migratory phenotype that could support a long-lived IgG4 antibody response. 相似文献
4.
A key and limiting step in the process of human monocyte-derived dendritic cells (mDCs) for clinical use is their in vitro maturation and in vivo migration. We previously observed that CD40 signal facilitated human mDC growth and maturation. To further explore this process, mDCs generated with GM-CSF and IL-4 were co-cultured with apoptotic tumor cells for 24 hours, followed by incubating with anti-CD40 monoclonal antibody or TNF-a for 48 hours to generate mature DCs. The chemokine/chemokine receptor expression and functions of mature DCs upon various stimuli were determined. The expression of costimulatory molecules on apoptotic tumor cell-loaded mature DCs co-cultured with either anti-CD40 antibody (anti-CD40-DCs) or TNF-a (TNF-DCs) were up-regulated compared to immature DCs, consistent with the abilities of these cytokine to drive DC maturation in vitro. The mRNA levels of chemokines such as stromal cell-derived factor-1a (SDF-1a), EBV-induced molecule 1 ligand chemokine (ELC), and IFN inducible protein-10 (IP-10) in anti-CD40 activated DCs were increased and the dendritic cell-specific chemokine 1 (DC-CK1) was moderately up-regulated as compared with other mature DCs. The corresponding chemokine receptors CXCR4 and CCR7 of anti-CD40-DCs were significantly expressed. The CXCR3 expression on activated T cells stimulated by anti-CD40-DCs was also increased. Moreover, the anti-CD40-DCs had a stronger ability to stimulate T cell proliferation than any other DCs. The NF-xB activity was much higher in anti-CD40-DCs than that of TNF-DCs. These results offer further evidence of the importance of the CD40 signal in developing efficient human DC vaccines for cancer immune therapy. Cellular & Molecular Immunology. 相似文献
5.
6.
Inflammatory signals in dendritic cell activation and the induction of adaptive immunity 总被引:2,自引:0,他引:2
Olivier Joffre Martijn A. Nolte Roman Spörri Caetano Reis e Sousa 《Immunological reviews》2009,227(1):234-247
Summary: Pathogen invasion induces a rapid inflammatory response initiated through the recognition of pathogen-derived molecules by pattern recognition receptors (PRRs) expressed on both immune and non-immune cells. The initial wave of pro-inflammatory cytokines and chemokines limits pathogen spread and recruits and activates immune cells to eradicate the invaders. Dendritic cells (DCs) are responsible for initiating a subsequent phase of immunity, dominated by the action of pathogen-specific T and B cells. As for the early pro-inflammatory response, DC activation is triggered by PRR signals. These signals convert resting DCs into potent antigen-presenting cells capable of promoting the expansion and effector differentiation of naive pathogen-specific T cells. However, it has been argued that signals from PRRs are not a prerequisite for DC activation and that pro-inflammatory cytokines have the same effect. Although this may appear like an efficient way to expand the number of DCs that initiate adaptive immunity, evidence is accumulating that DCs activated indirectly by inflammatory cytokines are unable to induce functional T-cell responses. Here, we review the differences between PRR-triggered and cytokine-induced DC activation and speculate on a potential role for DCs activated by inflammatory signals in tolerance induction rather than immunity. 相似文献
7.
Neutrophil chemokine receptor expression can be altered by exposure to Toll-like receptor (TLR) agonists, a process that is thought to have the potential to localize neutrophils to sites of infection. In order to investigate this process in more detail, we examined the regulation of highly pure neutrophil CXCR1 and CXCR2 expression and function by selective agonists of TLR2 (Pam(3)CSK(4)) and TLR4 (lipopolysaccharide, LPS). CXCR1 and CXCR2 were down-regulated by TLR engagement. CXCR2 loss was more rapid and showed a dependence upon soluble helper molecules (LPS binding protein and CD14) that was not evident for CXCR1, suggesting differential coupling of LPS signalling to CXCR1 and CXCR2 loss. However, TLR engagement in highly pure neutrophils did not result in complete loss of chemokine receptors, and LPS-treated neutrophils remained able to mount a respiratory burst to CXCL8 and CXCL1, and were able to migrate towards CXCL8 in assays of under-agarose chemotaxis. Thus, although treatment of purified human neutrophils with TLR2 and TLR4 agonists modifies chemokine receptor expression, remaining receptors remain functionally competent. 相似文献
8.
Upon receiving cognate and co‐stimulatory priming signals from antigen (Ag)‐presenting dendritic cells (DCs) in secondary lymphoid tissues, naïve CD4+ T cells differentiate into distinct effector and memory populations. These alternate cell fate decisions, which ultimately control the T‐cell functional attributes, are dictated by programming signals provided by Ag‐bearing DCs and by other cells that are present in the microenvironment in which T‐cell priming occurs. We know that DCs can be subdivided into multiple populations and that the various DC subsets exhibit differential capacities to initiate development of the different CD4+ T‐helper populations. What is less well understood is why different subanatomic regions of secondary lymphoid tissues are colonized by distinct populations of Ag‐presenting DCs and how the location of these DCs influences the type of T‐cell response that will be generated. Here we review how chemokine receptors and their ligands, which position allergen and nematode‐activated DCs within different microdomains of secondary lymphoid tissues, contribute to the establishment of IL‐4 committed follicular helper T and type 2 helper cell responses. 相似文献
9.
Le Y Wetzel MA Shen W Gong W Rogers TJ Henderson EE Wang JM 《Clinical immunology (Orlando, Fla.)》2001,99(3):365-372
Chemokine receptors are subjected to heterologous desensitization by activation of formyl peptide receptors. We investigated the cross-talk between formyl peptide receptors and the chemokine receptor CCR5 in human monocyte-differentiated immature dendritic cells (iDC). Monocytes cultured with GM-CSF and IL-4 for 4 days exhibit markers characteristic of iDC and maintain the expression of both formyl peptide receptors FPR and FPRL1, as well as CCR5. Pretreatment of iDC with W peptide (WKYMVm), a potent agonist for FPR and FPRL1 but with preference for FPRL1, resulted in down-regulation of CCR5 from the cell surface and reduced cell response to the CCR5 ligands through a PKC-dependent pathway. Furthermore, W peptide induced a PKC-dependent phosphorylation of CCR5 and inhibited infection of iDC by R5 HIV-1. Our results indicate that the expression and functions of CCR5 in iDC can be attenuated by W peptide, which activates formyl peptide receptors, and suggest an approach to the design of novel anti-HIV-1 agents. 相似文献
10.
Tuberculosis (TB) remains a major global health problem accounting for millions of deaths annually. Approximately one‐third of the world's population is infected with the causative agent Mycobacterium tuberculosis. The onset of an adaptive immune response to M. tuberculosis is delayed compared with other microbial infections. This delay permits bacterial growth and dissemination. The precise mechanism(s) responsible for this delay have remained obscure. T‐cell activation is preceded by dendritic cell (DC) migration from infected lungs to local lymph nodes and synapsis with T cells. We hypothesized that M. tuberculosis may impede the ability of DCs to reach lymph nodes and initiate an adaptive immune response. We used primary human DCs to determine the effect of M. tuberculosis on expression of heterodimeric integrins involved in cellular adhesion and migration. We also evaluated the ability of infected DCs to adhere to and migrate through lung endothelial cells, which is necessary to reach lymph nodes. We show by flow cytometry and confocal microscopy that M. tuberculosis‐infected DCs exhibit a significant reduction in surface expression of the β2 (CD18) integrin. Distribution of integrin β2 is also markedly altered in M. tuberculosis‐infected DCs. A corresponding reduction in the αL (CD11a) and αM (CD11b) subunits that associate with integrin β2 was also observed. Consistent with reduced integrin surface expression, we show a significant reduction in adherence to lung endothelial cell monolayers and migration towards lymphatic chemokines when DCs are infected with M. tuberculosis. These findings suggest that M. tuberculosis modulates DC adhesion and migration to increase the time required to initiate an adaptive immune response. 相似文献
11.
Unusual biochemical features and follicular dendritic cell expression of human Fcalpha/mu receptor 总被引:1,自引:0,他引:1
Kikuno K Kang DW Tahara K Torii I Kubagawa HM Ho KJ Baudino L Nishizaki N Shibuya A Kubagawa H 《European journal of immunology》2007,37(12):3540-3550
The Fc receptor for IgA and IgM (Fcalpha/muR) is of particular interest because it can bind antibodies of both IgM and IgA isotypes and thus may play a pivotal role in systemic and mucosal immunity. Using IgM and IgA ligands and newly generated Fcalpha/muR specific monoclonal antibodies we have defined biochemical features and cellular distribution of the human Fcalpha/muR. Both recombinant and native forms of human Fcalpha/muR are expressed on the cell surface as remarkably stable homodimeric transmembrane glycoproteins that can bind specifically polymeric IgM or IgA. The only human B cells to express Fcalpha/muR, albeit at very low levels, are found in the pre-germinal center subpopulation defined by the IgD+/CD38+ phenotype. Hence the expression pattern differs from that of the mouse wherein Fcalpha/muR is expressed by both circulating and resident B cell populations. Significantly, the predominant cell type expressing the Fcalpha/muR in humans is the follicular dendritic cell of germinal centers. The Fcalpha/muR may thus function in antigen presentation and B cell selection in the germinal center response. 相似文献
12.
13.
Cecilia Analia Panek Maria Victoria Ramos Maria Pilar Mejias Maria Jimena Abrey-Recalde Romina Jimena Fernandez-Brando Maria Soledad Gori Gabriela Verónica Salamone Marina Sandra Palermo 《Cellular & molecular immunology》2015,12(6):669-680
Circulating monocytes (Mos) may continuously repopulate macrophage (MAC) or dendritic cell (DC) populations to maintain homeostasis. MACs and DCs are specialized cells that play different and complementary immunological functions. Accordingly, they present distinct migratory properties. Specifically, whereas MACs largely remain in tissues, DCs are capable of migrating from peripheral tissues to lymphoid organs. The aim of this work was to analyze the expression of the fractalkine receptor (CX3CR1) during the monocytic differentiation process. Freshly isolated Mos express high levels of both CX3CR1 mRNA and protein. During the Mo differentiation process, CX3CR1 is downregulated in both DCs and MACs. However, MACs showed significantly higher CX3CR1 expression levels than did DC. We also observed an antagonistic CX3CR1 regulation by interferon (IFN)-γ and interleukin (IL)-4 during MAC activation through the classical and alternative MAC pathways, respectively. IFN-γ inhibited the loss of CX3CR1, but IL-4 induced it. Additionally, we demonstrated an association between CX3CR1 expression and apoptosis prevention by soluble fractalkine (sCX3CL1) in Mos, DCs and MACs. This is the first report demonstrating sequential and differential CX3CR1 modulation during Mo differentiation. Most importantly, we demonstrated a functional link between CX3CR1 expression and cell survival in the presence of sCX3CL1. 相似文献
14.
15.
A Giovannetti F Ensoli F Mazzetta M De Cristofaro M Pierdominici D S Muratori V Fiorelli F Aiuti 《Clinical and experimental immunology》1999,118(1):87-94
Expression of chemokine receptors and beta-chemokine production by peripheral blood mononuclear cells (PBMC) were determined in HIV-1-infected individuals before and after highly active anti-retroviral therapy (HAART) and their relationship to viral load, T cell phenotype and the expression of immunological activation markers was examined. We found that the expression of CCR5 is up-regulated in HIV-1-infected individuals while CXCR4 appears down-regulated on both CD4 and CD8 T cells compared with normal controls. These alterations are associated with the high levels of viral load. In addition, a relationship was observed between the degree of immune activation and chemokine receptor expression on T cells. However, after 3 months of combined anti-retroviral regimen, expression of CXCR4 significantly increased while CCR5 decreased when compared with pretherapy determinations. This was seen in strict association with a dramatic decrease of viral load and an increase of both CD45RA+/CD62L+ (naive) and CD45RA-/CD62L+ or CD45RA+/CD62L- (memory) T cells accompanied by a significant decrease of the expression of immune activation markers such as HLA-DR and CD38. At enrolment, both spontaneous and lectin-induced RANTES, macrophage inflammatory protein-1alpha (MIP-1alpha) and MIP-1beta production by PBMC were higher in HIV-1-infected individuals compared with normal controls, although differences for MIP-1beta were not statistically significant. However, RANTES and MIP-1alpha production decreased during HAART at levels closer to that determined with normal controls, while MIP-1beta production was less consistently modified. These data indicate that the expression of chemokine receptors CCR5 and CXCR4 and the production of beta-chemokines are altered in HIV-infected individuals, and suggest that their early modifications during HAART reflect both the peripheral redistribution of naive/memory T cell compartments and the decrease in levels of T cell activation. Such modifications in the expression of host determinants of viral tropism and the production of anti-viral molecules may play a role in the emergence of virus variants when a failure of HAART occurs. 相似文献
16.
Pimecrolimus is a new non-steroidal inhibitor of T cell and mast cell activation. In the present study, we compared the potency of pimecrolimus and cyclosporin A (CyA) to inhibit cytokine synthesis of alloantigen-primed T cells and the expression of CD134 (OX40), an inducible co-receptor molecule thought to be critical for the survival and expansion of inflammation-mediating T cells. To mimic the physiological situation of recurrent antigenic stimulation, we have used dendritic cells (DC) as stimulators of purified CD4+ T cells in the primary and secondary allogeneic mixed lymphocyte culture (allo-MLC). Pimecrolimus inhibited surface expression of OX40 and prevented the up-regulation of CD25 and CD54 with a 10-fold higher potency compared to CyA. Similarly, 50% inhibition of allo-DC-mediated T cell proliferation by pimecrolimus was obtained at 0.55 nm, compared to about 12 nm for CyA. Furthermore, pimecrolimus blocked the increase of OX40 on primed T cells restimulated on day 10 in secondary allo-MLC. Allo-DC-primed T cells showed a restricted cytokine profile characterized by the production of TNF-alpha, IFN-gamma and IL-2 but low to undetectable levels of IL-4 and IL-10. The synthesis of TNF-alpha and IFN-gamma and the up-regulation of OX40 on T cells after secondary allogeneic stimulation were almost entirely blocked by 10 nm pimecrolimus. Taken together, pimecrolimus inhibits T cell proliferation and Th1 cytokine synthesis and also prevents the up-regulation of the OX40 co-receptor on primed T cells indicating its potential in the therapy of chronic inflammation and autoimmunity. 相似文献
17.
Hoerning A Köhler S Jun C Lu J Fu J Tebbe B Dolff S Feldkamp T Kribben A Hoyer PF Witzke O 《Clinical and experimental immunology》2012,168(2):251-259
The peripheral chemokine receptors chemokine receptor 3 (CXCR3) and CC chemokine receptor 5 (CCR5) have been reported to be associated with allograft rejection. The impact of the expression of immunosuppressive drugs on peripherally circulating CD4+ T cell subsets after renal transplantion is unknown. Expression of CXCR3 and CCR5 was investigated by flow cytometry in 20 renal allograft recipients participating in a prospective, randomized trial (). Initial immunosuppression consisted of basiliximab, cyclosporin A (CsA), mycophenolate sodium and corticosteroids. After 3 months, patients were treated either with CsA, mycophenolate sodium (MPA) plus corticosteroids (n = 6), CsA and everolimus plus corticosteroids (n = 8) or CsA-free (CsAfree) receiving everolimus, MPA and corticosteroids (n = 6). After initial reduction of CD4+forkhead box protein 3 (FoxP3)+ and CD4+CD25hiFoxP3+ regulatory T cells (Tregs) (P < 0·05; P < 0·01), 3-month post-transplant percentages of Tregs were reconstituted in CsAfree and CsAlo arms compared to CsAreg 12 months post transplant. Expression of CCR5 and CXCR3 on CD4+FoxP3+ and CD4+FoxP3- T cells 12 months post transplant was increased in CsAfreeversus CsAreg. Increase in CCR5+CXCR3+ co-expressing CD4+FoxP3- cells between 3 and 12 months correlated negatively with the glomerular filtration rate (GFR) slope/year [modification of diet in renal disease (MDRD); r = −0·59, P < 0·01]. CsA, but not everolimus, inhibits both Treg development and expression of CXCR3 and CCR5 on CD4+ T cell subsets. Increase in CCR5+CXCR3+ co-expressing CD4+FoxP3- T cells is associated with early loss in allograft function. NCT00514514相似文献
18.
In addition to the biochemical inhibition of thyroid hormone synthesis, antithyroid drugs including methimazole (MMI) may have immunosuppressive effect through inhibition of major histocompatibility complex (MHC) class I and II expressions on non-professional (thyrocytes) and professional (macrophages and B cells) antigen presenting cells (APCs). Dendritic cells (DCs) are another professional APCs and very likely play the most important role in the primary immune response. Therefore, we focused in this study on evaluating the effect of MMI on DC function in mice. Bone marrow cells cultured with granulocyte macrophage colony stimulating factor and interleukin (IL)-4 expressed high levels of CD11c and moderate levels of MHC class II, both of which are widely used markers for DCs. In vitro incubation of this DC-containing cell population with 10? 6–10? 4 M MMI for 2 days did not change basal- and maturation signal (adenoviral infection and lipopolysaccharide)-induced levels of the cell surface marker expressions such as MHC class I and II, CD86, CD40 and DEC205, and of proinflammatory cytokine IL-6 release. Further we found that treatment of the DC-containing cell population with MMI did not influence the incidence of Graves' hyperthyroidism and anti-thyrotropin receptor (TSHR) antibody titers in a mouse Graves' model we have recently established with DCs infected with adenovirus expressing the TSHR A subunit. Although we cannot completely exclude immunosuppressive effect of MMI on other immune cells, our data indicate that DCs do not appear to be the primary target for the immunosuppressive effect of MMI. 相似文献
19.
Saeed Daneshmandi Shaghayegh Pishkhan Dibazar Shirin Fateh 《Journal of immunotoxicology》2016,13(2):235-242
In the body, there is a natural three-dimensional (3D) microenvironment in which immune cells, including dendritic cells (DC), play their functions. This study evaluated the impact of using collagen-chitosan 3D nano-scaffolds in comparisons to routine 2D culture plates on DC phenotype and functions. Bone marrow-derived DC were cultured on scaffolds and plates and then stimulated with lipopolysaccharide (LPS) or chitosan-based nanoparticles (NP) for 24?h. Thereafter, DC viability, expression of maturation markers and levels of cytokines secretion were evaluated. In another set of studies, the DC were co-cultured with allogenic T-lymphocytes in both the 2D and 3D systems and effects on DC-induction of T-lymphocyte proliferation and cytokine release were analyzed. The results indicated that CD40, CD86 and MHC II marker expression and interleukin (IL)-12, IL-6 and tumor necrosis factor (TNF)-α secretion by DC were enhanced in 3D cultures in comparison to by cells maintained in the 2D states. The data also showed that DNA/chitosan NP activated DC more than LPS in the 3D system. T-Lymphocyte proliferation was induced to a greater extent by DNA/NP-treated DC when both cell types were maintained on the scaffolds. Interestingly, while DC induction of T-lymphocyte interferon (IFN)-γ and IL-4 release was enhanced in the 3D system (relative to controls), there was a suppression of transforming growth factor (TGF)-β production; effects on IL-10 secretion were variable. The results here suggested that collagen-chitosan scaffolds could provide a pro-inflammatory and activator environment to perform studies to analyze effects of exogenous agents on the induction of DC maturation, NP uptake and/or cytokines release, as well as for the ability of these cells to potentially interact with other immune system cells in vitro. 相似文献
20.
Differential expression of adhesion molecules and chemokines between nasal and small intestinal mucosae: implications for T- and sIgA+ B-lymphocyte recruitment 下载免费PDF全文
Bourges D Chevaleyre C Wang C Berri M Zhang X Nicaise L Meurens F Salmon H 《Immunology》2007,122(4):551-561
Nasal and small intestinal mucosae are the first sites of contact with infectious agents and the sites of T-cell-mediated and secreted immunoglobulin A (IgA)-mediated defences against pathogens. We investigated the factors controlling the infiltration of CD3(+) T lymphocytes and surface IgA(+) (sIgA(+)) B lymphocytes into swine epithelium and lamina propria (LP) within and between these two mucosal effector sites. Vascular addressins, vascular cell adhesion molecule 1 and mucosal addressin cell adhesion molecule-1 were reciprocally expressed in both mucosae. Strong expression of alpha(4)beta(1) relative to alpha(4)beta(7) was characteristic of CD3(+) T cells in nasal mucosa LP and epithelium and of sIgA(+) cells in nasal mucosa epithelium. The same profile was observed on corresponding blood cells. Conversely, higher levels of integrins beta(7) and alpha(4)beta(7) than alpha(4)beta(1) were characteristic of CD3(+) T cells and sIgA(+) cells in the small intestine. However, about 40% of the LP-activated sIgA(+) cells displayed sIgA(high), integrin alpha(4) and integrin alpha(4) expression. Whereas CCL19, CXCL12, CCL21 and CCL28 messenger RNAs were similarly expressed in both mucosae, CCL25 messenger RNA was only expressed in the small intestine. Thus, the nasal and small intestine mucosae represent separate compartments for infiltration by CD3(+) T cells and sIgA(+) effector cells, with the exception of a population of small intestine activated sIgA(+) cells, which may gain access to both mucosae. 相似文献