首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The history of studies regarding reactive oxygen and nitrogen species (ROS/RNS) is approximatively of 50 years. ROS were shown initially for their deleterious effects on marcormolecules such as DNA and proteins, leading to deterioration of cellular functions as an oxidative stress. On the other hand, recent studies have demonstrated that ROS/RNS act as oxidative signalling in cells, resulting in various gene expressions. This brief review focuses on the main cellular origins of ERO/ERN, such as mitochondrial respiratory chain, NAD(P)H oxidase and NO synthases, and describe the modulation by the reactive species of two major signal transduction pathways, NF-KB and AP-1 pathways.  相似文献   

2.
Oxygen-free radicals, more generally known as reactive oxygen species (ROS) along with nitrogen species (RNS) are well recognised for playing a dual role both deleterious and beneficial species. The cumulative generation of ROS/RNS through either endogenous or exogenous insults is termed oxidative stress and is common for many types of diseases that are linked with altered redox regulation of cellular signalling pathways.  相似文献   

3.
Reactive oxygen species (ROS) is the common name used to describe the partially reduced forms of molecular oxygen that may be generated in cells during oxidative metabolism. They are normally considered to be toxic, and cells possess various defence systems to protect themselves including antioxidant enzymes and low molecular weight antioxidants like vitamin C and vitamin E. However, it is now clear that small amounts of ROS also act as messenger molecules in cell signal transduction pathways; the plasma membrane of eukaryotic cells in particular contains a variety of different ROS-producing oxidases and reductases, of which the best characterized are the superoxide-producing NADPH oxidases. It has been known for many years that membrane redox activity can be changed rapidly by various hormones and growth factors, but the molecular mechanisms involved and the physiological importance of this phenomenon have only recently begun to be unveiled. This review summarizes the state of the art on plasma membrane-based ROS signalling in the pathways of insulin, steroid and thyroid hormones and growth factors. The apparent paradox of ROS being essential biomolecules in the regulation of cellular functions, but also toxic by-products of metabolism, may be important for the pharmacological application of natural and synthetic antioxidants.  相似文献   

4.
Montero AJ  Jassem J 《Drugs》2011,71(11):1385-1396
The vulnerability of some cancer cells to oxidative signals is a therapeutic target for the rational design of new anticancer agents. In addition to their well characterized effects on cell division, many cytotoxic anticancer agents can induce oxidative stress by modulating levels of reactive oxygen species (ROS) such as the superoxide anion radical, hydrogen peroxide and hydroxyl radicals. Tumour cells are particularly sensitive to oxidative stress as they typically have persistently higher levels of ROS than normal cells due to the dysregulation of redox balance that develops in cancer cells in response to increased intracellular production of ROS or depletion of antioxidant proteins. In addition, excess ROS levels potentially contribute to oncogenesis by the mediation of oxidative DNA damage. There are several anticancer agents in development that target cellular redox regulation. The overall cellular redox state is regulated by three systems that modulate cellular redox status by counteracting free radicals and ROS, or by reversing the formation of disulfides; two of these are dependent on glutathione and the third on thioredoxin. Drugs targeting S-glutathionylation have direct anticancer effects via cell signalling pathways and inhibition of DNA repair, and have an impact on a wide range of signalling pathways. Of these agents, NOV-002 and canfosfamide have been assessed in phase III trials, while a number of others are undergoing evaluation in early phase clinical trials. Alternatively, agents including PX-12, dimesna and motexafin gadolinium are being developed to target thioredoxin, which is overexpressed in many human tumours, and this overexpression is associated with aggressive tumour growth and poorer clinical outcomes. Finally, arsenic derivatives have demonstrated antitumour activity including antiproliferative and apoptogenic effects on cancer cells by pro-oxidant mechanisms, and the induction of high levels of oxidative stress and apoptosis by an as yet undefined mechanism. In this article we review anticancer drugs currently in development that target cellular redox activity to treat cancer.  相似文献   

5.
6.
ROS are diverse and abundant in biological systems. While excessive ROS production clearly damages DNA, low levels of ROS affect cell signaling particularly at the level of redox modulation. Moreover, the specific contributions of ROS to apoptosis and mitogenesis in maintenance of cell number homeostasis remains to be elucidated. ROS dose is a critical parameter in determining the ultimate cellular response; however the shape of the dose response curve is unpredictable. When cells are stimulated with ROS, cell-signaling cascades are activated. It appears that the cellular redox potential is an important determinant of cell function and interruption of redox balance may adversely affect cell function. As a result, compounds such as antioxidants may intercept critical ROS signaling molecules and both protect cells and foster pathogenesis. As a result, further study is needed to unravel the role of ROS in redox regulation and the potential outcome of antioxidant administration on cellular responses.  相似文献   

7.
Day RM  Suzuki YJ 《Dose-response》2005,3(3):425-442
A variety of cellular activities, including metabolism, growth, and death, are regulated and modulated by the redox status of the environment. A biphasic effect has been demonstrated on cellular proliferation with reactive oxygen species (ROS)-especially hydrogen peroxide and superoxide-in which low levels (usually submicromolar concentrations) induce growth but higher concentrations (usually >10-30 micromolar) induce apoptosis or necrosis. This phenomenon has been demonstrated for primary, immortalized and transformed cell types. However, the mechanism of the proliferative response to low levels of ROS is not well understood. Much of the work examining the signal transduction by ROS, including H(2)O(2), has been performed using doses in the lethal range. Although use of higher ROS doses have allowed the identification of important signal transduction pathways, these pathways may be activated by cells only in association with ROS-induced apoptosis and necrosis, and may not utilize the same pathways activated by lower doses of ROS associated with increased cell growth. Recent data has shown that low levels of exogenous H(2)O(2) up-regulate intracellular glutathione and activate the DNA binding activity toward antioxidant response element. The modulation of the cellular redox environment, through the regulation of cellular glutathione levels, may be a part of the hormetic effect shown by ROS on cell growth.  相似文献   

8.
9.
1. Reactive oxygen species (ROS) are a diverse family of molecules that are produced throughout the vascular wall. Many ROS, such as the superoxide anion (*O2-) and hydrogen peroxide (H2O2), are now known to act as cellular signalling molecules within blood vessels. In particular, these molecules can exert powerful effects on vascular tone. 2. Cerebral arteries are relatively unusual in their responsiveness to ROS. Unlike in many systemic vessels, both *O2- and H2O2 can cause vasodilatation in the cerebral microcirculation. 3. Reactive oxygen species can be produced in the vasculature via a variety of mechanisms; however, it appears that the primary source of *O2- within blood vessels is the enzyme NADPH-oxidase. 4. In cerebral vessels, activation of NADPH-oxidase causes both *O2- production and vasodilatation, indicating that NADPH-oxidase-derived ROS may have a functional role in the regulation of cerebral vascular tone. 5. Elevated levels of NADPH-oxidase activity and expression occur in cardiovascular disease states such as hypertension, atherosclerosis and subarachnoid haemorrhage. 6. Thus, ROS may contribute to the regulation of cerebral vascular tone during both physiological and pathological conditions.  相似文献   

10.
The overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is a common underlying mechanism of many neuropathologies, as they have been shown to damage various cellular components, including proteins, lipids and DNA. Free radicals, especially superoxide (O(2)*-), and non-radicals, such as hydrogen peroxide (H(2)O(2)), can be generated in quantities large enough to overwhelm endogenous protective enzyme systems, such as superoxide dismutase (SOD) and reduced glutathione (GSH). Here we review the mechanisms of ROS and RNS production, and their roles in ischemia, traumatic brain injury and aging. In particular, we discuss several acute and chronic pharmacological therapies that have been extensively studied in order to reduce ROS/RNS loads in cells and the subsequent oxidative stress, so-called "free-radical scavengers." Although the overall aim has been to counteract the detrimental effects of ROS/RNS in these pathologies, success has been limited, especially in human clinical studies. This review highlights some of the recent successes and failures in animal and human studies by attempting to link a compound's chemical structure with its efficacy as a free radical scavenger. In particular, we demonstrate how antioxidants derived from natural products, as well as long-term dietary alterations, may prove to be effective scavengers of ROS and RNS.  相似文献   

11.
12.
The immature and adult brain display clear differences in the way they respond to insults. The effects of prenatal irradiation on the developing brain are well known. Both epidemiological and experimental data indicate that ionizing radiation may disrupt developmental processes leading to deleterious effects on post-natal brain functions. A central role of reactive oxygen and nitrogen species (ROS/RNS) as important mediators in both neurotoxicity and neuroprotection has been demonstrated. However, data concerning the role of ROS/RNS in radiation-induced damage in the developing brain are scarce. The goal of this review was to summarize the current studies concerning the role of nitric oxide and its reactive intermediates in activation of signal transduction pathways involved in cellular radiation response, with particular focus on radiation-induced effects in the developing brain.  相似文献   

13.
Cancer cells are characterized by an increase in the rate of reactive oxygen species (ROS) production and an altered redox environment compared to normal cells. Furthermore, redox regulation and redox signaling play a key role in tumorigenesis and in the response to cancer therapeutics. ROS have contradictory roles in tumorigenesis, which has important implications for the development of potential anticancer therapies that aim to modulate cellular redox levels. ROS play a causal role in tumor development and progression by inducing DNA mutations, genomic instability, and aberrant pro-tumorigenic signaling. On the other hand, high levels of ROS can also be toxic to cancer cells and can potentially induce cell death. To balance the state of oxidative stress, cancer cells increase their antioxidant capacity, which strongly suggests that high ROS levels have the potential to actually block tumorigenesis. This fact makes pro-oxidant cancer therapy an interesting area of study. In this review, we discuss the controversial role of ROS in tumorigenesis and especially elaborate on the advantages of targeting ROS scavengers, hence the antioxidant capacity of cancer cells, and how this can be utilized for cancer therapeutics.  相似文献   

14.
Thioredoxin (Trx) is a small multifunctional protein with a redox active dithiol/disulfide in the active-site sequence Cys-Gly-Pro-Cys. Trx functions as a key molecule in the maintenance of cellular redox balance. In addition to the cytoprotective action against oxidative stresses, Trx is involved in various cellular processes including gene expression, signal transduction, proliferation and apoptosis. Recently, various proteins sharing Trx-like active-site sequences have been found and classified as part of the Trx superfamily. Trx and these Trx-related molecules constitute a cellular redox regulation system, and further studies to clarify their biological functions will provide new therapeutic strategies for the disorders caused or complicated by oxidative stresses. (c) 2002 Prous Science. All rights reserved.  相似文献   

15.
The ability to target and accumulate monocytes and macrophages in areas of tissue inflammation plays an important role in innate and humoral immunity. However, when this process becomes uncontrolled, tissue injury and dysfunction may ensue. This paper will focus on understanding the role and action of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in regulating the molecular and biochemical pathways responsible for the regulation of the survival of human monocytes. We and others have found that ROS and RNS serve as important intracellular signaling molecules that influence cellular survival. Human monocytes are influenced by intracellular production of ROS and RNS, which affects both monocyte survival and death, depending on the form of nitric oxide presented to the cell. This review will address potential mechanisms by which ROS and RNS promote the survival of human monocytes and macrophages.  相似文献   

16.
In health and disease, physiological homeostasis depends on the ability of cells to respond to the environment and other cells. Communications between cells are mediated by a variety of chemical signals such as hormones, growth factors, neurotransmitters or electric signals [1]. Although chemical signalling occurs by a number of different mechanisms, signalling molecules can be classified into two general types according to their ability to permeate the plasma membrane. While hydrophobic hormones easily penetrate the lipid bilayer and directly act on intracellular or nuclear receptors, cell impermeant, hydrophilic molecules bind to cell surface receptors embedded in the lipid bilayer and thus generate second messengers that transmit the extracellular signal to the intracellular compartment. In many different cell types, this latter process, referred to as trans-membrane signalling or signal transduction, is mediated by protein phosphorylation cascades, ion fluxes, as well as changes in the levels of phospholipid breakdown products including diacylglycerol and myo-inositol containing second messengers [2]. Misregulation of inositol signalling pathways has been implicated in a variety of diseases, including hypertension, diabetes and neuronal disorders, prompting the development of pharmacological agents that re-establish normal inositol signalling. Here, we review the patent literature surrounding small molecule inositol derivatives and discuss the challenges that remain before therapeutic applications become practical.  相似文献   

17.
The interaction of extremely low frequency (ELF) magnetic fields (MF) with cells can induce alterations in various cell physiological processes. Here, we present evidence that exposure of mouse macrophages to 50 Hz, 1.0 mT MF lead to immune cell activation seen as increased production of reactive oxygen species (ROS), and also to modulation on the expression level of important proteins acting in redox regulatory processes and thus explaining the noted changes in ROS levels seen after exposure. The MF exposure caused slight and transient decreases after short term exposures (2 h or less) of clathrin, adaptin, PI3-kinase, protein kinase B (PKB) and PP2A, whereas longer exposures had no effect. The levels of the NAD(P)H oxidase subunit gp91phox oscillated between increased and normal levels compared to controls. The stress proteins Hsp70 and Hsp110 exhibited increased levels at certain time points, but not generally. The effects of MF on protein levels are different from the effects exerted by 12-O-tetradecanolyphobol-13-acetate (TPA) or LPS, although all three factors cause increases in ROS release. This suggests that ELF MF interacts with other cellular constituents than these chemicals, although induced pathways at least partially converge.  相似文献   

18.
Increased generation of reactive oxygen species (ROS) has been observed in cancer, degenerative diseases, and other pathological conditions. ROS can stimulate cell proliferation, promote genetic instability, and induce adaptive responses that enable cancer cells to maintain their malignant phenotypes. However, when cellular redox balance is severely disturbed, high levels of ROS may cause various damages leading to cell death. The studies of ROS effects on biological systems, their underlying mechanisms and therapeutic implications largely depend on proper experimental models. Here we review several in vitro and in vivo models for ROS research.  相似文献   

19.
There is extensive evidence that the restoration of blood flow following cerebral ischemia contributes greatly to the pathophysiology of ischemia mediated brain injury. The initiating stimulus of reperfusion injury is believed to be the excessive production of reactive oxygen (ROS) and nitrogen (RNS) species by the mitochondria. ROS and RNS generation leads to mitochondrial protein, lipid and DNA oxidation which impedes normal mitochondrial physiology and initiates cellular death pathways. However not all ROS and RNS production is detrimental. It has been demonstrated that low levels of ROS production are protective and may serve as a trigger for activation of ischemic preconditioning. Ischemic preconditioning is a neuroprotective mechanism which is activated upon a brief sublethal ischemic exposure and is sufficient to provide protection against a subsequent lethal ischemic insult. Numerous proteins and signaling pathways have been implicated in the ischemic preconditioning neuroprotective response. In this review we examine the origin and mechanisms of ROS and RNS production following ischemic/reperfusion and the role of free radicals in modulating proteins associated with ischemic preconditioning neuroprotection.  相似文献   

20.
Role of quinones in toxicology   总被引:23,自引:0,他引:23  
Quinones represent a class of toxicological intermediates which can create a variety of hazardous effects in vivo, including acute cytotoxicity, immunotoxicity, and carcinogenesis. The mechanisms by which quinones cause these effects can be quite complex. Quinones are Michael acceptors, and cellular damage can occur through alkylation of crucial cellular proteins and/or DNA. Alternatively, quinones are highly redox active molecules which can redox cycle with their semiquinone radicals, leading to formation of reactive oxygen species (ROS), including superoxide, hydrogen peroxide, and ultimately the hydroxyl radical. Production of ROS can cause severe oxidative stress within cells through the formation of oxidized cellular macromolecules, including lipids, proteins, and DNA. Formation of oxidatively damaged bases such as 8-oxodeoxyguanosine has been associated with aging and carcinogenesis. Furthermore, ROS can activate a number of signaling pathways, including protein kinase C and RAS. This review explores the varied cytotoxic effects of quinones using specific examples, including quinones produced from benzene, polycyclic aromatic hydrocarbons, estrogens, and catecholamines. The evidence strongly suggests that the numerous mechanisms of quinone toxicity (i.e., alkylation vs oxidative stress) can be correlated with the known pathology of the parent compound(s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号