首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
Shiga toxin (Stx)-producing Escherichia coli (STEC) strains cause food-borne outbreaks of hemorrhagic colitis and, less commonly, a serious kidney-damaging sequela called the hemolytic uremic syndrome (HUS). Stx, the primary virulence factor expressed by STEC, is an AB5 toxin with two antigenically distinct forms, Stx1a and Stx2a. Although both toxins have similar biological activities, Stx2a is more frequently produced by STEC strains that cause HUS than is Stx1a. Here we asked whether Stx1a and Stx2a act differently when delivered orally by gavage. We found that Stx2a had a 50% lethal dose (LD50) of 2.9 μg, but no morbidity occurred after oral intoxication with up to 157 μg of Stx1a. We also compared several biochemical and histological parameters in mice intoxicated orally versus intraperitoneally with Stx2a. We discovered that both intoxication routes caused similar increases in serum creatinine and blood urea nitrogen, indicative of kidney damage, as well as electrolyte imbalances and weight loss in the animals. Furthermore, kidney sections from Stx2a-intoxicated mice revealed multifocal, acute tubular necrosis (ATN). Of particular note, we detected Stx2a in kidney sections from orally intoxicated mice in the same region as the epithelial cell type in which ATN was detected. Lastly, we showed reduced renal damage, as determined by renal biomarkers and histopathology, and full protection of orally intoxicated mice with monoclonal antibody (MAb) 11E10 directed against the toxin A subunit; conversely, an irrelevant MAb had no therapeutic effect. Orally intoxicated mice could be rescued by MAb 11E10 6 h but not 24 h after Stx2a delivery.  相似文献   

2.
Hemolytic-uremic syndrome (HUS), caused by Shiga toxin (Stx)-producing Escherichia coli (STEC), remains untreatable. Production of human monoclonal antibodies against Stx, which are highly effective in preventing Stx sequelae in animal models, is languishing due to cost and logistics. We reported previously that the production and evaluation of a camelid heavy-chain-only VH domain (VHH)-based neutralizing agent (VNA) targeting Stx1 and Stx2 (VNA-Stx) protected mice from Stx1 and Stx2 intoxication. Here we report that a single intramuscular (i.m.) injection of a nonreplicating adenovirus (Ad) vector carrying a secretory transgene of VNA-Stx (Ad/VNA-Stx) protected mice challenged with Stx2 and protected gnotobiotic piglets infected with STEC from fatal systemic intoxication. One i.m. dose of Ad/VNA-Stx prevented fatal central nervous system (CNS) symptoms in 9 of 10 animals when it was given to piglets 24 h after bacterial challenge and in 5 of 9 animals when it was given 48 h after bacterial challenge, just prior to the onset of CNS symptoms. All 6 placebo animals died or were euthanized with severe CNS symptoms. Ad/VNA-Stx treatment had no impact on diarrhea. In conclusion, Ad/VNA-Stx treatment is effective in protecting piglets from fatal Stx2-mediated CNS complications following STEC challenge. With a low production cost and further development, this could presumably be an effective treatment for patients with HUS and/or individuals at high risk of developing HUS due to exposure to STEC.  相似文献   

3.
Shiga toxin-producing Escherichia coli (STEC) strains are responsible for causing hemolytic-uremic syndrome (HUS), and systemic administration of Shiga toxin (Stx)-specific human monoclonal antibodies (HuMAbs) is considered a promising approach for prevention or treatment of the disease in children. The goal of the present study was to investigate the ability of Stx2-specific HuMAbs to protect against infections with STEC strains that produce Stx2 variants. Dose-response studies on five HuMAbs, using the mouse toxicity model, revealed that only the three directed against the A subunit were protective against Stx2 variants, and 5C12 was the most effective among the three tested. Two HuMAbs directed against the B subunit, while highly effective against Stx2, were ineffective against Stx2 variants. In a streptomycin-treated mouse model, parenteral administration of 5C12 significantly protected mice up to 48 h after oral bacterial challenge. We conclude that 5C12, reactive against the Stx2 A subunit, is an excellent candidate for immunotherapy against HUS and that antibodies directed against the A subunit of Stx2 have broad-spectrum activity that includes Stx2 variants, compared with those directed against the B subunit.  相似文献   

4.
Monoclonal antibody (MAb) 11E10 recognizes the Shiga toxin type 2 (Stx2) A1 subunit. The binding of 11E10 to Stx2 neutralizes both the cytotoxic and lethal activities of Stx2, but the MAb does not bind to or neutralize Stx1 despite the 61% identity and 75% similarity in the amino acids of the A1 fragments. In this study, we sought to identify the segment or segments on Stx2 that constitute the 11E10 epitope and to determine how recognition of that region by 11E10 leads to inactivation of the toxin. Toward those objectives, we generated a set of chimeric Stx1/Stx2 molecules and then evaluated the capacity of 11E10 to recognize those hybrid toxins by Western blot analyses and to neutralize them in Vero cell cytotoxicity assays. We also compared the amino acid sequences and crystal structures of Stx1 and Stx2 for stretches of dissimilarity that might predict a binding epitope on Stx2 for 11E10. Through these assessments, we concluded that the 11E10 epitope is comprised of three noncontiguous regions surrounding the Stx2 active site. To determine how 11E10 neutralizes Stx2, we examined the capacity of 11E10/Stx2 complexes to target ribosomes. We found that the binding of 11E10 to Stx2 prevented the toxin from inhibiting protein synthesis in an in vitro assay but also altered the overall cellular distribution of Stx2 in Vero cells. We propose that the binding of MAb 11E10 to Stx2 neutralizes the effects of the toxin by preventing the toxin from reaching and/or inactivating the ribosomes.Escherichia coli O157:H7 and other Shiga toxin (Stx)-producing E. coli (STEC) strains cause approximately 110,000 cases of infection and over 90 deaths each year in the United States according to the Centers for Disease Control and Prevention (16). Infections with STEC can lead to diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). HUS occurs in about 6 to 15% of individuals after infection with E. coli O157:H7 (15)—but less frequently with other STEC strains (5)—and is characterized by hemolytic anemia, thrombotic thrombocytopenia, and renal failure. The development of this sequela is linked to the expression of Stxs by the bacteria (18).The Stx family comprises two serogroups, Stx/Stx1 and Stx2, and polyclonal antisera raised against either Stx1 or Stx2 do not cross-neutralize the other toxin (29, 30). Stx is produced by Shigella dysenteriae type 1 and differs by only 1 amino acid from the Stx1 made by the prototypic STEC O157:H7 strain, EDL933. A single isolate of STEC can express Stx1 (or one of its variants), Stx2 (or one of its variants), or both toxins. Variants of each toxin type are defined by either a biological or immunological difference from the prototypical toxin (31). Stx1 variants include Stx1c and Stx1d, while the variants of Stx2 are Stx2c, Stx2d, Stx2d-activatable (Stx2dact), Stx2e, and Stx2f (reviewed in reference 18).Stxs are complex holotoxins with a stoichiometry of five identical binding (B) subunits and a single active (A) domain. These AB5 molecules are potent cytotoxins with an N-glycosidase activity that stops protein synthesis by inactivation of the 60S ribosome (6); this activity eventually leads to eukaryotic cell death. The ∼32-kDa A subunit contains the enzymatic activity of the toxin with the active site glutamic acid residue at position 167. The A subunit is asymmetrically cleaved by trypsin or furin into an enzymatically active ∼28-kDa A1 fragment and an ∼4-kDa A2 peptide. The A2 peptide remains linked to the large enzymatic domain through a disulfide bond and is encircled by the five identical B subunits of ∼7.7 kDa. The B subunits of the Stxs typically bind to the eukaryotic glycolipid receptor globotriaosylceramide (Gb3), also known as CD77. The mature A and B subunits of Stx1 and Stx2 are approximately 68 and 73% similar at the amino acid level. The crystal structures of Stx and Stx2 have been resolved, and the two structures are remarkably similar (7, 8). Nevertheless, there are some features of these three-dimensional models that differ (summarized in reference 8).Currently, there are no Food and Drug Administration-approved therapies in the United States to treat STEC infections. However, our research group is one of several that investigate passive immunization strategies to neutralize the Stxs associated with STEC infections (3, 4, 10, 13, 19, 20). Our passive immunization strategy is based on murine monoclonal antibodies (MAbs) developed in this laboratory that specifically bind to and neutralize Stx/Stx1 or Stx2 (21, 28). The MAb 11E10 was generated by immunization of BALB/c mice with Stx2 turned into a toxoid (“toxoided”) by treatment with formaldehyde (21). MAb 11E10 specifically recognizes the A1 fragment of Stx2 and neutralizes Stx2 for Vero cells and mice but does not bind to or neutralize Stx/Stx1 (21). The murine MAb 11E10 was modified to contain a human constant region to reduce the potential for an antibody recipient to generate an antimouse antibody response (4). This human-mouse chimeric antibody, called cαStx2, successfully underwent phase I clinical testing (3). In this report, we define the epitope on the A subunit of Stx2 recognized by the murine MAb 11E10 (and, therefore, also by cαStx2) and present evidence that the MAb blocks the enzymatic action of the toxin in vitro and also alters toxin trafficking in Vero cells.  相似文献   

5.
Mice have been extensively employed as an animal model of renal damage caused by Shiga toxins. In this study, we examined the role of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) in the development of toxin-mediated renal disease in mice. Mice pretreated with TNF-α and challenged with Shiga toxin type 1 (Stx1) showed increased survival compared to that of mice treated with Stx1 alone. Conversely, mice treated with Stx1 before TNF-α administration succumbed more quickly than mice given Stx1 alone. Increased lethality in mice treated with Stx1 followed by TNF-α was associated with evidence of glomerular damage and the loss of renal function. No differences in renal histopathology were noted between animals treated with Stx1 alone and the TNF-α pretreatment group, although we noted a sparing of renal function when TNF-α was administered before toxin. Compared to that of treatment with Stx1 alone, treatment with TNF-α after toxin altered the renal cytokine profile so that the expression of proinflammatory cytokines TNF-α and interleukin-1β (IL-1β) increased, and the expression of the anti-inflammatory cytokine IL-10 decreased. Increased lethality in mice treated with Stx1 followed by TNF-α was associated with higher numbers of dUTP-biotin nick end labeling-positive renal tubule cells, suggesting that increased lethality involved enhanced apoptosis. These data suggest that the early administration of TNF-α is a candidate interventional strategy blocking disease progression, while TNF-α production after intoxication exacerbates disease.Shiga toxins are a family of genetically and functionally related cytotoxic proteins expressed by the enteric pathogens Shigella dysenteriae serotype 1 and certain serotypes of Escherichia coli. Antigenic similarity to Shiga toxin expressed by S. dysenteriae serotype 1 is used to define Shiga toxin type 1 (Stx1) and type 2 (Stx2) expressed by Shiga toxin-producing E. coli (STEC) (44). Shiga toxins consist of a single A subunit in noncovalent association with a pentamer of B subunits. B subunits mediate binding to the neutral glycolipid receptor globotriaosylceramide (Gb3), while the A subunit possesses an N-glycosidase activity (38). Following toxin internalization and routing to the endoplasmic reticulum (ER), a fragment of the toxin A subunit generated by furin or a furin-like protease is translocated across the ER membrane and mediates the cleavage of a single adenine residue (A4256 in the rat) from the 28S rRNA component of ribosomes (39). Stx-induced depurination leads to the disruption of elongation factor-dependent aminoacyl-tRNA binding to nascent polypeptides (30). Thus, Shiga toxins are potent protein synthesis inhibitors, with 50% cytotoxic doses measured in pg/ml amounts for many cell types in vitro. Shiga toxins also activate the ribotoxic and ER stress pathways, which are important in the activation of proinflammatory cytokine/chemokine production and apoptosis (6, 22, 41).The ingestion of small quantities of Stx-producing bacteria may lead to the development of bloody diarrhea with progression to acute renal failure, designated diarrhea-associated hemolytic uremic syndrome (D+HUS) (33). Epidemiologic studies have shown that the ingestion of STEC strains expressing Stx2 alone or Stx1 and Stx2 are more likely to progress to life-threatening extraintestinal complications (3, 17, 31). D+HUS is a leading cause of pediatric acute renal failure. D+HUS is characterized by rapid-onset oligouria or anuria, azotemia, microangiopathic hemolytic anemia with schistocytosis, and thrombocytopenia (33, 47). The histopathological examination of D+HUS renal tissues showed that glomerular microvascular endothelial cells were frequently swollen and detached from the basement membrane, and glomerular capillary lumina may be occluded with fibrin-rich microthrombi (21, 36).Numerous animal models have been employed to characterize the role of Stx1 and Stx2 in pathogenesis. Studies utilizing nonhuman primates showed that Shiga toxins are essential virulence determinants in the development of microangiopathic lesions. Fontaine et al. (9) showed that macaque monkeys fed toxigenic strains of S. dysenteriae developed colonic microvascular lesions, while baboons given purified intravenous Stx1 developed acute renal failure (48). The bolus intravenous administration of Stx1 or Stx2 into baboons revealed that the animals were more sensitive to Stx2, although the mean times to death were prolonged in Stx2-treated animals compared to that with Stx1 treatment. Both toxins mediated hematologic changes such as thrombocytopenia and schistocytosis, and both toxins produced renal pathology, but with different presentations. Renal damage caused by Stx1 was characterized by moderate congestion at the cortico-medullary junction, while Stx2-treated animals showed severe medullary congestion with cortical ischemia (42). Mice fed Stx2-producing E. coli or given a single bolus injection of purified Shiga toxins died without the development of glomerular thrombotic microangiopathy (50, 54). However, the administration of multiple low doses of Stx2 allowed the animals to survive initial toxin challenge and develop glomerular lesions characteristic of HUS in humans (40). In addition to the toxins, host response factors may contribute to D+HUS pathogenesis. Prodromal hemorrhagic colitis may alter normal colonic barrier function, and patients with D+HUS may be endotoxemic or show evidence of elevated antibody titers against lipopolysaccharides (LPS) expressed by Stx-producing E. coli (2, 10, 26). LPS elicit the expression of a broad array of pro- and anti-inflammatory cytokines and chemokines (45). In accordance with this, D+HUS patients frequently have increased serum or urinary proinflammatory cytokine and chemokine levels (15, 23). Studies using small-animal models support the hypothesis that additional bacterial and host response factors facilitate the development of renal disease. Keepers et al. (19) demonstrated that the coadministration of Stx2 and LPS to C57BL/6 mice did not produce major changes in lethality but resulted in pathophysiological changes more consistent with disease in humans: intraglomerular platelet and fibrin deposition, decreased renal function, neutrophilia, and lymphocytopenia. Barrett et al. (1) showed that the timing of toxin and LPS challenges were critical in disease outcome. LPS enhanced the lethal effects of purified Stx2 when administered to rabbits or mice after toxin challenge, whereas LPS protected the animals from Stx2 toxicity when administered before the toxin. Palermo et al. (32) showed that the LPS-induced modulation of Stx2 lethality was cytokine time and dose dependent. Mice given low doses of TNF-α or IL-1β 1 h before Stx2 treatment showed increased lethality when treated with Stx2, while mice given higher doses of IL-1β (sufficient to elicit corticosteroid production) were protected from Stx2 lethality.The proinflammatory cytokines TNF-α and IL-1β sensitize vascular endothelial cells to the cytotoxic action of Shiga toxins in vitro (24, 34, 53) through a mechanism involving the increased expression of genes involved in the biosynthesis of Gb3 (43). Murine and human macrophages or macrophage-like cell lines express proinflammatory cytokines and chemokines when treated with purified Shiga toxins (12, 35, 51). Keepers et al. (18) showed a marked monocytic cell infiltrate into the kidneys of mice given Stx2 and LPS. Collectively, these data suggest that the innate immune response to Shiga toxins, in the presence or absence of LPS, alters the outcome of renal disease. In the present study, we have examined the role of a single proinflammatory cytokine, TNF-α, in pathogenesis using the mouse model of Stx-induced renal damage. Our data suggest that the timing of TNF-α production affects the outcome of disease in that the presence of elevated TNF-α levels prior to toxin challenge protects animals from disease, while high TNF-α levels occurring after toxin administration result in accelerated lethality.  相似文献   

6.
Shiga toxin-producing Escherichia coli O157:H7 (STEC) is by far the most prevalent serotype associated with hemolytic uremic syndrome (HUS) although many non-O157 STEC strains have been also isolated from patients with HUS. The main virulence factor of STEC is the Shiga toxin type 2 (Stx2) present in O157 and non-O157 strains. Recently, another toxin, named subtilase cytotoxin (SubAB), has been isolated from several non-O157 strains and may contribute to the pathogenesis of HUS. Here, we have demonstrated that an O113:H21 STEC strain expressing SubAB and Stx2 inhibits normal water absorption across human colon and causes damage to the surface epithelium, necrosis, mononuclear inflammatory infiltration, edema, and marked mucin depletion. This damage was less marked, but nevertheless significant, when purified SubAB or E. coli O113:H21 expressing only SubAB was assayed. This is the first study showing that SubAB may directly participate in the mechanisms of diarrhea in children infected with non-O157 STEC strains.  相似文献   

7.
Infection of children with Shiga toxin (Stx)-producing Escherichia coli (STEC) is the leading cause of hemolytic-uremic syndrome (HUS). Stx2, one of two toxins liberated by the bacteria, is directly linked with HUS. We have previously shown that Stx2-specific human monoclonal antibodies (HuMAbs) protect mice and piglets from fatal systemic complications of Stx2. The present study investigates the mechanisms by which our most efficacious A- and B-subunit-specific HuMAbs neutralize the cytotoxic effects of Stx2 in vitro. Whereas the B-subunit-specific HuMAb 5H8 blocked binding of Stx2 to its receptor on the cell surface, the A-subunit-specific HuMAb 5C12 did not interfere with the toxin-receptor binding. Further investigations revealed that 5C12 did not block endocytosis of Stx2 by HeLa cells as both Stx2 and 5C12 colocalized with early endosomes. However, 5C12 blocked the retrograde transport of the toxin into the Golgi and the endoplasmic reticulum, preventing the toxin from entering the cytosol where the toxin exerts its cytotoxic effect. The endocytosed 5C12/Stx2 complexes appear to be rapidly transported to the plasma membrane and/or to the slow recycling perinuclear compartments, followed by their slow recycling to the plasma membrane, and release into the extracellular environment.  相似文献   

8.
Infection of children with Shiga toxin (Stx)-producing Escherichia coli (STEC) can lead to hemolytic-uremic syndrome (HUS) in 5 to 10% of patients. Stx2, one of two toxins liberated by the bacterium, is directly linked with HUS. We have previously shown that Stx-specific human monoclonal antibodies protect STEC-infected animals from fatal systemic complications. The present study defines the protective antibody dose in relation to the time of treatment after the onset of diarrhea in infected gnotobiotic piglets. Using the mouse toxicity model, we selected 5C12, an antibody specific for the A subunit, as the most effective Stx2 antibody for further characterization in the piglet model in which piglets developed diarrhea 16 to 40 h after bacterial challenge, followed by fatal neurological symptoms at 48 to 96 h. Seven groups of piglets received doses of 5C12 ranging from 6.0 mg/kg to 0.05 mg/kg of body weight, administered parenterally 48 h after bacterial challenge. The minimum fully protective antibody dose was 0.4 mg/kg, and the corresponding serum antibody concentration in these piglets was 0.7 mug (+/-0.5)/ml, measured 7 to 14 days after administration. Of 40 infected animals which received Stx2 antibody treatment of > or =0.4 mg/kg, 34 (85%) survived, while only 1 (2.5%) of 39 placebo-treated animals survived. We conclude that the administration of the Stx2-specific antibody was protective against fatal systemic complications even when it was administered well after the onset of diarrhea. These findings suggest that children treated with this antibody, even after the onset of bloody diarrhea, may be equally protected against the risk of developing HUS.  相似文献   

9.
Shiga toxin (Stx)-producing Escherichia coli (STEC) causes hemorrhagic colitis and the hemolytic-uremic syndrome (HUS). STEC strains may produce Stx1a and/or Stx2a or variants of either toxin. A 2006 spinach-associated outbreak of STEC O157:H7 resulted in higher hospitalization and HUS rates than previous STEC outbreaks. The spinach isolate, strain K3995, contains both stx2a and stx2c. We hypothesized that the enhanced virulence of K3995 reflects the combination of stx2 alleles (carried on lysogenic phages) and/or the amount of Stx2 made by that strain. We compared the virulence of K3995 to those of other O157:H7 isolates and an isogenic Stx2 mutant in rabbits and mice. We also measured the relative levels of Stx2 produced from those strains with or without induction of the stx-carrying phage. Some rabbits infected with K3995 exhibited intestinal pathology and succumbed to infection, while none of those infected with O157:H7 strain 2812 (Stx1a+ Stx2a+) died or showed pathological signs. Rabbits infected with the isogenic Stx2a mutant K3995 stx2a::cat were not colonized as well as those infected with K3995 and exhibited no signs of disease. In the streptomycin-treated mouse model, more animals infected with K3995 died than did those infected with O157:H7 strain 86-24 (Stx2a+). Additionally, K3995 produced higher levels of total Stx2 and toxin phage DNA in cultures after phage induction than did 86-24. Our results demonstrate the greater virulence of K3995 compared to other O157:H7 strains in rabbits and mice. We conclude that this enhanced virulence is linked to higher levels of Stx2 expression as a consequence of increased phage induction.  相似文献   

10.
Hemolytic-uremic syndrome (HUS) is generally caused by Shiga toxin (Stx)-producing Escherichia coli. Endothelial dysfunction mediated by Stx is a central aspect in HUS development. However, inflammatory mediators such as bacterial lipopolysaccharide (LPS) and polymorphonuclear neutrophils (PMN) contribute to HUS pathophysiology by potentiating Stx effects. Acute renal failure is the main feature of HUS, but in severe cases, patients can develop neurological complications, which are usually associated with death. Although the mechanisms of neurological damage remain uncertain, alterations of the blood-brain barrier associated with brain endothelial injury is clear. Astrocytes (ASTs) are the most abundant inflammatory cells of the brain that modulate the normal function of brain endothelium and neurons. The aim of this study was to evaluate the effects of Stx type 1 (Stx1) alone or in combination with LPS in ASTs. Although Stx1 induced a weak inflammatory response, pretreatment with LPS sensitized ASTs to Stx1-mediated effects. Moreover, LPS increased the level of expression of the Stx receptor and its internalization. An early inflammatory response, characterized by the release of tumor necrosis factor alpha (TNF-α) and nitric oxide and PMN-chemoattractant activity, was induced by Stx1 in LPS-sensitized ASTs, whereas activation, evidenced by higher levels of glial fibrillary acid protein and cell death, was induced later. Furthermore, increased adhesion and PMN-mediated cytotoxicity were observed after Stx1 treatment in LPS-sensitized ASTs. These effects were dependent on NF-κB activation or AST-derived TNF-α. Our results suggest that TNF-α is a pivotal effector molecule that amplifies Stx1 effects on LPS-sensitized ASTs, contributing to brain inflammation and leading to endothelial and neuronal injury.The epidemic form of hemolytic-uremic syndrome (HUS) has been associated with enterohemorrhagic infections caused by Shiga toxin (Stx)-producing Escherichia coli (STEC) organisms (33). HUS is the most common cause of acute renal failure in children and is related to the endothelial damage of glomeruli and/or arterioles of the kidney and epithelial cell damage induced by Stx through the interaction with its globotriaosylceramide (Gb3) receptor (35). Although Stx is the main pathogenic factor and is necessary for epidemic HUS development, clinical and experimental evidence suggests that the inflammatory response is able to potentiate Stx toxicity. In fact, both bacterial lipopolysaccharide (LPS) and polymorphonuclear neutrophils (PMN) play a key role in the full development of HUS (15). Moreover, PMN leukocytosis in patients correlates with a poor prognosis (17).Endothelial cell damage is not limited to the kidney but extends to other organs; in severe cases, the brain can be affected. In fact, central nervous system (CNS) complications indicate severe HUS, and brain damage involvement is the most common cause of death (14).However, the pathogenesis of CNS impairment is not yet fully understood. Although it has been demonstrated that human brain endothelial cells (BECs) are relatively resistant to Stx, inflammatory mediators, such as tumor necrosis factor alpha (TNF-α), markedly increase human BEC sensitivity to Stx cytotoxicity (11).BECs are part of the blood-brain barrier (BBB), which protects the brain from potentially harmful substances and leukocytes present in the bloodstream. Thus, the integrity of BBB function is theorized to be a key component in CNS-associated pathologies, and BEC damage is thought to be one of the possible mechanisms involved in the disruption of the BBB in HUS. In fact, LPS from bacterial infections leads to the release of TNF-α, interleukin-1β (IL-1β), and reactive oxygen species (ROS), all of which have the ability to open the BBB.Several in vivo studies demonstrated previously that Stx is able to impair BBB function, increasing its permeability (21). Moreover, Stx itself is able to cross the endothelial barrier and enter into the CNS, since Stx activity in cerebrospinal fluid was previously observed (19, 23), and Stx was previously immunodetected in many brain cells including astrocytes (ASTs) and neurons (44).ASTs, which are inflammatory cells found throughout the CNS, are in close contact with BECs by end-foot processes (24), and their interaction with the cerebral endothelium determines BBB function (2, 4). In addition, ASTs interact with neurons through gap junctions and release neurotrophins that are essential for neuronal survival (6). However, in response to brain injury, ASTs become activated and release inflammatory mediators such as nitric oxide (NO) and TNF-α, altering the permeability of the BBB and affecting neuronal survival and tissue integrity (1, 9). In addition, AST-derived cytokines and chemokines can stimulate the peripheral immune system and attract peripheral inflammatory leukocytes to the site of injury (46).ASTs are therefore in a critical position to influence neuronal viability and BEC integrity once Stx and factors associated with the STEC infection reach the brain parenchyma. We hypothesize that the effects of LPS and Stx on ASTs may be involved in the brain damage observed with severe cases of HUS. Thus, the aim of this study was to evaluate whether Stx type 1 (Stx1) alone or in combination with LPS is capable of inducing an inflammatory response in ASTs.  相似文献   

11.
Hemolytic-uremic syndrome (HUS) is a serious complication which is predominantly associated in children with infection by Shiga toxin-producing Escherichia coli (STEC). By using HuMAb-Mouse (Medarex) animals, human monoclonal antibodies (Hu-MAbs) were developed against Shiga toxin 1 (Stx1) for passive immunotherapy of HUS. Ten stable hybridomas comprised of fully human heavy- and light-chain immunoglobulin elements and secreting Stx1-specific Hu-MAbs (seven immunoglobulin M(kappa)() [IgM(kappa)] elements [one specific for the A subunit and six specific for the B subunit] and three IgG1(kappa) elements specific for subunit B) were isolated. Two IgM(kappa) Hu-MAbs (2D9 and 15G9) and three IgG1(kappa) Hu-MAbs (5A4, 10F4, and 15G2), all specific for subunit B, demonstrated marked neutralization of Stx1 in vitro and significant prolongation of survival in a murine model of Stx1 toxicosis.  相似文献   

12.
Shiga toxins (Stx) are important virulence factors in the pathogenesis of severe disease including hemolytic-uremic syndrome, caused by Stx-producing Escherichia coli (STEC). STEC strains increase the release of Stx in vitro following the addition of fluoroquinolones, whereas protein synthesis inhibitors previously have been reported to suppress the release of Stx. The amount of Stx released from wild-type STEC strains incubated with protein synthesis inhibitors was examined by a Vero cell cytotoxicity assay. The amounts released were compared to the Stx type (Stx1 or Stx2) and additionally to the individual subtypes and toxin variants of Stx2. In general, Stx2 release was suppressed significantly upon exposure to protein synthesis inhibitors at MICs, which was not observed in the case of Stx1. Also, the average amount of different Stx2 toxin variants released was suppressed to various levels ranging from 14.0% (Stx2-O157-EDL933) to 94.7% (Stx2d-O8-C466-01B). Clinical studies exploring protein synthesis inhibitors as future candidates for treatment of intestinal infections caused by Stx2-producing STEC should therefore include knowledge of the toxin variant in addition to the subtype.  相似文献   

13.
Shiga toxins 1 (Stx1) and 2 (Stx2) are encoded by toxin-converting bacteriophages of Stx-producing Escherichia coli (STEC), and so far two Stx1- and one Stx2-converting phages have been isolated from two STEC strains (A. D. O’Brien, J. W. Newlands, S. F. Miller, R. K. Holmes, H. W. Smith, and S. B. Formal, Science 226:694–696, 1984). In this study, we isolated two Stx2-converting phages, designated Stx2Φ-I and Stx2Φ-II, from two clinical strains of STEC associated with the outbreaks in Japan in 1996 and found that Stx2Φ-I resembled 933W, the previously reported Stx2-converting phage, in its infective properties for E. coli K-12 strain C600 while Stx2Φ-II was distinct from them. The sizes of the plaques of Stx2Φ-I and Stx2Φ-II in C600 were different; the former was larger than the latter. The restriction maps of Stx2Φ-I and Stx2Φ-II were not identical; rather, Stx2Φ-II DNA was approximately 3 kb larger than Stx2Φ-I DNA. Furthermore, Stx2Φ-I and Stx2Φ-II showed different phage immunity, with Stx2Φ-I and 933W belonging to the same group. Infection of C600 by Stx2Φ-I or 933W was affected by environmental osmolarity differently from that by Stx2Φ-II. When C600 was grown under conditions of high osmolarity, the infectivity of Stx2Φ-I and 933W was greatly decreased compared with that of Stx2Φ-II. Examination of the plating efficiency of the three phages for the defined mutations in C600 revealed that the efficiency of Stx2Φ-I and 933W for the fadL mutant decreased to less than 10−7 compared with that for C600 whereas the efficiency of Stx2Φ-II decreased to 0.1% of that for C600. In contrast, while the plating efficiency of Stx2Φ-II for the lamB mutant decreased to a low level (0.05% of that for C600), the efficiencies of Stx2Φ-I and 933W were not changed. This was confirmed by the phage neutralization experiments with isolated outer membrane fractions from C600, fadL mutant, or lamB mutant or the purified His6-tagged FadL and LamB proteins. Based on the data, we concluded that FadL acts as the receptor for Stx2Φ-I and Stx2Φ-II whereas LamB acts as the receptor only for Stx2Φ-II.  相似文献   

14.

Background

Hemolytic uremic syndrome (HUS) leading to acute kidney failure, is a condition linked to the production of primarily Shiga toxin 2 (Stx2) by some E. coli serotypes. We have previously shown that Stx2 A subunit-specific human monoclonal antibody (HuMAb) 5C12, and B subunit-specific HuMAb 5H8 inhibit cultured cell death, and protect mice and piglets from fatal Stx2-intoxication. We have also shown that 5H8 blocks binding of Stx2 to its cell-surface receptor globotriaosyl ceramide (Gb3), whereas Stx2 when complexed with 5C12 binds Gb3 with higher affinity than Stx2. The mechanism by which 5C12 neutralizes Stx2 in vitro involves trapping of Stx2 in the recycling endosomes and releasing it into the extracellular environment. Because of the clinical implications associated with the formation of Stx2/antibody complexes and the potential for trapping and clearance through a severely damaged kidney associated with HUS, we investigated the likely site(s) of Stx2/antibody localization and clearance in intoxicated mice treated with antibody or placebo.

Results

Mice were injected with radiolabeled Stx2 (125I-Stx2) 4 hours after administration of 5C12, 5H8, or phosphate buffered saline (PBS) and the sites of localization of labeled Stx2, were investigated 3, 24 and 48 hours later. The liver recorded statistically much higher concentrations of labeled Stx2 for groups receiving 5C12 and 5H8 antibodies after 3, 24 and 48?hours, as compared with the PBS group. In contrast, highest levels of labeled Stx2 were detected in the kidneys of the PBS group at all 3 sampling times. Mice receiving either of the two HuMAbs were fully protected against the lethal effect of Stx2, as compared with the fatal outcome of the control group.

Conclusions

The results suggest that HuMAbs 5C12 and 5H8 promoted hepatic accumulation and presumably clearance of toxin/antibody complexes, significantly diverting Stx2 localization in the kidneys, the target of Stx2 and the cause of HUS. This is in contrast to the fatal outcome of the control group receiving PBS. The results also confirm earlier observations that both HuMAbs are highly and equally protective against Stx2 intoxication in mice.  相似文献   

15.
Escherichia coli O157 is the major cause of diarrhea-associated hemolytic uremic syndrome (HUS). Strains causing HUS contain either Shiga toxin 1 (Stx1) or Stx2, or both. In adult volunteers, conjugate vaccines of detoxified lipopolysaccharide (LPS) elicited bactericidal antibodies to E. coli O157. Here, the detoxified LPS was conjugated with improved schemes to the nontoxic B subunit of Stx1. Mice injected with these bivalent conjugates elicited both bactericidal antibodies to E. coli O157 and neutralization antibodies to Stx1.  相似文献   

16.
Hemolytic-uremic syndrome (HUS) is defined as the triad of anemia, thrombocytopenia, and acute kidney injury. Enterohemorrhagic Shiga toxin (Stx)-producing Escherichia coli (EHEC), which causes a prodromal hemorrhagic enteritis, remains the most common etiology of the typical or epidemic form of HUS. Because no licensed vaccine or effective therapy is presently available for human use, we recently developed a novel immunogen based on the B subunit of Shiga toxin 2 (Stx2B) and the enzyme lumazine synthase from Brucella spp. (BLS) (BLS-Stx2B). The aim of this study was to analyze maternal immunization with BLS-Stx2B as a possible approach for transferring anti-Stx2 protection to the offspring. BALB/c female mice were immunized with BLS-Stx2B before mating. Both dams and pups presented comparable titers of anti-Stx2B antibodies in sera and fecal extracts. Moreover, pups were totally protected against a lethal dose of systemic Stx2 injection up to 2 to 3 months postpartum. In addition, pups were resistant to an oral challenge with an Stx2-producing EHEC strain at weaning and did not develop any symptomatology associated with Stx2 toxicity. Fostering experiments demonstrated that anti-Stx2B neutralizing IgG antibodies were transmitted through breast-feeding. Pups that survived the EHEC infection due to maternally transferred immunity prolonged an active and specific immune response that protected them against a subsequent challenge with intravenous Stx2. Our study shows that maternal immunization with BLS-Stx2B was very effective at promoting the transfer of specific antibodies, and suggests that preexposure of adult females to this immunogen could protect their offspring during the early phase of life.  相似文献   

17.
5C12 HuMAb is a human monoclonal antibody against the A subunit of Shiga toxin 2 (Stx2). We have previously shown that 5C12 HuMAb effectively neutralizes the cytotoxic effects of this toxin by redirecting its transport within the cell and also by neutralizing the toxin''s ability to inhibit protein synthesis. The 5C12 HuMAb and its recombinant IgG1 version protect mice at a dose of 0.6 μg against a lethal challenge of Stx2. The contribution of the Fc region to this observed neutralization activity of the 5C12 antibody against Stx2 was investigated in this study. Using recombinant DNA technology, 5C12 isotype variants (IgG1, IgG2, IgG3, and IgG4) and antibody fragments [Fab, F(ab′)2] were expressed in Chinese hamster ovary cells and evaluated in vitro and in vivo. All four 5C12 isotype variants showed protection in vitro, with the IgG3 and IgG4 variants showing the highest protection in vivo. The Fab and F(ab′)2 fragments also showed protection in vitro but no protection in the mouse toxicity model. Similar results were obtained for a second HuMAb (5H8) against the B subunit of Stx2. The data suggest the importance of the Fc region for neutralization activity, but it is not clear if this is related to the stability of the full-length antibody or if the Fc region is required for effective elimination of the toxin from the body.Approximately 20,000 cases of Shiga toxin (Stx)-producing Escherichia coli (STEC) infections, in which the O157:H7 serotype is the most prevalent serotype, are reported annually in the United States (for recent reviews, see references 6, 9, 10, 23, and 31). Transmission of E. coli O157:H7 is most frequently associated with the consumption of contaminated food (e.g., ground beef or spinach) or drinking unpasteurized dairy products. Infections can also be acquired through person-to-person contact. Infected individuals typically develop abdominal pain and bloody diarrhea 2 to 5 days following exposure. STEC infections are self-limiting and usually resolve in 7 to 10 days. However, in 10 to 15% of children under the age of 5 or in the elderly, E. coli O157:H7 infections can develop into diarrhea-associated hemolytic uremic syndrome (HUS), a serious, life-threatening complication (22, 26, 28, 31). HUS is associated with hemolytic anemia and thrombocytopenia as a result of the destruction of red blood cells and platelets, followed by acute renal failure. There are no effective therapies against HUS, and supportive therapies include dialysis and kidney transplantation. Thus, the best treatment for HUS is prevention or amelioration of the E. coli O157:H7 infection, as no protective therapies are presently available. Antibiotic therapy for treatment of E. coli O157:H7 infections does not shorten the infection period and, in fact, may increase the risk of developing HUS (34).The primary virulence factor for HUS is Shiga toxin 2 (Stx2), which is one of two antigenically distinct toxins produced by STEC. Stx2, like Stx1, consists of a single A subunit (32 kDa) linked to a ring of five B subunits (7 kDa) (18). The A subunit possesses RNA N-glycosidase activity, which cleaves a specific adenine residue in the 28S rRNA, resulting in the inhibition of protein synthesis. The B subunits are responsible for binding to the host cell receptor, globotriaosyl ceramide (Gb3; Galα[1-4]-Galβ[1-4]-Glcβ1-ceramide). The A subunit is cleaved as it is internalized through clathrin-dependent or independent endocytosis and translocated via the retrograde pathway to the cytosol where it inhibits protein synthesis (3, 4, 19).Therapies that inhibit cell binding, interfere with the intracellular transport of Stx2, or inhibit enzymatic activity are under development by several research groups. One of the most promising therapies is the use of Stx2-neutralizing human monoclonal antibodies, particularly those directed against the A subunit (13, 14). One of these antibodies, 5C12, was shown to protect mice and gnotobiotic piglets from the fatal complications of Stx2 (13, 24, 25). A recombinant 5C12 antibody also demonstrated similar protective activity in these two animal models (1). We have recently shown that 5C12 neutralizes the toxicity of Stx2 for HeLa cells by blocking the retrograde transport of the toxin to the cytosol where the A subunit inhibits protein synthesis (11). In the present study, we investigated the contribution of the Fc portion of 5C12 to its in vitro and in vivo toxin-neutralizing activity by evaluating the efficacies of the Fabs and F(ab′)2 fragments of 5C12 in the HeLa cell and mouse toxicity assays. Smaller antibody fragments are advantageous for clinical use because of their lower immunogenicity and production costs. A comparison of a human monoclonal antibody against the B subunit of Stx2 (5H8) and its Fab fragment was performed to determine if similar results are obtained. We also investigated the contribution of the Fc functions by comparing the in vitro and in vivo neutralizing activities of the recombinant 5C12 isotype variants (e.g., IgG1, IgG2, IgG3, and IgG4).  相似文献   

18.
Escherichia coli O157:H7 Shiga toxin 2 (Stx2), one of the causative agents of hemolytic-uremic syndrome, is toxic to endothelial cells, including primary cultured human umbilical vein endothelial cells (HUVEC). This sensitivity of cells to Stx2 can be increased with either lipopolysaccharide (LPS) or tumor necrosis factor alpha (TNF-α). The goal of the present study was to identify the intracellular signaling pathway(s) by which LPS and TNF-α sensitize HUVEC to the cytotoxic effects of Stx2. To identify these pathways, specific pharmacological inhibitors and small interfering RNAs were tested with cell viability endpoints. A time course and dose response experiment for HUVEC exposure to LPS and TNF-α showed that a relatively short exposure to either agonist was sufficient to sensitize the cells to Stx2 and that both agonists stimulated intracellular signaling pathways within a short time. Cell viability assays indicated that the p38 mitogen-activated protein kinase (MAPK) inhibitors SB202190 and SB203580 and the general protein synthesis inhibitor cycloheximide inhibited both the LPS and TNF-α sensitization of HUVEC to Stx2, while all other inhibitors tested did not inhibit this sensitization. Additionally, SB202190 reduced the cellular globotriaosylceramide content under LPS- and TNF-α-induced conditions. In conclusion, our results show that LPS and TNF-α induction of Stx2 sensitivity in HUVEC is mediated through a pathway that includes p38 MAPK. These results indicate that inhibition of p38 MAPK in endothelial cells may protect a host from the deleterious effects of Stx2.  相似文献   

19.
The life-threatening sequela of hemorrhagic colitis induced by Shiga toxins (Stx)-producing Escherichia coli (STEC) infections in humans is hemolytic uremic syndrome (HUS), the main cause of acute renal failure in early childhood. The key step in the pathogenesis of HUS is the appearance of Stx in the blood of infected patients because these powerful virulence factors are capable of inducing severe microangiopathic lesions in the kidney. During precocious toxemia, which occurs in patients before the onset of HUS during the intestinal phase, Stx bind to several different circulating cells. An early response of these cells might include the release of proinflammatory mediators associated with the development of HUS. Here, we show that primary human monocytes stimulated with Shiga toxin 1a (Stx1a) through the glycolipid receptor globotriaosylceramide released larger amounts of proinflammatory molecules (IL-1β, TNFα, IL-6, G-CSF, CXCL8, CCL2, CCL4) than Stx1a-treated neutrophils. The mediators (except IL-1β) are among the top six proinflammatory mediators found in the sera from patients with HUS in different studies. The molecules appear to be involved in different pathogenetic steps of HUS, i.e. sensitization of renal endothelial cells to the toxin actions (IL-1β, TNFα), activation of circulating monocytes and neutrophils (CXCL8, CCL2, CCL4) and increase in neutrophil counts in patients with poor prognosis (G-CSF). Hence, a role of circulating monocytes in the very early phases of the pathogenetic process culminating with HUS can be envisaged. Impairment of the events of precocious toxemia would prevent or reduce the risk of HUS in STEC-infected children.  相似文献   

20.
Previously, our laboratories reported that zinc inhibited expression of several important virulence factors in enteropathogenic Escherichia coli (EPEC) and reduced EPEC-induced intestinal damage in vivo. Since EPEC is genetically related to Shiga-toxigenic E. coli (STEC), we wondered whether the beneficial effects of zinc extended to STEC as well. Treatment options for STEC infection are very limited, since antibiotics tend to exacerbate disease via enhanced toxin production, so a safe intervention for this infection would be welcome. In this study, we report that in STEC strains zinc inhibits adherence to cultured cells as well as expression of EHEC secreted protein A (EspA). In addition, zinc inhibits the expression of Shiga toxin (Stx) at both the protein and the RNA level. Zinc inhibits basal and antibiotic-induced Stx production and inhibits both Stx1 and Stx2 by ≥90% at a concentration of 0.4 mM zinc. Rabbit EPEC strains were selected for acquisition of Stx-encoding bacteriophages, and these rabbit STEC strains (designated RDEC-H19A and E22-stx2) were used to test the effects of zinc in vivo in ligated rabbit intestinal loops. In vivo, zinc reduced fluid secretion into loops, inhibited mucosal adherence, reduced the amount of toxin in the loops, and reduced STEC-induced histological damage (villus blunting). Zinc has beneficial inhibitory effects against STEC strains that parallel those observed in EPEC. In addition, zinc strongly inhibits Stx expression; since Stx is responsible for the extraintestinal effects of STEC infection, such as hemolytic-uremic syndrome (HUS), zinc might be capable of preventing severe sequelae of STEC infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号