首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human-induced deforestation and soil erosion were environmental stressors for the ancient Maya of Mesoamerica. Furthermore, intense, periodic droughts during the Terminal Classic Period, ca. Common Era 830 to 950, have been documented from lake sediment cores and speleothems. Today, lakes worldwide that are surrounded by dense human settlement and intense riparian land use often develop algae/cyanobacteria blooms that can compromise water quality by depleting oxygen and producing toxins. Such environmental impacts have rarely been explored in the context of ancient Maya settlement. We measured nutrients, biomarkers for cyanobacteria, and the cyanotoxin microcystin in a sediment core from Lake Amatitlán, highland Guatemala, which spans the last ∼2,100 y. The lake is currently hypereutrophic and characterized by high cyanotoxin concentrations from persistent blooms of the cyanobacterium Microcystis aeruginosa. Our paleolimnological data show that harmful cyanobacteria blooms and cyanotoxin production occurred during periods of ancient Maya occupation. Highest prehistoric concentrations of cyanotoxins in the sediment coincided with alterations of the water system in the Maya city of Kaminaljuyú, and changes in nutrient stoichiometry and maximum cyanobacteria abundance were coeval with times of greatest ancient human populations in the watershed. These prehistoric episodes of cyanobacteria proliferation and cyanotoxin production rivaled modern conditions in the lake, with respect to both bloom magnitude and toxicity. This suggests that pre-Columbian Maya occupation of the Lake Amatitlán watershed negatively impacted water potability. Prehistoric cultural eutrophication indicates that human-driven nutrient enrichment of water bodies is not an exclusively modern phenomenon and may well have been a stressor for the ancient Maya.

Dense populations of algae and cyanobacteria, called harmful algal blooms (HABs), are global environmental phenomena that are increasing in frequency and magnitude (1, 2). HABs negatively impact ecosystem processes and can lead to water column hypoxia/anoxia, alter aquatic communities, and reduce biodiversity (3, 4). Furthermore, some cyanobacteria release toxins into the environment. Cyanotoxins are metabolites that are capable of affecting the health of humans and other animals through poisoning, oxidative stress, and bioaccumulation (5, 6). Ecological drivers of HABs and cyanotoxin production include climate change [i.e., warmer temperatures (4, 7)] and cultural eutrophication [i.e., excessive urban or agricultural nutrient inputs (1, 2, 8)]. Prevention and mitigation of HABs and cyanotoxin production are of tremendous concern and are receiving considerable attention (911). Few studies, however, have investigated whether ancient human populations caused or were affected by toxic algal blooms (12, 13). One ancient society, known to have achieved high population densities and caused profound land cover changes, was the Maya of Mesoamerica.Maya culture first arose >3,000 y ago and experienced a florescence during the Classic Period, from ca. Common Era (CE) 250 to 900 (14). Classic Maya cities of the Mesoamerican lowlands were densely populated, and urban centers relied on intensive agricultural practices, which were associated with environmental impacts such as deforestation (15) and soil erosion (1618). In the past few decades, evidence of profound climate changes during the period of Maya occupation has emerged, and ancient droughts in the Maya region were shown to have been temporally correlated with times of sociopolitical disintegration (1924). Whereas these multiple environmental stressors probably affected ancient Maya society, individually and/or in concert, far less attention has been directed at exploring ancient, human-mediated changes in water quality. A few studies, however, have shown the importance of water characteristics to the ancient Maya (25) and documented water quality changes in Yucatán and Belize during the Classic Period (26, 27). A recent study that conducted 16S ribosomal rRNA amplicon sequencing on sediments from reservoirs at the ancient Maya city of Tikal (Guatemala) showed that two cyanobacteria genera capable of producing toxins, Planktothrix and Microcystis, were present at the site (28). Cyanotoxin measurements, however, were not undertaken. Concentrations of photosynthetic pigments (29, 30) and cyanotoxins (31, 32) can, however, be measured in lake sediments, making it possible to infer the magnitude of past HABs and their toxin production through time.The Lake Amatitlán watershed in highland Guatemala (Fig. 1) hosted the pre-Columbian Maya city of Kaminaljuyú, a major urban center during the Preclassic and Classic Periods, with ancient population numbers that rivaled urban centers in the Maya Lowlands (33). Whereas highland Maya areas have received less attention than lowland sites, with respect to past human demography, environmental degradation, and the Terminal Classic “collapse,” the Valley of Guatemala was home to dense Maya populations and subject to land use intensification, extensive agriculture, and changes in water quantity, similar to the lowlands (3436). Today, Lake Amatitlán is hypereutrophic, with persistent, dense HABs, low water clarity (Secchi depths 0.1 to 0.8 m) (37), and high concentrations of the cyanotoxin microcystin, with mean values of 90 µg ⋅ L−1 (extracellular) and 1,931 µg ⋅ L−1 (intracellular) (38), the latter prone to settling out of the water column and accumulating in the lake sediments. The World Health Organization provisional guideline value for microcystin-LR concentration in inland waters is 1 µg ⋅ L−1 (39). Lake Amatitlán hydrology is largely dominated by inputs from the Villalobos River, which drains a substantial portion of the Valley of Guatemala watershed (Fig. 1). Water is also delivered to the lake by direct rainfall, overland drilling, and discharge from small streams, but these hydrologic inputs are small compared with inflow from the Villalobos River.Open in a separate windowFig. 1.Map of the Valley of Guatemala, showing the location of Lake Amatitlán. The blue area is the lake watershed, and the pink area is the modern metropolitan area of Guatemala City. The brown box shows the location of the ancient Maya site of Kaminaljuyú, and the red dot in the lake indicates the sediment coring site. Insert A shows the location of the Guatemala highlands in Central America. Inserts B, C, and D show cyanobacteria blooms in the lake. Photographs used with permission from the National Geographic Society.We conducted a paleolimnological study, using a sediment core from Lake Amatitlán, to address two research questions: 1) did Lake Amatitlán experience HABs and cyanotoxin production during the period of ancient Maya occupation? and 2) if so, how closely did water quality degradation track documented human occupation in the catchment? We collected a 550-cm sediment core in 2019 from a site in the lake where cores for previous paleolimnological studies have been obtained (36, 40). Core chronology was established using 10 accelerator mass spectrometry radiocarbon (AMS 14C) dates and Bayesian statistics, which showed that we had retrieved a ∼2,100-y record of continuous sediment accumulation that extends from the Maya Late Preclassic Period to present. We measured concentrations of nutrients (organic carbon, total nitrogen, total phosphorus, and total sulfur), photosynthetic pigments, and cyanotoxins (total microcystins) in samples throughout the core.  相似文献   

2.
A simple electrochemically mediated method for the conversion of alkyl carboxylic acids to their borylated congeners is presented. This protocol features an undivided cell setup with inexpensive carbon-based electrodes and exhibits a broad substrate scope and scalability in both flow and batch reactors. The use of this method in challenging contexts is exemplified with a modular formal synthesis of jawsamycin, a natural product harboring five cyclopropane rings.

Boronic acids are among the most malleable functional groups in organic chemistry as they can be converted into almost any other functionality (13). Aside from these versatile interconversions, their use in the pharmaceutical industry is gaining traction, resulting in approved drugs such as Velcade, Ninlaro, and Vabomere (4). It has been shown that boronic acids can be rapidly installed from simple alkyl halides (519) or alkyl carboxylic acids through the intermediacy of redox-active esters (RAEs) (Fig. 1A) (2024). Our laboratory has shown that both Ni (20) and Cu (21) can facilitate this reaction. Conversely, Aggarwal and coworkers (22) and Li and coworkers (23) demonstrated photochemical variations of the same transformation. While these state-of-the-art approaches provide complementary access to alkyl boronic acids, each one poses certain challenges. For example, the requirement of excess boron source and pyrophoric MeLi under Ni catalysis is not ideal. Although more cost-effective and operationally simple, Cu-catalyzed borylation conditions can be challenging on scale due to the heterogeneity resulting from the large excess of LiOH•H2O required. In addition to its limited scope, Li and coworkers’ protocol requires 4 equivalence of B2pin2 and an expensive Ir photocatalyst. The simplicity of Aggarwal and coworkers’ approach is appealing in this regard and represents an important precedent for the current study.Open in a separate windowFig. 1.(A) Prior approaches to access alkyl boronic esters from activated acids. (B) Inspiration for initiating SET events electrochemically to achieve borylation. (C) Summary of this work.At the heart of each method described above, the underlying mechanism relies on a single electron transfer (SET) event to promote decarboxylation and form an alkyl radical species. In parallel, the related borylation of aryl halides via a highly reactive aryl radical can also be promoted by SET. While numerous methods have demonstrated that light can trigger this mechanism (Fig. 1B) (16, 2531), simple electrochemical cathodic reduction can elicit the same outcome (3235). It was postulated that similar electrochemically driven reactivity could be translated to alkyl RAEs. The development of such a transformation would be highly enabling, as synthetic organic electrochemistry allows the direct addition or removal of electrons to a reaction, representing an incredibly efficient way to forge new bonds (3640). This disclosure reports a mild, scalable, and operationally simple electrochemical decarboxylative borylation (Fig. 1C) not reliant on transition metals or stoichiometric reductants. In addition to mechanistic studies of this interesting transformation, applications to a variety of alkyl RAEs, comparison to known decarboxylative borylation methods, and a formal synthesis of the polycyclopropane natural product jawsamycin [(–)-FR-900848] are presented.  相似文献   

3.
Aryl chlorides are among the most versatile synthetic precursors, and yet inexpensive and benign chlorination techniques to produce them are underdeveloped. We propose a process to generate aryl chlorides by chloro-group transfer from chlorophenol pollutants to arenes during their mineralization, catalyzed by Cu(NO3)2/NaNO3 under aerobic conditions. A wide range of arene substrates have been chlorinated using this process. Mechanistic studies show that the Cu catalyst acts in cooperation with NOx species generated from the decomposition of NaNO3 to regulate the formation of chlorine radicals that mediate the chlorination of arenes together with the mineralization of chlorophenol. The selective formation of aryl chlorides with the concomitant degradation of toxic chlorophenol pollutants represents a new approach in environmental pollutant detoxication. A reduction in the use of traditional chlorination reagents provides another (indirect) benefit of this procedure.

Chlorophenols are widely encountered moieties present in herbicides, drugs, and pesticides (1). Owing to the high dissociation energies of carbon‒chloride bonds, chlorophenols biodegrade very slowly, and their prolonged exposure leads to severe ecological and environmental problems (Fig. 1A) (24). Several well-established technologies have been developed for the treating of chlorophenols, including catalytic oxidation (511), biodegradation (1215), solvent extraction (16, 17), and adsorption (1820) Among these methods, adsorption is the most versatile and widely used method due to its high removal efficiency and simple operation, but the resulting products are of no value, and consequently, these processes are not viable.Open in a separate windowFig. 1.Background and reaction design. (A) Examples of chlorophenol pollutants. (B) Examples of aryl chlorides. (C) The chlorination process reported herein was based on chloro-group transfer from chlorophenol pollutants.With the extensive application of substitution reactions (21, 22), transfunctionalizations (23, 24), and cross-coupling reactions (25, 26), aryl chlorides are regarded as one of the most important building blocks widely used in the manufacture of polymers, pharmaceuticals, and other types of chemicals and materials (Fig. 1B) (2731). Chlorination of arenes is usually carried out with toxic and corrosive reagents (3234). Less toxic and more selective chlorination reagents tend to be expensive [e.g., chloroamides (35, 36)] and are not atom economic (3739). Consequently, from the perspective of sustainability, the ability to transfer a chloro group from unwanted chlorophenols to other substrates would be advantageous.Catalytic isofunctional reactions, including transfer hydrogenation and alkene metathesis, have been widely exploited in organic synthesis. We hypothesized that chlorination of arenes also could be achieved by chloro-group transfer, and since stockpiles of chlorophenols tend to be destroyed by mineralization and chlorophenol pollutants may be concentrated by adsorption (1820), they could be valorized as chlorination reagents via transfer of the chloro group to arene substrates during their mineralization, thereby adding value to the destruction process (Fig. 1C). Although chlorophenol pollutants are not benign, their application as chlorination reagents, with their concomitant destruction to harmless compounds, may be considered as not only meeting the criteria of green chemistry but also potentially surpassing it. Herein, we describe a robust strategy to realize chloro-group transfer from chlorophenol pollutants to arenes and afford a wide range of value-added aryl chlorides.  相似文献   

4.
5.
Structural and dynamic features of RNA folding landscapes represent critical aspects of RNA function in the cell and are particularly central to riboswitch-mediated control of gene expression. Here, using single-molecule fluorescence energy transfer imaging, we explore the folding dynamics of the preQ1 class II riboswitch, an upstream mRNA element that regulates downstream encoded modification enzymes of queuosine biosynthesis. For reasons that are not presently understood, the classical pseudoknot fold of this system harbors an extra stem–loop structure within its 3′-terminal region immediately upstream of the Shine–Dalgarno sequence that contributes to formation of the ligand-bound state. By imaging ligand-dependent preQ1 riboswitch folding from multiple structural perspectives, we reveal that the extra stem–loop strongly influences pseudoknot dynamics in a manner that decreases its propensity to spontaneously fold and increases its responsiveness to ligand binding. We conclude that the extra stem–loop sensitizes this RNA to broaden the dynamic range of the ON/OFF regulatory switch.A variety of small metabolites have been found to regulate gene expression in bacteria, fungi, and plants via direct interactions with distinct mRNA folds (14). In this form of regulation, the target mRNA typically undergoes a structural change in response to metabolite binding (59). These mRNA elements have thus been termed “riboswitches” and generally include both a metabolite-sensitive aptamer subdomain and an expression platform. For riboswitches that regulate the process of translation, the expression platform minimally consists of a ribosomal recognition site [Shine–Dalgarno (SD)]. In the simplest form, the SD sequence overlaps with the metabolite-sensitive aptamer domain at its downstream end. Representative examples include the S-adenosylmethionine class II (SAM-II) (10) and the S-adenosylhomocysteine (SAH) riboswitches (11, 12), as well as prequeuosine class I (preQ1-I) and II (preQ1-II) riboswitches (13, 14). The secondary structures of these four short RNA families contain a pseudoknot fold that is central to their gene regulation capacity. Although the SAM-II and preQ1-I riboswitches fold into classical pseudoknots (15, 16), the conformations of the SAH (17) and preQ1-II counterparts are more complex and include a structural extension that contributes to the pseudoknot architecture (14). Importantly, the impact and evolutionary significance of these “extra” stem–loop elements on the function of the SAH and preQ1-II riboswitches remain unclear.PreQ1 riboswitches interact with the bacterial metabolite 7-aminomethyl-7-deazaguanine (preQ1), a precursor molecule in the biosynthetic pathway of queuosine, a modified base encountered at the wobble position of some transfer RNAs (14). The general biological significance of studying the preQ1-II system stems from the fact that this gene-regulatory element is found almost exclusively in the Streptococcaceae bacterial family. Moreover, the preQ1 metabolite is not generated in humans and has to be acquired from the environment (14). Correspondingly, the preQ1-II riboswitch represents a putative target for antibiotic intervention. Although preQ1 class I (preQ1-I) riboswitches have been extensively investigated (1828), preQ1 class II (preQ1-II) riboswitches have been largely overlooked despite the fact that a different mode of ligand binding has been postulated (14).The consensus sequence and the secondary structure model for the preQ1-II motif (COG4708 RNA) (Fig. 1A) comprise ∼80–100 nt (14). The minimal Streptococcus pneumoniae R6 aptamer domain sequence binds preQ1 with submicromolar affinity and consists of an RNA segment forming two stem–loops, P2 and P4, and a pseudoknot P3 (Fig. 1B). In-line probing studies suggest that the putative SD box (AGGAGA; Fig. 1) is sequestered by pseudoknot formation, which results in translational-dependent gene regulation of the downstream gene (14).Open in a separate windowFig. 1.PreQ1 class II riboswitch. (A) Chemical structure of 7-aminomethyl-7-deazaguanosine (preQ1); consensus sequence and secondary structure model for the COG4708 RNA motif (adapted from reference 14). Nucleoside presence and identity as indicated. (B) S. pneumoniae R6 preQ1-II RNA aptamer investigated in this study. (C) Schematics of an H-type pseudoknot with generally used nomenclature for comparison.Here, we investigated folding and ligand recognition of the S. pneumoniae R6 preQ1-II riboswitch, using complementary chemical, biochemical, and biophysical methods including selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE), mutational analysis experiments, 2-aminopurine fluorescence, and single-molecule fluorescence resonance energy transfer (smFRET) imaging. In so doing, we explored the structural and functional impact of the additional stem–loop element in the context of its otherwise “classical” H-type pseudoknot fold (2932) (Fig. 1C). Our results reveal that the unique 3′-stem–loop element in the preQ1-II riboswitch contributes to the process of SD sequestration, and thus the regulation of gene expression, by modulating both its intrinsic dynamics and its responsiveness to ligand binding.  相似文献   

6.
Our computational and experimental investigation of the reaction of anisole with Cl2 in nonpolar CCl4 solution challenges two fundamental tenets of the traditional SEAr (arenium ion) mechanism of aromatic electrophilic substitution. Instead of this direct substitution process, the alternative addition–elimination (AE) pathway is favored energetically. This AE mechanism rationalizes the preferred ortho and para substitution orientation of anisole easily. Moreover, neither the SEAr nor the AE mechanisms involve the formation of a σ-complex (Wheland-type) intermediate in the rate-controlling stage. Contrary to the conventional interpretations, the substitution (SEAr) mechanism proceeds concertedly via a single transition state. Experimental NMR investigations of the anisole chlorination reaction course at various temperatures reveal the formation of tetrachloro addition by-products and thus support the computed addition–elimination mechanism of anisole chlorination in nonpolar media. The important autocatalytic effect of the HCl reaction product was confirmed by spectroscopic (UV-visible) investigations and by HCl-augmented computational modeling.Interest in the chemistry of electrophilic aromatic substitution reactions continues because of their widespread application for the production of a great variety of chemicals and materials (14). Electrophilic substitution, considered to be the most characteristic reaction of aromatic systems, is typically described in textbooks, monographs, and reviews by the two-stage SEAr mechanism depicted in Fig. 1 (511). Arenium ion (σ-complex) intermediates are often ascribed to Wheland (9) inaccurately, since Pfeiffer and Wizinger (10) laid out the principles of such species for bromination in 1928. Following Brown and Pearsall (11), they are widely believed to have σ-complex structures. Arenium ions (σ-complexes) (911) are widely accepted to be obligatory intermediates and are used to rationalize ortho/para vs. meta position orientation preferences (611).Open in a separate windowFig. 1.Typical depiction of the arenium ion mechanism for SEAr reactions.We now reinforce our challenges (12, 13) of this conventional “reaction mechanism paradigm” (14) by a combined computational and experimental study of the facile chlorination of anisole (methoxybenzene) with Cl2 in CCl4 solution (15, 16). We find that Fig. 1 is not the favored pathway. Instead, addition reactions of Cl2 to anisole have the lowest activation energies (Fig. 2). Ready HCl elimination from the initially formed adducts leads to ortho- and para-chloroanisole as the predominate products. This addition–elimination (AE) mechanism (the historical antecedent to Fig. 1) (1726) predicts the same positional orientation as the usually assumed direct substitution (“SEAr”) alternative. Instead of this classic SEAr mechanism (Fig. 1), we find that direct concerted substitution, not involving an arenium ion, σ-complex (“Wheland”) (911) intermediate, competes energetically with the AE route. Like some earlier computational studies on aromatic substitution (12, 13, 27, 28) (Rzepa H, www.ch.imperial.ac.uk/rzepa/blog/?p=2423, accessed March 10, 2013), our study finds no such intermediates in the direct substitution of anisole by Cl2. A concerted mechanism without an arenium ion intermediate was computed at some levels for the related arene nitrosation, but reaction medium and counter ion effects were not considered. Gwaltney et al. (28) reported a single concerted transition state after reoptimizing all saddle points at CCSD(T)/6-31G(d,p) and modeling bulk solvation by the Onsager approximation, and Rzepa (www.ch.imperial.ac.uk/rzepa/blog/?p=2423, accessed March 10, 2013) also found a concerted transition state including a trifluoroacetate counterion. Instead, one-step reactions via single transition states take place (Fig. 2). Our experimental investigations of the chlorination of anisole in CCl4 solution revealed tetrachloro by-products, which must have arisen by further reaction of intermediate dichloro-adducts. Both our UV-visible (UV-VIS) spectroscopic investigation and our theoretical modeling of this reaction clearly verified the autocatalytic effect of the HCl by-product, in harmony with Andrews and Keefer’s (29, 30) early experimental kinetic studies of the chlorination of arenes, which found that HCl reduces the activation barriers significantly.Open in a separate windowFig. 2.The HCl-catalyzed concerted and addition–elimination pathways of para-chlorination of anisole in nonpolar media.We also applied reliable theoretical methods to model a typical experimental example of the highly investigated SEAr electrophilic aromatic halogenations, the electrophilic chlorination of anisole by molecular chlorine in simulated CCl4 solution (15, 16). Although the elucidation of the classic SEAr mechanism [Fig. 1, involving the initial formation of a π-complex, followed by a transition state leading to a σ-complex (arenium) intermediate in the rate-controlling stage, and, finally, proton loss from the ipso-position leading to the reaction product] is considered to be a triumph of physical organic chemistry (1, 3137), an alternative addition–elimination pathway leading to substitution products has been discussed since the 19th century (1926, 38, 39). Nevertheless, it is commonly believed that the classic multistep SEAr mechanism involving the formation of a σ-complex intermediate in the rate-controlling stage is the only mechanistic route to aromatic substitution products. Our present and previous (12, 13) results challenge the generality of such traditional interpretations. Although the initial stages of the alternative AE route seem unattractive because aromaticity is lost, many arenes are known experimentally to give addition products in considerable amounts (1926, 38, 39). Thus, de la Mare (21, 25, 38, 39) demonstrated the formation of halogen adduct intermediates. Polybenzenoid hydrocarbons (PBHs) react with halogens to give isolable addition products, which then give substitution products easily by hydrogen halide elimination (23). Our computational investigations of arene bromination with molecular bromine (12) and sulfonation with SO3 (13) provided clear evidence that the mechanisms of the inherent substitution reactions (i.e., uncatalyzed, gas phase, or weakly solvated) are concerted and do not involve the conventional σ-complex (or any other) intermediates. Moreover, the energetics of the bromination processes document the significance of competition between AE and direct substitution mechanisms leading to the same substitution products. Thus, the computed barrier in a simulated nonpolar (CCl4) medium is 4 kcal/mol lower for Br2 addition to benzene (followed by HBr elimination) than that for the direct substitution pathway to bromobenzene (12).Previous theoretical studies of electrophilic aromatic halogenation processes have been based on the classic SEAr mechanism, involving arenium ion intermediates (Fig. 1). Osamura et al.’s (40) Hartree-Fock computations of the AlCl3-catalyzed electrophilic aromatic chlorination mechanism found an initial π-complex, a transition state preceding the intermediate σ-complex, and a second transition state leading to final products. Aluminum chloride was important as a Lewis acid catalyst throughout the process. AlCl3 coordination polarizes Cl2 and thereby assists its reaction with the arene. Rasokha and Kochi (41) considered the interaction of Br2 with benzene and toluene in detail in their survey of theoretical and experimental data on the prereactive charge-transfer complexes in electrophilic aromatic substitutions. They argued that the structures and properties of the prereactive complexes provide important mechanistic insights for the SEAr reactions. Wei et al.’s (42) theoretical study of the iodination of anisole by iodine monochloride at the B3LYP/6-311G* and MP2//B3LYP/6-311G* levels (B3LYP, Becke''s three parameter hybrid functional, using the Lee-Yang-Parr correlation functional; MP2, second order Møller-Plesset perturbation theory computations) found that the highest energy transition state precedes the formation of an intermediate, which they interpreted to be a σ-complex. Instead, the structure of this complex represents a protonated iodobenzene. Volkov et al.’s MP2/LANL2DZ(d)+ study (43) of the chlorination of benzene established that dimers of group 13 metal halides catalyzed the processes more effectively. Optimized geometries of π- and σ-complexes as well as transition structures were reported. Theoretical investigations by Ben-Daniel et al. (44) and by Filimonov et al. (45) of the chlorination of benzene with Cl2 (and other related processes) reported structural details of transition states purported to lead to the chlorobenzene product. Our reinvestigations revealed errors in major suppositions of both these studies. Our IRC computations show clearly that the transition states in question lead to 1,2 Cl2–benzene addition products (rather than to chlorobenzene). Zhang and Lund (46) investigated the neat chlorination of toluene by Cl2 experimentally and theoretically at B3LYP/cc-pVTZ(-f) [cc-pVTZ(-f), correlation consistent polarized triple-zeta without f-functions basis set]. Although we verified their reported geometry of the concerted transition state (figure 6 in ref. 46), our stability check revealed that its wavefunction is unstable. This casts doubt on their conclusions because of the homolysis vs. heterolysis issues. In contrast, all wavefunctions in our paper were checked and all are stable. Most prior theoretical studies of SEAr halogenations did not consider the connections between transition states, intermediates, and products explicitly, as we have done.Experimental findings not always have been in accord with the prevailing mechanistic assumption for aromatic halogenation: that arenium ion formation is the rate-limiting step. Thus, Olah et al. (47), Kochi and coworkers (48), and Fukuzumi and Kochi (49) have emphasized that substrate and positional selectivity are inconsistent (e.g., low toluene/benzene reactivity ratios but high toluene orthopara vs. meta regiospecificity) for some electrophiles under certain conditions. This disparity indicates the existence of at least one other mechanistic pathway. It has been suggested that π-complexes may control product formation. Olah et al.’s (47) kinetics of the ferric chloride-catalyzed bromination of benzene and alkyl benzenes provided strong evidence for low substrate selectivity in the rate-determining step, which precedes the formation of a σ-complex intermediate (Fig. 1). High positional selectivity is governed by the transition state associated with the second step of the reaction.However, our earlier study (50) examined the possible participation of π-complexes in the key mechanistic steps of SEAr bromination reactions in detail but found no link between the energy of formation of these complexes and the overall reactivity. Although there is no doubt that π-complexes form easily (via essentially barrierless processes) in most SEAr reactions after mixing the electrophile and the aromatic substrate, it is unlikely that these low-energy “bystander” structures influence rates of SEAr reactions significantly. Thus, the lack of accord between substrate and positional selectivity, established by Olah et al. (47), Kochi and coworkers (48), and Fukuzumi and Kochi (49) may be due to other mechanistic differences. De la Mare and Bolton (21) and de la Mare (51) have stressed the plurality of aromatic substitution mechanisms, depending on the substrate and the conditions.Reactive substrates are known to undergo uncatalyzed aromatic substitution in nonpolar solvents at room temperature. Thus, our computational investigations modeled Watson’s careful experiments on the chlorination of anisole in CCl4 at 25 °C (15, 16). His low conversion (25%) conditions for chlorophenol permitted more accurate determination of the initial product ratios (and avoided further Cl2 additions to 4-chloroanisole, which ultimately gave 1,3,4,5,6-pentachloro-4-methoxycyclohexene). After introduction of gaseous Cl2 into a CCl4 solution of anisole for 1 h, the products were 4-chloroanisole (76%), 2-chloroanisole (13.6%), 2,6-dichloro anisole (2.1%), 2,4-dichloroanisole (3.0%), and 2,4,6-trichloroanisole (0.4%).Analogous chlorinations of phenol, 2-methylphenol, and 2-chlorophenol in CCl4 also have been carried out with high conversion rates at the reflux temperature (79 °C) (16). Chlorination of phenol with Cl2 in CCl4 has been reported by other groups (52, 53).  相似文献   

7.
Electrophilic aromatic substitution (EAS) reactions are widely regarded as characteristic reactions of aromatic species, but no comparable reaction has been reported for molecules with Craig-Möbius aromaticity. Here, we demonstrate successful EAS reactions of Craig-Möbius aromatics, osmapentalenes, and fused osmapentalenes. The highly reactive nature of osmapentalene makes it susceptible to electrophilic attack by halogens, thus osmapentalene, osmafuran-fused osmapentalene, and osmabenzene-fused osmapentalene can undergo typical EAS reactions. In addition, the selective formation of a series of halogen substituted metalla-aromatics via EAS reactions has revealed an unprecedented approach to otherwise elusive compounds such as the unsaturated cyclic chlorirenium ions. Density functional theory calculations were conducted to study the electronic effect on the regioselectivity of the EAS reactions.

Aromaticity, a core concept in chemistry, was initially introduced to account for the bonding, stability, reactivity, and other properties of many unsaturated organic compounds. There have been many elaborations and extensions of the concept of aromaticity (1, 2). The concepts of Hückel aromaticity and Möbius aromaticity are widely accepted (Fig. 1A). A π-aromatic molecule of the Hückel type is planar and has 4n + 2 conjugated π-electrons (n = 0 or an integer), whereas a Möbius aromatic molecule has one twist of the π-system, similar to that in a Möbius strip, and 4n π-electrons (3, 4). Since the discovery of naphthalene in 1821, aromatic chemistry has developed into a rich field and with a variety of subdisciplines over the course of its 200-y history, and the concept of aromaticity has been extended to other nontraditional structures with “cyclic delocalization of mobile electrons” (5). For example, benzene-like metallacycles—predicted by Hoffmann et al. as metallabenzenes—in which a metal replaces a C–H group in the benzene ring (6), have garnered extensive research interest from both experimentalists and theoreticians (712). As paradigms of the metalla-aromatic family, most complexes involving metallabenzene exhibit thermodynamic stability, kinetic persistence, and chemical reactivity associated with the classical aromaticity concept (1315). Typically, like benzene, metallabenzene can undergo characteristic reactions of aromatics such as electrophilic aromatic substitution (EAS) reactions (1618) (Fig. 1B, I) and nucleophilic aromatic substitution reactions (1921).Open in a separate windowFig. 1.Schematic representations of aromaticity classification (A) and EAS reactions (B) of benzene, metallabenzene, and polycyclic metallacycles with Craig-Möbius aromaticity.The incorporation of transition metals has also led to an increase in the variety of the aromatic families (2225). We have reported that stable and highly unusual bicyclic systems, metallapentalenes (osmapentalenes), benefit from Craig-Möbius aromaticity (2630). In contrast to other reported Möbius aromatic compounds with twisted topologies, which are known as Heilbronner-Möbius aromatics (3134), the involvement of transition metal d orbitals in π-conjugation switches the Hückel anti-aromaticity of pentalene into the planar Craig-Möbius aromaticity of metallapentalene (3538) (Fig. 1A, III). Both the twisted topology and the planar Craig-Möbius aromaticity are well established and have been accepted as reasonable extensions of aromaticity (3943). There has been no experimental evidence, however, as to whether these Möbius aromatic molecules can undergo classical aromatic substitution reactions, such as EAS reactions, instead of addition reactions. Given the key role of EAS in aromatic chemistry to obtain various derivatives, we sought to extend the understanding of the reactivity paradigm in the metalla-aromatic family.Our recent synthetic efforts associated with the metallapentalene system prompted us to investigate whether typical EAS reactions could proceed in these Craig-Möbius aromatics. If so, how could substitution be achieved in the same way that it is with traditional Hückel aromatics such as benzenes? In this paper, we present EAS reactions, mainly the halogenation of osmapentalene, osmafuran-fused osmapentalene, and osmabenzene-fused osmapentalene, which follow the classic EAS mechanistic scheme (Fig. 1B). With the aid of density functional theory (DFT) calculations, we characterized the effects on EAS reactivity and regioselectivity.  相似文献   

8.
Organic electrode materials have emerged as promising alternatives to conventional inorganic materials because of their structural diversity and environmental friendliness feature. However, their low energy densities, limited by the single-electron reaction per active group, have plagued the practical applications. Here, we report a nitroaromatic cathode that performs a six-electron reaction per nitro group, drastically improving the specific capacity and energy density compared with the organic electrodes based on single-electron reactions. Based on such a reaction mechanism, the organic cathode of 1,5-dinitronaphthalene demonstrates an ultrahigh specific capacity of 1,338 mAh⋅g−1 and energy density of 3,273 Wh⋅kg−1, which surpass all existing organic cathodes. The reaction path was verified as a conversion from nitro to amino groups. Our findings open up a pathway, in terms of battery chemistry, for ultrahigh-energy-density Li-organic batteries.

With the rapid development of social economy, the demand for high-energy-density storage systems is ever increasing, particularly in the fields of military, aerospace, medical, and civilian applications. Lithium-ion batteries (LIBs) have been extensively explored as high-energy-density storage devices (14). Commercial LIBs use crystalline transition metal oxide cathodes, such as LiCoO2, LiMnO2, and LiNixMnyCo1-x-yO2 (512). They store energy via insertion/extraction of Li ions, which highly depends on the crystal structure and limits their capacities and energy densities (<300 mAh⋅g−1 with energy density of <1,000 Wh⋅kg−1). Some new battery systems with conversion reaction cathodes, such as Li-S (2,600 Wh⋅kg−1) and Li-O2 (3,450 Wh⋅kg−1) batteries (1319), have been extensively investigated due to their high theoretical energy densities. However, they suffer from serious dissolution, interfacial stability, and/or side reaction issues, and the practical energy densities are much lower than their theoretical values.Compared with the aforementioned rechargeable batteries, lithium primary batteries can provide remarkably higher energy densities. For example, lithium-fluorinated carbon (Li-CFx) batteries use a CFx cathode that has a high theoretical energy density of 2,180 Wh⋅kg−1, which is the highest value among all commercial cathode materials in lithium batteries (2022). Recently, it is reported that, different from the formation of crystal LiF in liquid electrolytes, amorphous LiF was produced and uniformly distributed on the carbon matrix when a solid-state electrolyte was used (23). This may enable a reversible electrochemical reactivity of CFx with lithium and provide a possibility for high-energy-density batteries. Nevertheless, CFx must be synthesized in harsh conditions with precise control, leading to high cost and hindering the wide application (20). Some liquid and gas cathodes, such as SO2, SOCl2, and SF6 (2427), can also offer high energy densities, but they tend to be volatile and induce severe safety hazards, especially on the occasion of thermal runaway. Therefore, it is highly desired to develop feasible and reliable battery systems with high energy density.Organic electrode materials offer many merits compared with inorganic electrode materials, including structure diversity and designability, abundance of raw materials, relatively easy synthesis, and environmental friendliness (2835). Their energy storage processes rely on the uptake of cations or anions on the active groups, such as carbonyl group, quaternary nitrogen, and nitroxyl radical (3640). Most of them undergo one electron reaction, leading to limited specific capacity and energy density (Fig. 1). For example, one carbonyl group (C=O) can be converted into C-OLi structure via accepting one electron and one lithium ion (36), providing a theoretical specific capacity of 957 mAh⋅g−1 (based on the mass of functional group as marked by dashed circle in Fig. 1). If considering the inactive components, insulating property, and high solubility of organic molecules, most organic electrode materials exhibit inferior specific capacities. Although a high specific capacity of 902 mAh⋅g−1 was gained for cyclohexanehexone in LIBs, its high solubility induces significant challenges in practical applications (41). Recently, a Li-containing organic compound, dilithium 1,4-phenylenebis ((methylsulfonyl) amide) (Li2-p-PDSA) was synthesized, offering a new design for organic electrode materials, while it still follows the single-electron reaction path per electroactive group and shows a low specific capacity of 194 mAh⋅g−1 (42). Therefore, new battery system needs to be developed to take full advantage of organic electrode materials for high-energy-density LIBs.Open in a separate windowFig. 1.Reaction mechanisms of organic groups in batteries.In this work, we report a battery chemistry of six-electron reduction on nitro group (−NO2) of nitroaromatic cathode. Based on such a reaction, 1,5-dinitronaphthalene (1,5-DNN; Fig. 2A) as a cathode in LIBs achieves an ultrahigh specific capacity of 1,338 mAh⋅g−1 and energy density of 3,273 Wh⋅kg−1. This is a record for organic electrode materials, even higher than inorganic electrode materials. It is identified that nitro groups are reduced to amino groups through a six-electron transfer reaction via multiple characterization techniques. Our findings provide a path for achieving high-energy-density Li-organic batteries.Open in a separate windowFig. 2.Electrochemical performance of 1,5-DNN. (A) Chemical structure of 1,5-DNN. (B and C) Galvanostatic charge/discharge profiles of 1,5-DNN. (D) Performance comparison of 1,5-DNN with reported organic/inorganic electrode materials in terms of energy density, specific capacity and voltage. Cathodes for comparison (references): 1, p-DNB (43); 2, Li2C6O6 (49); 3, P14AQ (50); 4, PTO (51); 5, 3Q (31); 6, AQ (44); 7, C6O6 (41); 8, o-DNB (43); 9, m-DNB (43); 10, 4,5-PhenQ (51); 11, C4Q (52); 12, LiCoO2 (53); 13, LiFePO4 (54); 14, NCA (55); 15, NCM-811 (56); 16, Li-rich (57); 17, CFx (21); 18, MnO2 (58); 19 SOCl2 (59), 20 SO2 (24); 21, S (60).  相似文献   

9.
The El Niño−Southern Oscillation (ENSO) phenomenon, the most pronounced feature of internally generated climate variability, occurs on interannual timescales and impacts the global climate system through an interaction with the annual cycle. The tight coupling between ENSO and the annual cycle is particularly pronounced over the tropical Western Pacific. Here we show that this nonlinear interaction results in a frequency cascade in the atmospheric circulation, which is characterized by deterministic high-frequency variability on near-annual and subannual timescales. Through climate model experiments and observational analysis, it is documented that a substantial fraction of the anomalous Northwest Pacific anticyclone variability, which is the main atmospheric link between ENSO and the East Asian Monsoon system, can be explained by these interactions and is thus deterministic and potentially predictable.The El Niño−Southern Oscillation (ENSO) phenomenon is a coupled air−sea mode, and its irregular occurring extreme phases El Niño and La Niña alternate on timescales of several years (18). The global atmospheric response to the corresponding eastern tropical Pacific sea surface temperature (SST) anomalies (SSTA) causes large disruptions in weather, ecosystems, and human society (3, 5, 9).One of the main properties of ENSO is its synchronization with the annual cycle: El Niño events tend to grow during boreal summer and fall and terminate quite rapidly in late boreal winter (918). The underlying dynamics of this seasonal pacemaking can be understood in terms of the El Niño/annual cycle combination mode (C-mode) concept (19), which interprets the Western Pacific wind response during the growth and termination phase of El Niño events as a seasonally modulated interannual phenomenon. This response includes a weakening of the equatorial wind anomalies, which causes the rapid termination of El Niño events after boreal winter and thus contributes to the seasonal synchronization of ENSO (17). Mathematically, the modulation corresponds to a product between the interannual ENSO phenomenon (ENSO frequency: fE) and the annual cycle (annual frequency: 1 y-1), which generates near-annual frequencies at periods of  ~  10 mo (1 + fE) and  ~  15 mo (1 − fE) (19).In nature, a wide variety of nonlinear processes exist in the climate system. Atmospheric examples include convection and low-level moisture advection (19). An example for a quadratic nonlinearity is the dissipation of momentum in the planetary boundary layer, which includes a product between ENSO (E) and the annual cycle (A) due to the windspeed nonlinearity: vE⋅ vA (17, 19). In the frequency domain, this product results in the near-annual sum (1 + fE) and difference (1 − fE) tones (19). The commonly used Niño 3.4 (N3.4) SSTA index (details in SI Appendix, SI Materials and Methods) exhibits most power at interannual frequencies (Fig. 1A). In contrast, the near-annual combination tones (1 ± fE) are the defining characteristic of the C-mode (Fig. 1B).Open in a separate windowFig. 1.Schematic for the ENSO (E) and combination mode (ExA) anomalous surface circulation pattern and corresponding spectral characteristics. (A) Power spectral density for the normalized N3.4 index of the Hadley Centre Sea Ice and Sea Surface Temperature data set version 1 (HadISST1) 1958–2013 SSTA using the Welch method. (B) As in A but for the theoretical quadratic combination mode (ExA). (C) Regression coefficient of the normalized N3.4 index and the anomalous JRA-55 surface stream function for the same period (ENSO response pattern). (D) Regression coefficient of the normalized combination mode (ExA) index and the anomalous JRA-55 surface stream function (combination mode response pattern). Areas where the anomalous circulation regression coefficient is significant above the 95% confidence level are nonstippled.Physically, the dominant near-annual combination mode comprises a meridionally antisymmetric circulation pattern (Fig. 1D). It features a strong cyclonic circulation in the South Pacific Convergence Zone, with a much weaker counterpart cyclone in the Northern Hemisphere Central Pacific. The most pronounced feature of the C-mode circulation pattern is the anomalous low-level Northwest Pacific anticyclone (NWP-AC). This important large-scale atmospheric feature links ENSO impacts to the Asian Monsoon systems (2025) by shifting rainfall patterns (SI Appendix, Fig. S1B), and it drives sea level changes in the tropical Western Pacific that impact coastal systems (26). It has been demonstrated using spectral analysis methods and numerical model experiments that the C-mode is predominantly caused by nonlinear atmospheric interactions between ENSO and the warm pool annual cycle (19, 20). Local and remote thermodynamic air−sea coupling amplify the signal but are not the main drivers for the phase transition of the C-mode and its associated local phenomena (e.g., the NWP-AC) (20).Even though ENSO and the C-mode are not independent, their patterns and spectral characteristics are fundamentally different, which has important implications when assessing the amplitude and timing of their regional climate impacts (Fig. 1). Here we set out to study the role of nonlinear interactions between ENSO and the annual cycle (10) in the context of C-mode dynamics. Such nonlinearities can, in principle, generate a suite of higher-order combination modes, which would contribute to the high-frequency variability of the atmosphere—in a deterministic and predictable way.  相似文献   

10.
11.
The availability of plants and freshwater shapes the diets and social behavior of chimpanzees, our closest living relative. However, limited evidence about the spatial relationships shared between ancestral human (hominin) remains, edible resources, refuge, and freshwater leaves the influence of local resources on our species’ evolution open to debate. Exceptionally well-preserved organic geochemical fossils—biomarkers—preserved in a soil horizon resolve different plant communities at meter scales across a contiguous 25,000 m2 archaeological land surface at Olduvai Gorge from about 2 Ma. Biomarkers reveal hominins had access to aquatic plants and protective woods in a patchwork landscape, which included a spring-fed wetland near a woodland that both were surrounded by open grassland. Numerous cut-marked animal bones are located within the wooded area, and within meters of wetland vegetation delineated by biomarkers for ferns and sedges. Taken together, plant biomarkers, clustered bone debris, and hominin remains define a clear spatial pattern that places animal butchery amid the refuge of an isolated forest patch and near freshwater with diverse edible resources.Spatial patterns in archaeological remains provide a glimpse into the lives of our ancestors (15). Although many early hominin environments are interpreted as grassy or open woodlands (68), fossil bones and plant remains are rarely preserved together in the same settings. As a result, associated landscape reconstructions commonly lack coexisting fossil evidence for hominins and local-scale habitat (microhabitat) that defined the distribution of plant foods, refuge, and water (7). This problem is exacerbated by the discontinuous nature and low time resolution often available across ancient soil (paleosol) horizons, including hominin archaeological localities. One notable exception is well-time-correlated 1.8-million-y-old paleosol horizons exposed at Olduvai Gorge. Associated horizons contain exceptionally preserved plant biomarkers along with many artifacts and fossilized bones. Plant biomarkers, which previously revealed temporal patterns in vegetation and water (8), are well preserved in the paleosol horizon and document plant-type spatial distributions that provide an ecosystem context (9, 10) for resources that likely affected the diets and behavior of hominin inhabitants.Plant biomarkers are delivered by litter to soils and can distinguish plant functional type differences in standing biomass over scales of 1–1,000 m2 (11). Trees, grasses, and other terrestrial plants produce leaf waxes that include long-chain n-alkanes such as hentriacontane (nC31), whereas aquatic plants and phytoplankton produce midchain homologs (e.g., nC23) (12, 13). The ratio of shorter- versus long-chain n-alkane abundances distinguish relative organic matter inputs from aquatic versus terrestrial plants to sediments (13):Paq = (nC23nC25)/(nC23nC25nC29nC31).Sedges and ferns are prolific in many tropical ecosystems (14). These plants both have variable and therefore nondiagnostic n-alkane profiles. However, sedges produce distinctive phenolic compounds [e.g., 5-n-tricosylresorcinol (nR23)] and ferns produce distinctive midchain diols [e.g., 1,13-dotriacontanediol (C32-diol)] (SI Discussion).Lignin monomers provide evidence for woody and nonwoody plants. This refractory biopolymer occurs in both leaves and wood, serves as a structural tissue, and accounts for up to half of the total organic carbon in modern vegetation (11). Lignin is composed of three phenolic monomer types that show distinctive distributions in woody and herbaceous plant tissues. Woody tissues from dicotyledonous trees and shrubs contain syringyl (S) and vanillyl (V) phenols (12), whereas cinnamyl (C) phenols are exclusively found in herbaceous tissues (12). The relative abundance of C versus V phenols (C/V) is widely used to distinguish between woody and herbaceous inputs to sedimentary and soil organic matter (15).Plant biomarker 13C/12C ratios (expressed as δ13C values) are sensitive indicators of community composition, ecosystem structure, and climate conditions (8). Most woody plants and forbs in eastern Africa use C3 photosynthesis (6), whereas arid-adapted grasses use C4 photosynthesis (8, 14). These two pathways discriminate differently against 13C during photosynthesis, resulting in characteristic δ13C values for leaf waxes derived from C3 (about –36.0‰) and C4 (–21.0‰) plants (16). Carbon isotopic abundances of phenolic monomers of lignin amplify the C3–C4 difference and range between ca. –34.0‰ (C3) and –14.0‰ (C4) in tropical ecosystems (15). Terrestrial C3 plant δ13C values decrease with increased exposure to water, respired CO2, and shade (8), with lowest values observed in moist regions with dense canopy (17). Although concentration and δ13C values of atmospheric CO2 can affect C3 plant δ13C values (17), this influence is not relevant to our work here, which focuses on a single time window (SI Discussion). The large differences in leaf-wax δ13C values between closed C3 forest to open C4 grassland are consistent with soil organic carbon isotope gradients across canopy-shaded ground surfaces (6) and serve as a quantitative proxy for woody cover (fwoody) in savannas (8).As is observed for nonhuman primates, hominin dietary choices were likely shaped by ecosystem characteristics over habitat scales of 1–1,000 m2 (35). To evaluate plant distributions at this small spatial scale (9), we excavated 71 paleosol samples from close-correlated trenches across a ∼25,000-m2 area that included FLK Zinjanthropus Level 22 (FLK Zinj) at Olduvai Gorge (Fig. 1). Recent excavations (1821) at multiple trenches at four sites (FLKNN, FLKN, FLK, and FLKS, Fig. 1D) exposed a traceable thin (5–50 cm), waxy green to olive-brown clay horizon developed by pedogenic alterations of playa lake margin alluvium (22). Weak stratification and irregular redox stains suggest initial soil development occurred during playa lake regression (18, 22), around 1.848 Ma (ref. 23 and SI Discussion). To date, craniodental remains from at least three hominin individuals (1820), including preadolescent early Homo and Paranthropus boisei, were recovered from FLK Zinj. Fossils and artifacts embedded in the paleosol horizon often protrude into an overlying airfall tuff (18, 19), which suggests fossil remains were catastrophically buried in situ under volcanic ash. Rapid burial likely fostered the exceptional preservation of both macrofossils (10) and plant biomarkers across the FLK Zinj land surface.Open in a separate windowFig. 1.Location and map of FLK Zinj paleosol excavations. (A and B) Location of FLK Zinj as referenced to reconstructed depositional environments at Olduvai Gorge during the early Pleistocene (18, 22) and the modern gorge walls. The perennial lake contained shallow saline–alkaline waters that frequently flooded the surrounding playa margin (i.e., floodplain) flats. (C) Outline of FLK Zinj paleosol excavation sites used for our spatial biomarker reconstructions. (D) Concentric (5 m) gridded distribution map of FLK Zinj paleosol excavations relative to previous archaeological trenches (1821). Major aggregate complexes (FLKNN, FLKN, FLK, and FLKS) are color-coded to show excavation-site associations.Plant biomarker signatures reveal distinct types of vegetation juxtaposed across the FLK Zinj land surface (Figs. 24 and Fig. S1). In the northwest, FLKNN trenches show high nC23 δ13C values (Fig. 2B) as well as high C/V and Paq values (Figs. 3 and and4A).4A). They indicate floating or submerged aquatic plants (macrophytes) in standing freshwater (13), a finding that is consistent with nearby low-temperature freshwater carbonates (tufa), interpreted to be deposited from spring waters (22). Adjacent FLKN trenches have lower Paq values (Fig. 4A) with occurrences of fern-derived C32-diol and sedge-derived nR23 (Fig. 2 C and D). These biomarker distributions indicate an abrupt (around 10 m) transition from aquatic to wetland vegetation. Less than 100 m away (Fig. 1C), low nC31 δ13C values (Fig. 2A) and low C/V and very low Paq values (Figs. 3 and and4A)4A) collectively indicate dense woody cover (Fig. 4B). In the farthest southeastern (FLKS) trenches, high C/V values and high δ13C values for C lignin phenols (Fig. 3) indicate open C4 grassland.Open in a separate windowFig. 2.Spatial distributions and δ13C values for plant biomarkers across FLK Zinj. Measured and modeled δ13C values (large and smaller circles, respectively) are shown for (A) nC31 from terrestrial plants, (B) nC23 from (semi)aquatic plants, (C) C32-diol from ferns, and (D) nR23 from sedges (see refs. 12 and 13 and SI Discussion). Modeled values [inverse distance-weighted (9)] account for spatial autocorrelation (15-m radius) in standing biomass (35) over scales of soil organic matter accumulation (11). Black dots represent paleosols with insufficient plant biomarker concentrations for isotopic analysis.Open in a separate windowFig. 3.Molecular and isotopic signatures for lignin phenols across FLK Zinj. Bivariate plots are shown for diagnostic lignin compositional parameters (see refs. 12 and 15 and Fig. 1C). Symbols are colored according to respective δ13C values for the C lignin phenol, p-coumaric acid. FLK symbols are uncolored due to insufficient p-coumaric acid concentrations for isotopic analysis. Representative lignin compositional parameters (12, 15) are shown for monocotyledonous herbaceous tissues (G), dicotyledonous herbaceous tissues (H), cryptogams (N), and dicotyledonous woody tissues (W).Open in a separate windowFig. 4.Spatial relationships shared between local plant resources and hominin remains. Measured and modeled values (large and smaller circles, respectively) are shown for (A) Paq (13) and (B) fwoody (8). Modeled values [inverse distance-weighted (9)] account for spatial autocorrelation (15-m radius) in standing biomass (35) over scales of soil organic matter accumulation (11). (C) Kernel density map of cut-marked bones (1821) across the FLK Zinj land surface (Fig. S4). High estimator values indicate hotspots of hominin butchery (Fig. S5). A shaded rectangle captures the area (ca. 0.68 probability mass) with highest cut-marked bone densities and is shown in A and B for reference.Open in a separate windowFig. S1.Total ion chromatograms for saturated hydrocarbons in representative paleosols at (A) FLKNN, (B) FLKN, (C) FLK, and (D) FLKS. C23, tricosane; C25, pentacosane; C29 nonacosane; C31, hentriacontane.Biomarkers define a heterogeneous landscape at Olduvai and suggest an influence of local resources on hominin diets and behavior. It is recognized (2, 2426) that early Homo species and P. boisei had similar physiological characteristics. These similarities in physical attributes suggest behavioral differences were what allowed for overlapping ranges and local coexistence (sympatry) of both hominins. For instance, differences in seasonal subsistence strategies or different behavior during periods of drought and limited food could have reduced local hominin competition and fostered diversification via niche specialization (2729).Physical and isotopic properties of fossil teeth indicate P. boisei was more water-dependent [low enamel δ18O values (24)] and consumed larger quantities of abrasive, 13C-enriched foodstuffs [flat-worn surfaces (25) and high enamel δ13C values (26)] than coexisting early Homo species. Although 13C-enriched enamel is commonly attributed to consumption of C4 grasses or meat from grazers (14), this was not likely, because P. boisei craniodental features are inconsistent with contemporary gramnivores (24, 25) or extensive uncooked flesh mastication (26). Numerous scholars have proposed the nutritious underground storage organs (USOs) of C4 sedges were a staple of hominin diets (14, 24, 26, 27). Consistent with this suggestion, occurrences of nR23 attest to the presence of sedges at FLKNN and FLKN (Fig. 2D). However, the low δ13C values measured for nR23 at these same sites (Fig. 2D and Fig. S2) indicate C3 photosynthesis (12, 16), a trait common in modern sedges that grow in alkaline wetlands and lakes (30) (Fig. S3). Thus, biomarker signatures support the presence of C3 sedges in the wetland area of FLK Zinj.Open in a separate windowFig. S2.Total ion chromatogram [TIC (A)] and selected ion chromatograms for derivatized 5-n-alkylresorcinols [m/z 268 (●)] and midchain diols [m/z 369 (○)] from a representative paleosol at FLKN. Also shown are δ13C values for homologous (B) 5-n-alkylresorcinols and (C) midchain diols. C32-diol, dotriacontanediol; nR23, tricosylresorcinol.Open in a separate windowFig. S3.Summary phyogenetic consensus tree of Cyperaceae (sedges) based on nucleotide (rcbL and ETS1f) sequence data (5054, 95, 96). Important taxonomic distinctions discussed in SI Discussion, Fern Alkyldiols are shown explicitly. Triangle-enclosed digits represent the number of additional branches at different levels of taxonomic classification. CEFA, Cypereae Eleocharideae Fuireneae Abildgaardieae; CSD, Cariceae Scirpeae Dulichieae.Alternative foodstuffs with abrasive, 13C-enriched biomass include seedless vascular plants (cryptogams), such as ferns and lycophytes [e.g., quillworts (27, 30)]. Ferns are widely distributed throughout eastern Africa in moist and shaded microhabitats (31) and are often found near dependable sources of drinking water (32). Today, ferns serve as a dietary resource for humans and nonhuman primates alike (27), and fiddlehead consumption is consistent with the inferred digestive physiology [salivary proteins (33)] and the microwear on molars (34) of P. boisei in eastern Africa (25, 26). Ferns were present at FLKN, based on measurements of C32-diol (Fig. 2D). Further, the high δ13C values measured for these compounds are consistent with significant fern consumption by P. boisei at Olduvai Gorge.Ferns and grasses were not the only plant foods present during the time window documented by FLK Zinj. Further, the exclusive reliance on a couple of dietary resources was improbable for P. boisei, because its fossils occur in diverse localities (2426). Aquatic plants are an additional candidate substrate, as evidenced by high Paq values at FLKNN and FLKN (Fig. 4A). Floating and submerged plants proliferate in wetlands throughout eastern Africa today (13, 14), and many produce nutritious leaves and rootstock all year long (27, 28). Although C4 photosynthesis is rare among modern macrophytes (30), they can assimilate bicarbonate under alkaline conditions, which results in C4-like isotope signatures in their biomass (30). Their leaf waxes, such as nC23 (13), are both present and carry 13C-enriched signatures at FLKNN and FLKN (Fig. 2B). It is also likely that aquatic macrophytes sustained invertebrates and fish with comparably 13C-enriched biomass, as they do in modern systems (14), and we suggest aquatic animal foods could have been important in P. boisei diets (27, 28).Biomarkers across the FLK Zinj soil horizon resolve clear patterns in the distribution of plants and water and suggest critical resources that shaped hominin existence at Olduvai Gorge. The behavioral implications of local conditions require understanding of regional climate and biogeography (35, 7), because hominin species likely had home ranges much larger than the extent of excavated sites at FLK Zinj. Lake sediments at Olduvai Gorge include numerous stacked tuffs with precise radiometric age constraints (23). These tephrostratigraphic correlations (21) tie the FLK Zinj landscape horizon to published records of plant biomarkers in lake sediments that record climate cycles and catchment-scale variations in ecology. Correlative lake sediment data indicate the wet and wooded microhabitats of FLK Zinj sat within a catchment dominated by arid C4 grassland (8). Under similarly arid conditions today, only a small fraction of landscape area (ca. 0.05) occurs within 5 km of either forest or standing freshwater (35). Given a paucity of shaded refuge and potable water in the catchment, the concentration of hominin butchery debris (1821) exclusively within the forest microhabitat and adjacent to a freshwater wetland (Fig. 4) is notable. We suggest the spatial patterns defined by both macro- and molecular fossils reflect hominins engaged in social transport of resources (15), such as bringing animal carcasses and freshwater-sourced foods from surrounding grassy or wetland habitats to a wooded patch that provided both physical protection and access to water.  相似文献   

12.
Intrinsically disordered proteins often form dynamic complexes with their ligands. Yet, the speed and amplitude of these motions are hidden in classical binding kinetics. Here, we directly measure the dynamics in an exceptionally mobile, high-affinity complex. We show that the disordered tail of the cell adhesion protein E-cadherin dynamically samples a large surface area of the protooncogene β-catenin. Single-molecule experiments and molecular simulations resolve these motions with high resolution in space and time. Contacts break and form within hundreds of microseconds without a dissociation of the complex. The energy landscape of this complex is rugged with many small barriers (3 to 4 kBT) and reconciles specificity, high affinity, and extreme disorder. A few persistent contacts provide specificity, whereas unspecific interactions boost affinity.

Specific molecular interactions orchestrate a multitude of simultaneous cellular processes. The discovery of intrinsically disordered proteins (IDPs) (1, 2) has substantially aided our understanding of such interactions. More than two decades of research revealed a plethora of functions and mechanisms (26) that complemented the prevalent structure-based view on protein interactions. Even the idea that IDPs always ought to fold upon binding has largely been dismantled by recent discoveries of high-affine–disordered complexes (7, 8). Classical shape complementary is indeed superfluous in the complex between prothymosin-α and histone H1, in which charge complementary is the main driving force for binding (7). However, complexes between IDPs and folded proteins can also be highly dynamic [e.g., Sic1 and Cdc4 (9), the Na+/H+ exchanger tail and ERK2 (10), nucleoporin tails, and nuclear transport receptors (11)]. Yet timescales of motions and their spatial amplitudes are often elusive, such that it is unclear how precisely the surfaces of folded proteins alter the dynamics of bound IDPs. Answering this question is a key step in understanding how specificity, affinity, and flexibility can be simultaneously realized in such complexes.To address this question, we focused on the dynamics of the cell adhesion complex between E-cadherin (E-cad) and β-catenin (β-cat), which is involved in growth pathologies and cancer (12). E-cad is a transmembrane protein that mediates cell–cell adhesions by linking actin filaments of adjacent epithelial cells (Fig. 1A). Previous NMR results showed that the cytoplasmic tail of E-cad is intrinsically disordered (13). E-cad binds β-cat, which establishes a connection to the actin-associated protein α-catenin (1416). β-cat, on the other hand, is a multifunctional repeat protein (1720) that mediates cadherin-based cell adhesions (21) and governs cell fate decisions during embryogenesis (22). It contains three domains: an N-terminal domain (130 amino acids [aa]), a central repeat domain (550 aa), and a C-terminal domain (100 aa). Whereas the N- and C-terminal domains of β-cat are in large parts unstructured (17), with little effect on the affinity of the E-cad/β-cat complex (23), the 12 repeats of the central domain arrange in a superhelix (24). The X-ray structure showed that the E-cad wraps around this central domain of β-cat (24) (Fig. 1B). However, not only is half of the electron density of E-cad missing, the X-ray unit cell also comprises two structures with different resolved parts of E-cad (Fig. 1B). In fact, only 45% of all resolved E-cad residues are found in both structures (Fig. 1C). Although this ambiguity together with the large portion of missing residues (25) suggests that E-cad is highly dynamic in the complex with β-cat, the timescales and amplitudes of these dynamics are unknown.Open in a separate windowFig. 1.Complex between the cytoplasmic tail of E-cad and β-cat. (A) Schematics of cell–cell junctions mediated by E-cad and β-cat. (B) The two X-ray structures of the complex between the tail of E-cad (red) and the central repeat domain of β-cat (white) resolve different parts of E-cad (Protein Data Bank: 1i7x), indicating the flexibility of E-cad in the complex. (Bottom) Cartoon representation of the resolved E-cad parts. (C) Scheme showing the resolved parts of E-cad (red).Here, we integrated single-molecule Förster resonance energy transfer (smFRET) experiments with molecular simulations to directly measure the dynamics of E-cad on β-cat with high spatial and temporal resolution. In our bottom-up strategy, we first probed intramolecular interactions within E-cad using smFRET to parameterize a coarse-grained (CG) model. In a second step, we monitored E-cad on β-cat, integrated this information into the CG model, and obtained a dynamic picture of the complex. We found that all segments of E-cad diffuse on the surface of β-cat at submillisecond timescales and obtained a residue-resolved understanding of these motions: A small number of persistent interactions provide specificity, whereas many weak multivalent contacts boost affinity, which confirms the idea that regulatory enzymes access their recognition motifs on E-cad and β-cat without requiring the complex to dissociate (24).  相似文献   

13.
14.
Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.

Effective planning for the redistribution of habitats from climate change will depend on understanding demographic rates that control population spread at continental scales. Mobile species are moving, some migrating poleward (1, 2) and/or upward in elevation (3, 4). Species redistribution is also predicted for sessile, long-lived trees that provide the resource and structural foundation for global forest biodiversity (57), but their movement is harder to study. Contemporary range shifts are recognized primarily where contractions have followed extensive die-backs (8) or where local changes occur along compact climate gradients in steep terrain (9, 10). Whether migration capacity can pace habitat shifts of hundreds of kilometers on decade time scales depends on seed production and juvenile recruitment (Fig. 1A), which have not been fitted to data in ways that can be incorporated in models to anticipate biogeographic change (1113). For example, do the regions of rapid warming coincide with locations where species can produce abundant seed (Fig. 1B)? If so, does seed production translate to juvenile recruitment? Here, we combine continent-wide fecundity estimates from the Masting Inference and Forecasting (MASTIF) network (13) with tree inventories to identify North American hotspots for recruitment and find that species are well-positioned to track warming in the West and North, but not in parts of the East.Open in a separate windowFig. 1.Transitions, hypothesized effects on spread, and sites. (A) Population spread from trees (BA) to new recruits is controlled by fecundity (seed mass per BA) followed by recruitment (recruits per seed mass). (B) The CTH that warming has stimulated fecundity ahead of the center of adult distributions, which reflect climate changes of recent decades. Arrows indicate how centroids from trees to fecundity to recruitment could be displaced poleward with warming climate. (C) The RSH that cold-sensitive fecundity is optimal where minimum temperatures are warmer than for adult trees and, thus, may slow northward migration. The two hypotheses are not mutually exclusive. B and C refer to the probability densities of the different life stages. (D) MASTIF sites are summarized in SI Appendix, Table S2.2 by eco-regions: mixed forest (greens), montane (blues), grass/shrub/desert (browns), and taiga (blue-green).Suitable habitats for many species are projected to shift hundreds of kilometers in a matter of decades (14, 15). While climate effects on tree mortality are increasingly apparent (1619), advances into new habitats are not (2023). For example, natural populations of Pinus taeda may be sustained only if the Northeast can be occupied as habitats are lost in the South (Fig. 2). Current estimates of tree migration inferred from geographic comparisons of juvenile and adult trees have been inconclusive (2, 7, 21, 24, 25). Ambiguous results are to be expected if fecundity and juvenile success do not respond to change in the same ways (20, 2629). Moreover, seedling abundances (7, 30) do not provide estimates of recruitment rates because seedlings may reside in seedling banks for decades, or they may turn over annually (3133). Another method based on geographic shifts in population centers calculated from tree inventories (3, 34) does not separate the effects of mortality from recruitment, i.e., the balance of losses in some regions against gains in others. The example in Fig. 2 is consistent with an emerging consensus that suitable habitats are moving fast (2, 14, 15), even if population frontiers are not, highlighting the need for methods that can identify recruitment limitation on population spread. Management for forest products and conservation goals under transient conditions can benefit from an understanding of recruitment limitation that comes from seed supply, as opposed to seedling survival (35).Open in a separate windowFig. 2.Suitable habitats redistribute with decade-scale climate change for P. taeda (BA units m2 /ha). (Suitability is not a prediction of abundance, but rather, it is defined for climate and habitat variables included in a model, to be modified by management and disturbance [e.g., fire]. By providing habitat suitability in units of BA, it can be related it to the observation scale for the data.) Predictive distributions for suitability under current (A) and change expected from mid-21st-century climate scenario Representative Concentration Pathway 4.5 (B) showing habitat declines in the Southwest and East. Specific climate changes important for this example include net increases in aridity in the southeast (especially summer) and western frontier and warming to the North. Occupation of improving habitats depends on fecundity in northern parts of the range and how it is responding. Obtained with Generalized Joint Attribute Modeling (see Materials and Methods for more information).We hypothesized two ways in which fecundity and recruitment could slow or accelerate population spread. Contemporary forests were established under climates that prevailed decades to centuries ago. These climate changes combine with habitat variables to affect seeds, seedlings, and adults in different ways (36, 37). The “climate-tracking hypothesis” (CTH) proposes that, after decades of warming and changing moisture availability (Fig. 3 A and B), seed production for many species has shifted toward the northern frontiers of the range, thus primed for poleward spread. “Fecundity,” the transition from tree basal area (BA) to seed density on the landscape (Fig. 1A), is taken on a mass basis (kg/m2 BA) as a more accurate index of reproductive effort than seed number (38, 39). “Recruitment,” the transition from seed density to recruit density (recruits per kg seed), may have also shifted poleward, amplifying the impact of poleward shifts in fecundity on the capacity for poleward spread (Fig. 1B). Under CTH, the centers for adult abundance, fecundity, and recruitment are ordered from south to north in Fig. 1B as might be expected if each life-history stage leads the previous stage in a poleward migration.Open in a separate windowFig. 3.Climate change and tracking. (A) Mean annual temperatures since 1990 have increased rapidly in the Southwest and much of the North. (Zero-change contour line is in red.) (B) Moisture deficit index (monthly potential evapotranspiration minus P summed over 12 mo) has increased in much of the West. (Climate sources are listed in SI Appendix.) (C) Fecundity (kg seed per BA summed over species) is high in the Southeast. (D) Recruits per kg seed (square-root transformed) is highest in the Northeast. (E and F) Geographic displacement of 81 species show transitions in Fig. 1A, as arrows from centroids for adult BA to fecundity (E) and from fecundity to recruitment (F). Blue arrows point north; red arrows point south. Consistent with the RSH (Fig. 1B), most species centered in the East and Northwest have fecundity centroids south of adult distributions (red arrows in E). Consistent with the CTH, species of the interior West have fecundity centroids northwest of adults (blue arrows). Recruitment is shifted north of fecundity for most species (blue arrows in F). SI Appendix, Fig. S2 shows that uncertainty in vectors is low.The “reproductive-sensitivity hypothesis” (RSH) proposes that recruitment may limit population growth in cold parts of the range (Fig. 1C), where fecundity and/or seedling survival is already low. Cold-sensitive reproduction in plants includes late frost that can disrupt flowering, pollination, and/or seed development, suggesting that poleward population frontiers tend to be seed-limited (4044). While climate warming could reduce the negative impacts of low temperatures, especially at northern frontiers, these regions still experience the lowest temperatures. The view of cold-sensitive fecundity as a continuing rate-limiting step, i.e., that has not responded to warming in Fig. 1C, is intended to contrast with the case where warming has alleviated temperature limitation in Fig. 1B. Lags can result if cold-sensitive recruitment naturally limits growth at high-latitude/high-altitude population frontiers (Fig. 1C). In this case, reproductive sensitivity may delay the pace of migration to an extent that depends on fecundity, recruitment, or both at poleward frontiers. The arrows in Fig. 1C depict a case where optimal fecundity is equator-ward of optimal growth and recruitment. The precise location of recruitment relative to fecundity in Fig. 1C will depend on all of the direct and indirect effects of climate, including through seed and seedling predators and disturbances like fire. Fig. 1C depicts one of many hypothetical examples to show that climate variables might have opposing effects on fecundity and recruitment.Both CTH and RSH can apply to both temperature and moisture; the latter is here quantified as cumulative moisture deficit between potential evapotranspiration and precipitation, D=m=112(PETmPm) for month m, derived from the widely used Standardized Precipitation Evapotranspiration Index (45). Whereas latitude dominates temperature gradients and longitude is important for moisture in the East, gradients are complicated by steep terrain in the West, with temperature tending to decline and moisture increase with elevation.We quantified the transitions that control population spread, from adult trees (BA) to fecundity (seeds per BA) to recruitment (recruits per kg seed) (Fig. 1AC). Fecundity observations are needed to establish the link between trees and recruits in the migration process. They must be available at the tree scale across the continent because seed production depends on tree species and size, local habitat, and climate for all of the dominant species and size classes (13, 46). These estimates are not sufficient in themselves, because migration depends on seed production per area, not per tree. The per-area estimates come from individual seed production and dispersal from trees on inventory plots that monitor all trees that occupy a fixed sample area. Fecundity estimates were obtained in the MASTIF project (13) from 211,000 (211K) individual trees and 2.5 million (2.5M) tree-years from 81 species. We used a model that accommodates individual tree size, species, and environment and the codependence between trees and over time (Fig. 1C). In other words, it allows valid inference on fecundity, the quasisynchronous, quasiperiodic seed production typical of many species (47). The fitted model was then used to generate a predictive distribution of fecundity for each of 7.6M trees on 170K forest inventory plots across the United States and Canada. Because trees are modeled together, we obtain fecundity estimates per plot and, thus, per area. BA (m2 /ha) of adult trees and new recruits into the smallest diameter class allowed us to determine fecundity as kg seed per m2 BA and recruitment per kg seed, i.e., each of the transitions in Fig. 1A.Recruitment rates, rather than juvenile abundances, come from the transitions from seedlings to sapling stages. The lag between seed production and recruitment does not allow for comparisons on an annual basis; again, residence times in a seedling bank can span decades. Instead, we focus on geographic variation in mean rates of fecundity and recruitment.We summarized the geographic distributions for each transition as 1) the mean transition rates across all species and 2) the geographic centroids (central tendency) for each species as weighted-average locations, where weights are the demographic transitions (BA to fecundity, fecundity to recruitment, and BA to recruitment). We analyzed central tendency, or centroids (e.g., refs. 3 and 34) because range limits cannot be accurately identified on the basis of small inventory plots (21). If fecundity is not limiting poleward spread (CTH of Fig. 1B), then fecundity centroids are expected to be displaced poleward from the adult population. If reproductive sensitivity dominates population spread (RSH of Fig. 1C), then fecundity and/or recruitment centroids will be displaced equator-ward from adult BA. The same comparisons between fecundity and recruitment determine the contribution of recruitment to spread.  相似文献   

15.
Macrocycles, formally defined as compounds that contain a ring with 12 or more atoms, continue to attract great interest due to their important applications in physical, pharmacological, and environmental sciences. In syntheses of macrocyclic compounds, promoting intramolecular over intermolecular reactions in the ring-closing step is often a key challenge. Furthermore, syntheses of macrocycles with stereogenic elements confer an additional challenge, while access to such macrocycles are of great interest. Herein, we report the remarkable effect peptide-based catalysts can have in promoting efficient macrocyclization reactions. We show that the chirality of the catalyst is essential for promoting favorable, matched transition-state relationships that favor macrocyclization of substrates with preexisting stereogenic elements; curiously, the chirality of the catalyst is essential for successful reactions, even though no new static (i.e., not “dynamic”) stereogenic elements are created. Control experiments involving either achiral variants of the catalyst or the enantiomeric form of the catalyst fail to deliver the macrocycles in significant quantity in head-to-head comparisons. The generality of the phenomenon, demonstrated here with a number of substrates, stimulates analogies to enzymatic catalysts that produce naturally occurring macrocycles, presumably through related, catalyst-defined peripheral interactions with their acyclic substrates.

Macrocyclic compounds are known to perform a myriad of functions in the physical and biological sciences. From cyclodextrins that mediate analyte separations (1) to porphyrin cofactors that sit in enzyme active sites (2, 3) and to potent biologically active, macrocyclic natural products (4) and synthetic variants (57), these structures underpin a wide variety of molecular functions (Fig. 1A). In drug development, such compounds are highly coveted, as their conformationally restricted structures can lead to higher affinity for the desired target and often confer additional metabolic stability (813). Accordingly, there exists an entire synthetic chemistry enterprise focused on efficient formation and functionalization of macrocycles (1418).Open in a separate windowFig. 1.(A) Examples of macrocyclic compounds with important applications. HCV, hepatitis C virus. (B) Use of chiral ligands in metal-catalyzed or mediated stereoselective macrocyclization reactions. (C) Remote desymmetrization using guanidinylated ligands via Ullmann coupling. (D) This work: use of copper/peptidyl complexes for macrocyclization and the exploration of matched and mismatched effect.In syntheses of macrocyclic compounds, the ring-closing step is often considered the most challenging step, as competing di- and oligomerization pathways must be overcome to favor the intramolecular reaction (14). High-dilution conditions are commonly employed to favor macrocyclization of linear precursors (19). Substrate preorganization can also play a key role in overcoming otherwise high entropic barriers associated with multiple conformational states that are not suited for ring formation. Such preorganization is most often achieved in synthetic chemistry through substrate design (14, 2022). Catalyst or reagent controls that impose conformational benefits that favor ring formation are less well known. Yet, critical precedents include templating through metal-substrate complexation (23, 24), catalysis by foldamers (25) or enzymes (2629), or, in rare instances, by small molecules (discussed below). Characterization of biosynthetic macrocyclization also points to related mechanistic issues and attributes for efficient macrocyclizations (3034). Coupling macrocyclization reactions to the creation of stereogenic elements is also rare (35). Metal-mediated reactions have been applied toward stereoselective macrocyclizations wherein chiral ligands transmit stereochemical information to the products (Fig. 1B). For example, atroposelective ring closure via Heck coupling has been applied in the asymmetric total synthesis of isoplagiochin D by Speicher and coworkers (3640). Similarly, atroposelective syntheses of (+)-galeon and other diarylether heptanoid natural products were achieved via Ullman coupling using N-methyl proline by Salih and Beaudry (41). Finally, Reddy and Corey reported the enantioselective syntheses of cyclic terpenes by In-catalyzed allylation utilizing a chiral prolinol-based ligand (42). While these examples collectively illustrate the utility of chiral ligands in stereoselective macrocyclizations, such examples remain limited.We envisioned a different role for chiral catalysts when addressing intrinsically disfavored macrocyclization reactions. When unfavorable macrocyclization reactions are confronted, we hypothesized that a catalyst–substrate interaction might provide transient conformational restriction that could promote macrocyclization. To address this question, we chose to explore whether or not a chiral catalyst-controlled macrocyclization might be possible with peptidyl copper complexes. In the context of the medicinally ubiquitous diarylmethane scaffold, we had previously demonstrated the capacity for remote asymmetric induction in a series of bimolecular desymmetrizations using bifunctional, tetramethylguanidinylated peptide ligands. For example, we showed that peptidyl copper complexes were able to differentiate between the two aryl bromides during C–C, C–O, and C–N cross-coupling reactions (Fig. 1C) (4345). Moreover, in these intermolecular desymmetrizations, a correlation between enantioselectivity and conversion was observed, revealing the catalyst’s ability to perform not only enantiotopic group discrimination but also kinetic resolution on the monocoupled product as the reaction proceeds (44). This latter observation stimulated our speculation that if an internal nucleophile were present to undergo intramolecular cross-coupling to form a macrocycle, stereochemically sensitive interactions (so-called matched and mismatched effects) (46) could be observed (Fig. 1D). Ideally, we anticipated that transition state–stabilizing interactions might even prove decisive in matched cases, and the absence of catalyst–substrate stabilizing interactions might account for the absence of macrocyclization for these otherwise intrinsically unfavorable reactions. Herein, we disclose the explicit observation of these effects in chiral catalyst-controlled macrocyclization reactions.  相似文献   

16.
A newly discovered fossil monkey (AUH 1321) from the Baynunah Formation, Emirate of Abu Dhabi, United Arab Emirates, is important in a number of distinct ways. At ∼6.5–8.0 Ma, it represents the earliest known member of the primate subfamily Cercopithecinae found outside of Africa, and it may also be the earliest cercopithecine in the fossil record. In addition, the fossil appears to represent the earliest member of the cercopithecine tribe Cercopithecini (guenons) to be found anywhere, adding between 2 and 3.5 million y (∼50–70%) to the previous first-appearance datum of the crown guenon clade. It is the only guenon—fossil or extant—known outside the continent of Africa, and it is only the second fossil monkey specimen so far found in the whole of Arabia. This discovery suggests that identifiable crown guenons extend back into the Miocene epoch, thereby refuting hypotheses that they are a recent radiation first appearing in the Pliocene or Pleistocene. Finally, the new monkey is a member of a unique fauna that had dispersed from Africa and southern Asia into Arabia by this time, suggesting that the Arabian Peninsula was a potential filter for cross-continental faunal exchange. Thus, the presence of early cercopithecines on the Arabian Peninsula during the late Miocene reinforces the probability of a cercopithecoid dispersal route out of Africa through southwest Asia before Messinian dispersal routes over the Mediterranean Basin or Straits of Gibraltar.Cercopithecine monkeys (Order Primates, Superfamily Cercopithecoidea, Family Cercopithecidae, Subfamily Cercopithecinae), also known as cheek-pouch monkeys, are the most speciose and widely distributed group of living Old World primates. Recent molecular estimates date the divergence of Cercopithecinae from Colobinae (leaf-eating monkeys) to between 17.6 Ma (range 21.5–13.9 Ma) and 14.5 Ma (range 16.2–12.8 Ma) and the origin of crown Cercopithecinae to around 11.5 Ma (range 13.9–9.2 Ma) (1, 2). However, the earliest known fossil cercopithecines only appear much later, around 7.4 Ma in the Turkana Basin of East Africa (3, 4).Cercopithecine monkeys are divided into two tribes: Cercopithecini, including African guenons (Allenopithecus, Miopithecus, Chlorocebus, Erythrocebus, Allochrocebus, Cercopithecus), and Papionini, which includes African and Eurasian macaques (Macaca) as well as African papionins (Papio, Lophocebus, Rungwecebus, Theropithecus, Mandrillus, Cercocebus). Of the living cercopithecines, only two genera are known outside of the African continent, both of them papionins: Papio (found on the Arabian Peninsula) and Macaca (found throughout Southern and Southeast Asia, and introduced in Gibraltar). The earliest fossil cercopithecines known outside of Africa are attributed to the genus Macaca and appear to be latest Miocene or early Pliocene in age (∼6.0–5.0 Ma) (Fig. 1) (59). Until now, no guenons, extant or extinct, have ever been known outside of the African continent.Open in a separate windowFig. 1.Hypothesized cercopithecoid dispersal routes out of Africa in relation to the known late Miocene fossil record. The oldest cercopithecine, Parapapio lothagamensis (light blue circles), is known from ∼7.4–6.1 Ma in the Turkana Basin and Tugen Hills, Kenya (3, 4, 41). An unnamed fossil papionin (purple circle) is known from the late Miocene of Ongoliba, Congo (5, 57). Macaca spp. (dark blue circles) are located throughout North Africa at sites ranging in age from ∼6.5–5.5 Ma (5, 8, 58, 59), and Macaca spp. first appear in Europe ∼6.0–5.3 Ma and in China in the early Pliocene (59). The oldest colobine outside of Africa, Mesopithecus (green circles), is known from a number of late Miocene sites securely dated between ∼8.5 and 5.3 Ma in Greece, Macedonia, Italy, Ukraine, Iran, Afghanistan, possibly Pakistan, and China (4648). Three dispersal routes for cercopithecoids can be hypothesized: route 1 imagines a dispersal event over the Straits of Gibraltar or Mediterranean Basin into Europe and Asia; route 2 postulates a dispersal event through the Arabian Sinai Peninsula; and route 3 suggests a migration over the Arabian Straits of Bab el Mandeb. The discovery of AUH 1321 and AUH 35 in Abu Dhabi at >6.5–8 Ma (red circle), contemporaneous with the first appearance of Mesopithecus sp. in Eurasia and ∼1–2 million y earlier than the appearance of Macaca spp. in Eurasia, suggests scenarios 2 and 3 were possible before scenario 1. None of these scenarios is mutually exclusive and may have occurred in combination or succession.Three possible routes can be reasonably hypothesized for cercopithecine (and cercopithecoid) dispersal out of Africa and into Europe and Asia during the late Miocene: (i) over the Mediterranean Basin or Straits of Gibraltar to the north/northwest, (ii) across the Arabian Sinai Peninsula to the northeast, or (iii) across the Arabian Straits of Bab el Mandeb to the east (Fig. 1). Fossil Macaca specimens from the terminal Miocene of Spain and Italy have been suggested to provide evidence for the use of a route across the Mediterranean Basin or the Straits of Gibraltar via an ephemeral land bridge either immediately before—or perhaps associated with—the drop in Mediterranean sea levels during the Messinian (∼6.0–5.3 Ma) (819). Paleontological evidence for an Arabian route has been lacking, but paleogeographic and paleoenvironmental work on circum-Arabia suggests that the region did not present a persistent ecological barrier to some amount of intercontinental exchange during the late Miocene (20). In fact, an established land connection through Sinai was probably present during this time period, and oceanic spreading is not estimated to have begun in the southern Red Sea until around 5 Ma, with progressive development of open marine conditions throughout the Pliocene. Thus, before 6.5 Ma, a southern route in the region of the Straits of Bab el Mandeb was also possible (Fig. 1) (21).Although Arabia is a large area of the earth, fossil monkeys have so far been represented by only a single specimen, an isolated male lower canine (AUH 35), discovered in 1989 by A.H. and Peter Whybrow in the late Miocene Baynunah Formation, Abu Dhabi, United Arab Emirates (2225). The specimen came from Jebel Dhanna, site JDH-3 (JD-3 in refs. 24 and 26) (Fig. 2), a locality now lost to industrial development. Because male cercopithecid lower canines are not metrically identifiable beyond the Family level of classification (23), AUH 35 was described as a cercopithecid with indeterminate affinities. Here we report the discovery of a second monkey specimen from the Baynunah Formation in Abu Dhabi (AUH 1321), found almost 20 y after the first. AUH 1321 clearly represents a cercopithecine and, because it is dated to between 6.5 and 8.0 Ma, it is the oldest cercopithecine yet known outside of Africa and possibly the oldest cercopithecine in the fossil record. Thus, the discovery of AUH 1321 provides the earliest paleontological evidence of cercopithecine dispersal out of continental Africa and possibly hints at an Arabian cercopithecoid dispersal route into Eurasia during the Late Miocene (Fig. 1). Furthermore, we believe AUH 1321 can be attributed to the Cercopithecini (guenons) and, therefore, it represents the only record of this tribe, living or fossil, yet known outside of Africa.Open in a separate windowFig. 2.Map illustrating the location of the two fossil sites in the Baynunah Formation that have produced fossil monkeys. Top Right Inset shows the location of the SHU 2–2 excavation (kite aerial photography by Nathan Craig).  相似文献   

17.
18.
We used in silico methods to screen a library of 1,013 compounds for possible binding to the allosteric site in farnesyl diphosphate synthase (FPPS). Two of the 50 predicted hits had activity against either human FPPS (HsFPPS) or Trypanosoma brucei FPPS (TbFPPS), the most active being the quinone methide celastrol (IC50 versus TbFPPS ∼20 µM). Two rounds of similarity searching and activity testing then resulted in three leads that were active against HsFPPS with IC50 values in the range of ∼1–3 µM (as compared with ∼0.5 µM for the bisphosphonate inhibitor, zoledronate). The three leads were the quinone methides taxodone and taxodione and the quinone arenarone, compounds with known antibacterial and/or antitumor activity. We then obtained X-ray crystal structures of HsFPPS with taxodione+zoledronate, arenarone+zoledronate, and taxodione alone. In the zoledronate-containing structures, taxodione and arenarone bound solely to the homoallylic (isopentenyl diphosphate, IPP) site, not to the allosteric site, whereas zoledronate bound via Mg2+ to the same site as seen in other bisphosphonate-containing structures. In the taxodione-alone structure, one taxodione bound to the same site as seen in the taxodione+zoledronate structure, but the second located to a more surface-exposed site. In differential scanning calorimetry experiments, taxodione and arenarone broadened the native-to-unfolded thermal transition (Tm), quite different to the large increases in ΔTm seen with biphosphonate inhibitors. The results identify new classes of FPPS inhibitors, diterpenoids and sesquiterpenoids, that bind to the IPP site and may be of interest as anticancer and antiinfective drug leads.Farnesyl diphosphate synthase (FPPS) catalyzes the condensation of isopentenyl diphosphate (IPP; compound 1 in Fig. 1) with dimethylallyl diphosphate (DMAPP; compound 2 in Fig. 1) to form the C10 isoprenoid geranyl diphosphate (GPP; compound 3 in Fig. 1), which then condenses with a second IPP to form the C15 isoprenoid, farnesyl diphosphate (FPP; compound 4 in Fig. 1). FPP then is used in a wide range of reactions including the formation of geranylgeranyl diphosphate (GGPP) (1), squalene (involved in cholesterol and ergosterol biosynthesis), dehydrosqualene (used in formation of the Staphylococcus aureus virulence factor staphyloxanthin) (2), undecaprenyl diphosphate (used in bacterial cell wall biosynthesis), and quinone and in heme a/o biosynthesis. FPP and GGPP also are used in protein (e.g., Ras, Rho, Rac) prenylation, and FPPS is an important target for the bisphosphonate class of drugs (used to treat bone resorption diseases) such as zoledronate (compound 5 in Fig. 1) (3). Bisphosphonates targeting FPPS have activity as antiparasitics (4), act as immunomodulators (activating γδ T cells containing the Vγ2Vδ2 T-cell receptor) (5), and switch macrophages from an M2 (tumor-promoting) to an M1 (tumor-killing) phenotype (6). They also kill tumor cells (7) and inhibit angiogenesis (8). However, the bisphosphonates in clinical use (zoledronate, alendronate, risedronate, ibandronate, etidronate, and clodronate) are very hydrophilic and bind avidly to bone mineral (9). Therefore, there is interest in developing less hydrophilic species (10) that might have better activity against tumors in soft tissues and better antibacterial (11) and antiparasitic activity.Open in a separate windowFig. 1.Chemical structures of FPPS substrates, products, and inhibitors.The structure of FPPS (from chickens) was first reported by Tarshis et al. (12) and revealed a highly α-helical fold. The structures of bacterial and Homo sapiens FPPS (HsFPPS) are very similar; HsFPPS structure (13, 14) is shown in Fig. 2A. There are two substrate-binding sites, called here “S1” and “S2.” S1 is the allylic (DMAPP, GPP) binding site to which bisphosphonates such as zoledronate bind via a [Mg2+]3 cluster (15) (Fig. 2B). S2 is the homoallylic site to which IPP binds, Fig. 2B. Recently, Jahnke et al. (10) and Salcius et al. (16) discovered a third ligand-binding site called the “allosteric site” (hereafter the “A site”). A representative zoledronate+A-site inhibitor structure [Protein Data Bank (PDB) ID code 3N46] (Nov_980; compound 6 in Fig. 1) showing zoledronate in S1 and Nov_980 (compound 6) in the A site is shown in a stereo close-up view in Fig. 2B, superimposed on a zoledronate+IPP structure (PDB ID code 2F8Z) in S2. Whether the allosteric site serves a biological function (e.g., in feedback regulation) has not been reported. Nevertheless, highly potent inhibitors (IC50 ∼80 nM) have been developed (10), and the best of these newly developed inhibitors are far more hydrophobic than are typical bisphosphonates (∼2.4–3.3 for cLogP vs. ∼−3.3 for zoledronate) and are expected to have better direct antitumor effects in soft tissues (10).Open in a separate windowFig. 2.Structures of human FPPS. (A) Structure of HsFPPS showing zoledronate (compound 5) and IPP (compound 1) bound to the S1 (allylic) and S2 (homoallylic) ligand-binding sites (PDB ID code 2F8Z). (B) Superposition of the IPP-zoledronate structure (PDB ID code 2F8Z) on the zoledronate-Nov_980 A-site inhibitor structure (PDB ID code 3N46). Zoledronate binds to the allylic site S1, IPP binds to the homoallylic site S2, and the allosteric site inhibitor binds to the A site. Active-site “DDXXD” residues are indicated, as are Mg2+ molecules (green and yellow spheres, respectively). The views are in stereo.In our group we also have developed more lipophilic compounds (e.g., compound 7 in Fig. 1) (17, 18) as antiparasitic (19) and anticancer drug leads (18) and, using computational methods, have discovered other novel nonbisphosphonate FPPS inhibitors (e.g., compound 8 in Fig. 1) that have micromolar activity against FPPS (20). In this study, we extended our computational work and tried to discover other FPPS inhibitors that target the A site. Such compounds would be of interest because they might potentiate the effects of zoledronate and other bisphosphonates, as reported for other FPPS inhibitors (21), and have better tissue distribution properties in general.  相似文献   

19.
Anthropogenic global warming is driven by emissions of a wide variety of radiative forcers ranging from very short-lived climate forcers (SLCFs), like black carbon, to very long-lived, like CO2. These species are often released from common sources and are therefore intricately linked. However, for reasons of simplification, this CO2–SLCF linkage was often disregarded in long-term projections of earlier studies. Here we explicitly account for CO2–SLCF linkages and show that the short- and long-term climate effects of many SLCF measures consistently become smaller in scenarios that keep warming to below 2 °C relative to preindustrial levels. Although long-term mitigation of methane and hydrofluorocarbons are integral parts of 2 °C scenarios, early action on these species mainly influences near-term temperatures and brings small benefits for limiting maximum warming relative to comparable reductions taking place later. Furthermore, we find that maximum 21st-century warming in 2 °C-consistent scenarios is largely unaffected by additional black-carbon-related measures because key emission sources are already phased-out through CO2 mitigation. Our study demonstrates the importance of coherently considering CO2–SLCF coevolutions. Failing to do so leads to strongly and consistently overestimating the effect of SLCF measures in climate stabilization scenarios. Our results reinforce that SLCF measures are to be considered complementary rather than a substitute for early and stringent CO2 mitigation. Near-term SLCF measures do not allow for more time for CO2 mitigation. We disentangle and resolve the distinct benefits across different species and therewith facilitate an integrated strategy for mitigating both short and long-term climate change.For about two decades, policy-makers have considered options to avoid dangerous anthropogenic interference with the climate system (1). So far, many countries support limiting warming to below a 2 °C temperature limit, but the required global mitigation action to achieve this has been limited (24). To inform policy-makers about options and challenges, the United Nations Environment Program (UNEP) published several reports over the past years on three interlinked aspects: climate stabilization and greenhouse gas (GHG) mitigation (3), short-lived climate forcers (SLCFs) and clean-air benefits (5, 6), and hydrofluorocarbons (7) (HFCs). We build here upon the insights of these reports (henceforth referred to as “Gap Report,” “SLCF Reports,” and “HFC Report,” respectively) to disentangle the joint effects of CO2 and SLCF mitigation for limiting global warming. We evaluate the potential for limiting global-mean warming until 2100 and the rate of near-term warming, with a focus on 2 °C-consistent scenarios (Fig. 1). Reductions in CO2 and SLCFs also provide important cobenefits like energy security (8), and local health and agricultural benefits (912), which fall outside the scope of this paper.Open in a separate windowFig. 1.Influence of SLCF-CO2 linkages under varying CO2 mitigation. (A) Global-mean surface temperature implications and interdependence of CO2 (black), CH4 (green), HFC (orange), BC-related (blue), and SO2 mitigation (red). (B) The general effect of SLCF-CO2 linkages. CO2 paths show a world “with CO2 mitigation” (32) and with “no CO2 mitigation” (24). Early CH4 mitigation is represented by the combined light and dark green area. HFC mitigation is shown for the lower end of the range assessed in this study. BC-related (and SO2) measures show the difference between Case 6 and Case 2 (Case 4 and Case 2). Alternative cases are provided in SI Appendix, Fig. S1. Vertical dashed lines are time points relevant to Figs. 2 and and33.The main challenge in this exercise is the interdependence of coemitted climate forcers and the differences between their net forcing effects (13). For example, energy-related black carbon (BC) aerosols have an overall warming effect (14), whereas sulfate aerosols and some biomass-related BC emissions together with their coemitted species are cooling (13, 14). Because CO2 and BC-related emissions often have common combustion sources (14), CO2 mitigation will also influence the abundance of SLCFs. This linkage has already been well studied for other air pollutants (15, 16). Due to data limitations, the first studies that analyzed the mitigation potential of SLCFs (5, 6, 9, 1719) did not account for these linkages in the long term and kept post-2030 SLCF forcing constant across a wide range of CO2 paths. Alternatively, simple relationships between species were used (20). Such approaches, however, cannot guarantee that the long-term SLCF and CO2 evolutions remain internally consistent. To provide an integrated view, we here account for this linkage and apply relationships (21) derived from detailed energy–environment–economy scenarios that explore various levels of air pollution control and track technological linkages between SCLF and CO2 sources (8). Each CO2 scenario in our analysis is thus associated with a consistent evolution of SLCFs at a specific level of pollution control stringency (see below). In policy discussions, methane (CH4) and BC are often subsumed under the single term “short-lived climate pollutants” (SLCP) but in light of their different influence on the climate, as well as differing technological and policy instruments for mitigation, they are explicitly distinguished here.  相似文献   

20.
A major unresolved aspect of the rise of dinosaurs is why early dinosaurs and their relatives were rare and species-poor at low paleolatitudes throughout the Late Triassic Period, a pattern persisting 30 million years after their origin and 10–15 million years after they became abundant and speciose at higher latitudes. New palynological, wildfire, organic carbon isotope, and atmospheric pCO2 data from early dinosaur-bearing strata of low paleolatitudes in western North America show that large, high-frequency, tightly correlated variations in δ13Corg and palynomorph ecotypes occurred within a context of elevated and increasing pCO2 and pervasive wildfires. Whereas pseudosuchian archosaur-dominated communities were able to persist in these same regions under rapidly fluctuating extreme climatic conditions until the end-Triassic, large-bodied, fast-growing tachymetabolic dinosaurian herbivores requiring greater resources were unable to adapt to unstable high CO2 environmental conditions of the Late Triassic.One of the major predictions of models of elevated atmospheric CO2 is the increased frequency and magnitude of events comprising very high temperatures, an enhanced hydrological cycle, and increased precipitation extremes (1, 2). Because such environmental extremes act as limitations on organisms, past time intervals of elevated CO2 and associated climate extremes might be expected to profoundly influence biogeographic patterns, especially on land, which is relatively unbuffered climatically compared with the oceans. One such time of elevated CO2 was the Triassic Period, during which both dinosaurs and mammals first appeared. In particular, it has remained an open question why the global ecological dominance of dinosaurs was delayed in the tropics for at least 30 million years after their first appearance and diversification into the three major clades Sauropodomorpha, Theropoda, and Ornithischia (3, 4). Hypotheses proposed to explain this lag have focused largely on competition (or lack thereof) with nondinosaurian archosaurs, principally those on the line to crocodylians (pseudosuchians), but none provide a clear explanation for this unusual and persistent biogeographic pattern.The rise of dinosaurs to ecological dominance was a diachronous evolutionary event (58). Small carnivorous early theropod dinosaurs were widespread at low paleolatitudes, whereas evidence for Triassic herbivorous dinosaurs (i.e., sauropodomorphs and ornithischians) in the tropics is completely absent (6, 7, 9, 10) (Fig. 1). In addition, tropical North American theropod dinosaurs were rare and species-poor (5, 7, 10) compared with higher-latitude assemblages. These patterns have been hypothesized to track largely zonal climatic conditions across Pangaea (6, 8, 11, 12) (Fig. 1), but detailed paleoclimatic data and mechanistic explanations have been lacking. Here, we argue these biogeographic patterns are a result of extreme environmental fluctuations in the tropics enhanced by high atmospheric CO2, which suppressed large-bodied herbivorous dinosaurs until after the end-Triassic mass extinction.Open in a separate windowFig. 1.Late Triassic Pangean map showing latitudinal climate zones (11, 12) and the distribution of major dinosaur clades. See SI Appendix for occurrence data. Question marks indicate geochronologic uncertainty for the Thailand sauropodomorph and Argentine Laguna Colorada heterodontosaurid occurrences (i.e., they may be Early Jurassic in age). Each dinosaur symbol in most cases represents a region with multiple fossiliferous localities containing the illustrated clades.We present, to our knowledge, the first high-resolution paleoenvironmental multiproxy record from the same sedimentary sequences that produce abundant early dinosaur and other vertebrate fossils (6, 8, 10). Specifically, we sampled fluvial and overbank sediments of the Upper Triassic Chinle Formation of the Chama Basin in north central New Mexico (13, 14). This nonmarine succession from low-paleolatitude Pangaea moved from ∼10°N to 14°N during the late Norian and Rhaetian (15), suggesting that this area would have experienced a semiarid climate through the entire sequence (11) (Fig. 1). The formation in this region contains exceptionally diverse and abundant vertebrate assemblages, which allows the early evolution of dinosaurs, their contemporaneous flora, and their paleoenvironment to be examined through time. Furthermore, tight age control is provided by a recent U–Pb radioisotopic age of 211.9 ± 0.7 Ma from the Hayden Quarry (HQ) in the lower portion of the Petrified Forest Member of the Chama Basin (7), and magnetostratigraphic data (16) that are consistent with a late Norian to Rhaetian age for the sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号