首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Vaccine》2015,33(49):7008-7014
BackgroundEnsuring genetic stability is a prerequisite for live attenuated influenza vaccine (LAIV). This study describes the results of virus shedding and clinical isolates’ testing of Phase I clinical trials of Russian LAIVs against potentially pandemic influenza viruses in healthy adults.MethodsThree live attenuated vaccines against potentially pandemic influenza viruses, H2N2 LAIV, H5N2 LAIV and H7N3 LAIV, generated by classical reassortment in eggs, were studied. For each vaccine tested, subjects were randomly distributed into two groups to receive two doses of either LAIV or placebo at a 3:1 vaccine/placebo ratio. Nasal swabs were examined for vaccine virus shedding by culturing in eggs and by PCR. Vaccine isolates were tested for temperature sensitivity and cold-adaptation (ts/ca phenotypes) and for nucleotide sequence.ResultsThe majority of nasal wash positive specimens were detected on the first day following vaccination. PCR method demonstrated higher sensitivity than routine virus isolation in eggs. None of the placebo recipients had detectable vaccine virus replication.All viruses isolated from the immunized subjects retained the ts/ca phenotypic characteristics of the master donor virus (MDV) and were shown to preserve all attenuating mutations described for the MDV. These data suggest high level of vaccine virus genetic stability after replication in humans.During manufacture process, no additional mutations occurred in the genome of H2N2 LAIV. In contrast, one amino acid change in the HA of H7N3 LAIV and two additional mutations in the HA of H5N2 LAIV manufactured vaccine lot were detected, however, they did not affect their ts/ca phenotypes.ConclusionsOur clinical trials revealed phenotypic and genetic stability of the LAIV viruses recovered from the immunized volunteers. In addition, no vaccine virus was detected in the placebo groups indicating the lack of person-to-person transmission.LAIV TRIAL REGISTRATION at ClinicalTrials.gov: H7N3-NCT01511419; H5N2-NCT01719783; H2N2-NCT01982331.  相似文献   

2.
Zhou B  Li Y  Speer SD  Subba A  Lin X  Wentworth DE 《Vaccine》2012,30(24):3691-3702
The licensed live attenuated influenza A vaccine (LAIV) in the United States is created by making a reassortant containing six internal genes from a cold-adapted master donor strain (ca A/AA/6/60) and two surface glycoprotein genes from a circulating/emerging strain (e.g., A/CA/7/09 for the 2009/2010 H1N1 pandemic). Technologies to rapidly create recombinant viruses directly from patient specimens were used to engineer alternative LAIV candidates that have genomes composed entirely of vRNAs from pandemic or seasonal strains. Multiple mutations involved in the temperature-sensitive (ts) phenotype of the ca A/AA/6/60 master donor strain were introduced into a 2009 H1N1 pandemic strain rA/New York/1682/2009 (rNY1682-WT) to create rNY1682-TS1, and additional mutations identified in other ts viruses were added to rNY1682-TS1 to create rNY1682-TS2. Both rNY1682-TS1 and rNY1682-TS2 replicated efficiently at 30 °C and 33 °C. However, rNY1682-TS1 was partially restricted, and rNY1682-TS2 was completely restricted at 39 °C. Additionally, engineering the TS1 or TS2 mutations into a distantly related human seasonal H1N1 influenza A virus also resulted pronounced restriction of replication in vitro. Clinical symptoms and virus replication in the lungs of mice showed that although rNY1682-TS2 and the licensed FluMist®-H1N1pdm LAIV that was used to combat the 2009/2010 pandemic were similarly attenuated, the rNY1682-TS2 was more protective upon challenge with a virulent mutant of pandemic H1N1 virus or a heterologous H1N1 (A/PR/8/1934) virus. This study demonstrates that engineering key temperature sensitive mutations (PB1-K391E, D581G, A661T; PB2-P112S, N265S, N556D, Y658H) into the genomes of influenza A viruses attenuates divergent human virus lineages and provides an alternative strategy for the generation of LAIVs.  相似文献   

3.
4.
Currently MedImmune manufactures cold-adapted (ca) live, attenuated influenza vaccine (LAIV) from specific-pathogen free (SPF) chicken eggs. Difficulties in production scale-up and potential exposure of chicken flocks to avian influenza viruses especially in the event of a pandemic influenza outbreak have prompted evaluation and development of alternative non-egg based influenza vaccine manufacturing technologies. As part of MedImmune's effort to develop the live attenuated influenza vaccine (LAIV) using cell culture production technologies we have investigated the use of high yielding, cloned MDCK cells as a substrate for vaccine production by assessing host range and virus replication of influenza virus produced from both SPF egg and MDCK cell production technologies. In addition to cloned MDCK cells the indicator cell lines used to evaluate the impact of producing LAIV in cells on host range and replication included two human cell lines: human lung carcinoma (A549) cells and human muco-epidermoid bronchiolar carcinoma (NCI H292) cells. The influenza viruses used to infect the indicators cell lines represented both the egg and cell culture manufacturing processes and included virus strains that composed the 2006–2007 influenza seasonal trivalent vaccine (A/New Caledonia/20/99 (H1N1), A/Wisconsin/67/05 (H3N2) and B/Malaysia/2506/04). Results from this study demonstrate remarkable similarity between influenza viruses representing the current commercial egg produced and developmental MDCK cell produced vaccine production platforms. MedImmune's high yielding cloned MDCK cells used for the cell culture based vaccine production were highly permissive to both egg and cell produced ca attenuated influenza viruses. Both the A549 and NCI H292 cells regardless of production system were less permissive to influenza A and B viruses than the MDCK cells. Irrespective of the indicator cell line used the replication properties were similar between egg and the cell produced influenza viruses. Based on these study results we conclude that the MDCK cell produced and egg produced vaccine strains are highly comparable.  相似文献   

5.
《Vaccine》2018,36(14):1871-1879
The continued detection of zoonotic influenza infections, most notably due to the avian influenza A H5N1 and H7N9 subtypes, underscores the need for pandemic preparedness. Decades of experience with live attenuated influenza vaccines (LAIVs) for the control of seasonal influenza support the safety and effectiveness of this vaccine platform. All LAIV candidates are derived from one of two licensed master donor viruses (MDVs), cold-adapted (ca) A/Ann Arbor/6/60 or ca A/Leningrad/134/17/57. A number of LAIV candidates targeting avian H5 influenza viruses derived with each MDV have been evaluated in humans, but have differed in their infectivity and immunogenicity. To understand these differences, we generated four H5N2 candidate pandemic LAIVs (pLAIVs) derived from either MDV and compared their biological characteristics in vitro and in vivo. We demonstrate that all candidate pLAIVs, regardless of gene constellation and derivation, were comparable with respect to infectivity, immunogenicity, and protection from challenge in the ferret model of influenza. These observations suggest that differences in clinical performance of H5 pLAIVs may be due to factors other than inherent biological properties of the two MDVs.  相似文献   

6.

Background

We describe the results of an open label Phase I trial of a live attenuated H6N1 influenza virus vaccine (ClinicalTrials.gov Identifier: NCT00734175).

Methods and findings

We evaluated the safety, infectivity, and immunogenicity of two doses of 107 TCID50 of the H6N1 Teal HK 97/AA ca vaccine, a cold-adapted and temperature sensitive live, attenuated influenza vaccine (LAIV) in healthy seronegative adults.Twenty-two participants received the first dose of the vaccine, and 18 received the second dose of vaccine 4 weeks later. The vaccine had a safety profile similar to that of other investigational LAIVs bearing avian hemagglutinin (HA) and neuraminidase (NA) genes. The vaccine was highly restricted in replication: two participants had virus detectable by rRT-PCR beyond day 1 after each dose. Antibody responses to the vaccine were also restricted: 43% of participants developed a serum antibody response as measured by any assay: 5% by hemagglutination-inhibition assay, 5% by microneutralization assay, 29% by ELISA for H6 HA-specific IgG and 24% by ELISA for H6 HA specific IgA after either 1 or 2 doses. Following the second dose, vaccine specific IgG and IgA secreting cells as measured by ELISPOT increased from a mean of 0.6 to 9.2/106 PBMCs and from 0.2 to 2.2/106 PBMCs, respectively.

Conclusion

The H6N1 LAIV had a safety profile similar to that of LAIV bearing other HA and NA genes, but was highly restricted in replication in healthy seronegative adults. The H6N1 LAIV was also not as immunogenic as the seasonal LAIV.  相似文献   

7.
《Vaccine》2021,39(24):3225-3235
Live Attenuated Influenza Virus (LAIV) is administered to and replicates in the sinonasal epithelium. Candidate LAIV vaccine strains are selected based on their ability to replicate to a high titer in embryonated hen’s eggs, a process that can lead to mutations which alter the receptor binding and antigenic structure of the hemagglutinin (HA) protein. In the 2012–2013 northern hemisphere vaccine, the H3N2 HA vaccine strain contained three amino acid changes - H156Q, G186V and S219Y – which altered HA antigenic structure and thus presumably decreased vaccine efficacy. To determine if these mutations also altered LAIV replication, reabcombinant viruses were created that encoded the wild-type (WT) parental HA of A/Victoria/361/2011 (WT HA LAIV), the egg adapted HA (EA HA LAIV) from the A/Victoria/361/2011 vaccine strain and an HA protein with additional amino acid changes to promote α2,3 sialic acid binding (2,3 EA HA LAIV). The WT HA LAIV bound α2,6 sialic compared to the EA HA LAIV and 2,3 EA HA LAIV which both demonstrated an increased preference for α2,3 sialic acid. On MDCKs, the WT HA and EA HA LAIVs showed similar replication at 32 °C but at 37 °C the EA HA LAIV replicated to lower infectious virus titers. The 2,3 EA HA LAIV replicated poorly at both temperatures. This replication phenotype was similar on human nasal epithelial cell (hNEC) cultures, however the WT HA LAIV induced the highest amount of IFN-λ and infected more nasal epithelial cells compared to the other viruses. Together, these data indicate that egg adaption mutations in the HA protein that confer preferential α2,3 sialic acid binding may adversely affect LAIV replication and contribute to reduced vaccine efficacy.  相似文献   

8.
9.
Pearce MB  Belser JA  Houser KV  Katz JM  Tumpey TM 《Vaccine》2011,29(16):2887-2894
In March 2009, a swine origin influenza A (2009 H1N1) virus was introduced into the human population and quickly spread from North America to multiple continents. Human serologic studies suggest that seasonal influenza virus vaccination or infection would provide little cross-reactive serologic immunity to the pandemic 2009 H1N1 virus. However, the efficacy of seasonal influenza infection or vaccination against 2009 H1N1 virus replication and transmission has not been adequately evaluated in vivo. Here, ferrets received one or two doses of the US licensed 2008-2009 live attenuated influenza vaccine (LAIV) intranasally. An additional group of ferrets were inoculated with the A/Brisbane/59/07 (H1N1) virus to model immunity induced by seasonal influenza virus infection. All vaccinated and infected animals possessed high titer homologous hemagglutination-inhibition (HI) and neutralizing antibodies, with no demonstrable cross-reactive antibodies against 2009 H1N1 virus. However, in comparison to non-immune controls, immunized ferrets challenged with pandemic A/Mexico/4482/09 virus displayed a significant reduction in body temperature and virus shedding. The impact of single-dose LAIV inoculation on 2009 H1N1 disease and virus transmission was also measured in vaccinated ferrets that were challenged with pandemic A/Netherlands/1132/09 virus. Although a single dose of LAIV reduced virus shedding and the frequency of transmission following homologous seasonal virus challenge, it failed to reduce respiratory droplet transmission of 2009 H1N1 virus. The results demonstrate that prior immunization with seasonal LAIV or H1N1 virus infection provides some cross-protection against the 2009 H1N1 virus, but had no significant effect on the transmission efficiency of the 2009 H1N1 virus.  相似文献   

10.
《Vaccine》2022,40(19):2723-2732
Control of swine influenza A virus (swIAV) in North America and Europe is complicated because multiple antigenically distinct swIAV strains co-circulate in the field, and no vaccine is available that can provide broad cross-protection against all these swIAVs. In 2017, the first live attenuated influenza vaccine (LAIV) for swine was licensed in the US. The non-structural protein 1 (NS1)-truncated cluster I H3N2 strain A/swine/Texas/4199-2/98 NS1del126 (TX98 LAIV) in this vaccine provides partial cross-protection against heterologous North American cluster II and IV H3N2 swIAV strains. Its efficacy against European or more recent North American H3N2 lineages remains to be investigated. In this study, we evaluated the level of cross-protection against heterologous IAVs representative of the major H3N2 swIAV lineages in Europe and North America. TX98 LAIV prevented both nasal shedding and replication in the lungs of a North American cluster IV H3N2 swIAV for 2/4 pigs, prevented considerable nasal shedding of a North American novel human-like H3N2 swIAV for 2/4 pigs, and reduced replication of a European H3N2 swIAV in the lower respiratory tract to minimal titers for 1/3 pigs. Although TX98 LAIV elicited neutralizing antibodies against the homologous virus in serum and to a lesser extent in nose and lungs, no significant cross-reactive antibody titers against the heterologous swIAVs were detected. Partial cross-protection therefore likely relies on cellular and mucosal immune responses against conserved parts of the swIAV proteins. Since TX98 LAIV can offer partial protection against a broad range of H3N2 swIAVs, it might be a suitable priming vaccine for use in a heterologous prime-boost vaccination strategy.  相似文献   

11.
《Vaccine》2016,34(2):218-224
BackgroundAvian influenza H5N1 viruses have been enzootic in Egyptian poultry since 2006. Avian influenza H9N2 viruses which have been circulating in Egyptian poultry since 2011 showed high replication rates in embryonated chicken eggs and mammalian cells.MethodsTo investigate which gene segment was responsible for increasing replication, we constructed reassortant influenza viruses using the low pathogenic H1N1 PR8 virus as backbone and included individual genes from A/chicken/Egypt/S4456B/2011(H9N2) virus. Then, we invested this finding to improve a PR8-derived H5N1 influenza vaccine strain by incorporation of the NA segment of H9N2 virus instead of the NA of H5N1. The growth properties of this virus and several other forms of reassortant H5 viruses were compared. Finally, we tested the efficacy of this reassortant vaccine strain in chickens.ResultsWe observed an increase in replication for a reassortant virus expressing the neuraminidase gene (N2) of H9N2 virus relative to that of either parental viruses or reassortant PR8 viruses expressing other genes. Then, we generated an H5N2 vaccine strain based on the H5 from an Egyptian H5N1 virus and the N2 from an Egyptian H9N2 virus on a PR8 backbone. This strain had better replication rates than an H5N2 reassortant strain on an H9N2 backbone and an H5N1 reassortant on a PR8 backbone. This virus was then used to develop a killed, oil-emulsion vaccine and tested for efficacy against H5N1 and H9N2 viruses in chickens. Results showed that this vaccine was immunogenic and reduced mortality and shedding.DiscussionOur findings suggest that an inactivated PR8-derived H5N2 influenza vaccine is efficacious in poultry against H5N1 and H9N2 viruses and the vaccine seed replicates at a high rate thus improving vaccine production.  相似文献   

12.
《Vaccine》2015,33(36):4495-4504
Live Attenuated Influenza Vaccine (LAIV) strains are associated with cold adapted, temperature sensitive and attenuated phenotypes that have been studied in non-human or immortalized cell cultures as well as in animal models. Using a primary, differentiated human nasal epithelial cell (hNEC) culture system we compared the replication kinetics, levels of cell-associated viral proteins and virus particle release during infection with LAIV or the corresponding wild type (WT) influenza viruses. At both 33 °C and 37 °C, seasonal influenza virus and an antigenically matched LAIV replicated to similar titers in MDCK cells but seasonal influenza virus replicated to higher titers than LAIV in hNEC cultures, suggesting a greater restriction of LAIV replication in hNEC cultures. Despite the disparity in infectious virus production, the supernatants from H1N1 and LAIV infected hNEC cultures had equivalent amounts of viral proteins and hemagglutination titers, suggesting the formation of non-infectious virus particles by LAIV in hNEC cultures.  相似文献   

13.
Chen H  Matsuoka Y  Swayne D  Chen Q  Cox NJ  Murphy BR  Subbarao K 《Vaccine》2003,21(27-30):4430-4436
H9N2 subtype influenza A viruses have been identified in avian species worldwide and were isolated from humans in 1999, raising concerns about their pandemic potential and prompting the development of candidate vaccines to protect humans against this subtype of influenza A virus. Reassortant H1N1 and H3N2 human influenza A viruses with the internal genes of the influenza A/Ann Arbor/6/60 (H2N2) (AA) cold-adapted (ca) virus have proven to be attenuated and safe as live virus vaccines in humans. Using classical genetic reassortment, we generated a reassortant virus (G9/AA ca) that contains the hemagglutinin and neuraminidase genes from influenza A/chicken/Hong Kong/G9/97 (H9N2) (G9) and six internal gene segments from the AA ca virus. When administered intranasally, the reassortant virus was immunogenic and protected mice from subsequent challenge with wild-type H9N2 viruses, although it was restricted in replication in the respiratory tract of mice. The G9/AA ca virus bears properties that are desirable in a vaccine for humans and is available for clinical evaluation and use, should the need arise.  相似文献   

14.
《Vaccine》2022,40(32):4544-4553
From 2013 to 2016, the H1N1 component of live, attenuated influenza vaccine (LAIV) performed very poorly in contrast to the inactivated influenza vaccine. We utilized a primary, differentiated human nasal epithelial cell (hNEC) culture system to assess the replication differences between isogenic LAIVs containing the HA segment from either A/Bolivia/559/2013 (rBol), which showed poor vaccine efficacy, and A/Slovenia/2903/2015 (rSlov), which had reasonable vaccine efficacy. There were minimal differences in infectious virus production in Madin-Darby Canine Kidney (MDCK) cells, but the rSlov LAIV showed markedly improved replication in hNEC cultures at both 32 °C and 37 °C, demonstrating that the HA segment alone could impact LAIV replication in physiologically relevant systems. The rSlov-infected hNEC cultures showed stronger production of interferon and proinflammatory chemokines which might also be contributing to the increased overall vaccine effectiveness through enhanced recruitment and activation of immune cells. An M2-S86A mutation had no positive effects on H1 LAIV replication in hNEC cultures, in contrast to the increased infectious virus production seen in an H3 LAIV. No obvious defects in viral RNA packaging were detected, suggesting that HA function, rather than defective particle production, may be driving the differential infectious virus production in hNEC cultures. Overall, we have shown that not all H1 HA segments can be successfully used in LAIV, and this phenotype cannot be fully explained by segment incompatibilities. Physiologically relevant temperatures and primary cell cultures should be used to demonstrate that candidate LAIVs can replicate efficiently, which is a necessary property for effective vaccines.  相似文献   

15.
Reassortment of influenza viruses in nature has been well documented. Genetic reassortment plays a key role in emergence of new influenza A strains, including pandemic viruses. Permissive host can be simultaneously coinfected with multiple influenza viruses. During genetic reassortment gene segments are exchanged between parental viruses that may lead to some enhancement of virulence of reassortant progeny. At present, vaccination with live attenuated cold-adapted (ca) reassortant vaccine (LAIV) is used as an effective public health measure for influenza prophylaxis. However, there are concerns about a potential of simultaneous infection of human host with ca and wild type (wt) influenza viruses which might produce progeny that contain novel, more virulent genotypes. The aim of this study was to investigate potential consequences of reassortment of wt with LAIV strains in vivo.  相似文献   

16.
《Vaccine》2016,34(42):5066-5072
PurposeThis analysis examined potential causes of the lack of vaccine effectiveness (VE) of live attenuated influenza vaccine (LAIV) against A/H1N1pdm09 viruses in the United States (US) during the 2013–2014 season. Laboratory studies have demonstrated reduced thermal stability of A/California/07/2009, the A/H1N1pdm09 strain utilized in LAIV from 2009 through 2013–2014.MethodsPost hoc analyses of a 2013–2014 test-negative case-control (TNCC) effectiveness study investigated associations between vaccine shipping conditions and LAIV lot effectiveness. Investigational sites provided the LAIV lot numbers administered to each LAIV recipient enrolled in the study, and the vaccine distributor used by the site for commercially purchased vaccine. Additionally, a review was conducted of 2009–2014 pediatric observational TNCC effectiveness studies of LAIV, summarizing effectiveness by type/subtype, season, and geographic location.ResultsFrom the 2013 to 2014 TNCC study, the proportion of LAIV recipients who tested positive for H1N1pdm09 was significantly higher among children who received a lot released between August 1 and September 15, 2013, compared with a lot shipped either earlier or later (21% versus 4%; P < 0.01). A linear relationship was observed between the proportion of subjects testing positive for H1N1pdm09 and outdoor temperatures during truck unloading at distributors’ central locations. The review of LAIV VE studies showed that in the 2010–2011 and 2013–2014 influenza seasons, no significant effectiveness of LAIV against H1N1pdm09 was demonstrated for the trivalent or quadrivalent formulations of LAIV in the US, respectively, in contrast to significant effectiveness against A/H3N2 and B strains during 2010–2014.ConclusionsThis study showed that the lack of VE observed with LAIV in the US against H1N1pdm09 viruses was associated with exposure of some LAIV lots to temperatures above recommended storage conditions during US distribution, and is likely explained by the increased susceptibility of the A/California/7/2009 (H1N1pdm09) LAIV strain to thermal degradation.Clinical trial registry: NCT01997450  相似文献   

17.
Block SL  Yi T  Sheldon E  Dubovsky F  Falloon J 《Vaccine》2011,29(50):9391-9397

Background

Trivalent seasonal influenza vaccines contain 2 A strains and 1 B strain. B strains of 2 antigenically distinct lineages, Yamagata and Victoria, have been co-circulating annually, and the B strain included in vaccines often has not been a lineage match to the major circulating strain. Thus, a vaccine containing B strains from both lineages could broaden protection against influenza. Quadrivalent live attenuated influenza vaccine (Q/LAIV) is an investigational 4-strain formulation of LAIV that contains 2 A strains, A/H1N1 and A/H3N2, and 2 B strains, 1 from each lineage.

Methods

A randomized, double-blind, active-controlled study of Q/LAIV was conducted in 1800 adults aged 18-49 years to compare the immunogenicity and safety of Q/LAIV to trivalent LAIV (T/LAIV). Subjects were randomized 4:1:1 to receive an intranasal dose of Q/LAIV (n = 1200) or 1 of 2 matching T/LAIV vaccines, each containing 1 of the B strains included in Q/LAIV (n = 600 total). The primary endpoint was the comparison of the post-vaccination strain-specific geometric mean titers (GMT) of hemagglutination inhibition antibody in Q/LAIV recipients to those in T/LAIV recipients, with immunologic noninferiority of Q/LAIV to be demonstrated if the upper bound of the 2-sided 95% confidence interval (CI) for the ratio of the GMTs [T/LAIV divided by Q/LAIV] was ≤1.5 for all strains.

Results and Conclusion

Q/LAIV met the criteria for noninferiority: the ratios of the GMTs for the A/H1N1, A/H3N2, B/Yamagata, and B/Victoria strains were 1.09 (95% CI, 1.01-1.18), 1.05 (95% CI, 0.96-1.14), 1.10 (95% CI, 0.97-1.25), and 0.92 (95% CI, 0.82-1.03), respectively. Solicited symptoms and adverse events were similar in the Q/LAIV and T/LAIV arms. Q/LAIV may confer increased protection against influenza by targeting B strains from both lineages.  相似文献   

18.
《Vaccine》2021,39(46):6735-6745
In the 2013–2014 and 2015–2016 seasons, quadrivalent live attenuated influenza vaccine (LAIV) showed reduced pandemic 2009 H1N1 (A/H1N1pdm09) vaccine effectiveness (VE) in the U.S. Impaired fitness of A/H1N1pdm09 LAIV strains in primary human nasal epithelial cells (hNEC) was subsequently shown to be associated with reduced VE. As defective viral genes (DVG) have been detected in QLAIV, it was hypothesised that these might play a role in reduced A/H1N1pdm09 fitness. By applying RT-PCR based approaches, DVG for PB2, PB1 and PA segments were detected in all influenza A LAIV strains tested. Absolute quantification of PA vRNA as a biomarker, using a novel digital RT-PCR assay (RT-dPCR), showed that DVG were a minority population (between 10.2 and 27.8 % of PA vRNA) in LAIV, irrespective of subtype or VE. Importantly, no difference was observed between the fitter pre-2009 H1N1 A/New Caledonia/20/1999 (A/NC99) and less fit A/H1N1pdm09 A/Bolivia/509/2013 (A/BOL13), containing medians of 16.0 % and 10.2 % PA DVG, respectively. Manipulating propagation conditions and minimising A/BOL13 PA DVG to 5.2 % failed to improve viral replication in hNEC, suggesting DVG were not limiting A/BOL13 fitness. Conversely, DVG were able to reduce A/NC99 replication in hNEC to A/BOL13-like levels, but only by enrichment of PA DVG to 66.5 % of vRNA. Notably, this required LAIV propagation under conditions markedly different to those used for vaccine production. We conclude from these data that abundance of DVG in QLAIV is not associated with variations in influenza A VE and that the reduced fitness of A/BOL13 previously described was not driven by the presence of DVG.  相似文献   

19.
Influenza H3N2 viruses have recently drifted from A/Wisconsin/67/05-like to A/Brisbane/10/07-like viruses. The effect of key amino acid substitutions in the hemagglutinin (HA) protein on the replication, antigenicity and immunogenicity of cold-adapted, live attenuated vaccine strains was examined. A/Brisbane/10/07 egg isolate contained a unique combination of G186 and P194 which were required for efficient virus growth in Madin–Darby Canine Kidney (MDCK) cells and embryonated chicken eggs, but the virus induced low level of serum antibody response in ferrets. Substitution of the G186 and P194 in the HA of A/Brisbane/10/07 by V186 and L194 that were present in the HA of A/Wisconsin/67/05-like viruses significantly impaired virus replication but greatly improved the immunogenicity of the vaccine virus to a level comparable to that elicited by the A/Wisconsin/67/05 vaccine. The replication of the variants with impaired growth could be improved by amino acid substitutions at the 195 or 226 residues. The viruses with the G186 and P194 residues were antigenically distinct from the viruses with V186 and L194. Sequence analysis of the HA sequences of the H3N2 viruses from the database and sequencing of the HA gene of a cell-derived A/Brisbane/10/07-like virus before and after egg passage indicated that the P194 residue was most likely derived from egg adaptation. Our results demonstrated the importance of careful evaluation of vaccine strains to ensure that the selected vaccines not only replicate well in eggs, but also retain their antigenicity and are immunogenic in the host.  相似文献   

20.
《Vaccine》2020,38(5):1001-1008
BackgroundQuadrivalent live attenuated influenza vaccine (LAIV4) showed reduced effectiveness against the A/H1N1 component in the 2013–2014 and 2015–2016 influenza seasons. The most likely cause of reduced LAIV effectiveness against A(H1N1)pdm09 strains was poor intranasal replication.ObjectivesTo compare the immunogenicity and shedding of a new A/H1N1 strain (A/Slovenia), to a A/H1N1 strain known to have reduced effectiveness (A/Bolivia).Patients/methodsThis was a randomized, double-blind, multicenter study. Children aged 24–<48 months of age were randomized 1:1:1 to receive two doses of LAIV4 2017–2018 (LAIV4A/Slovenia), or LAIV4 2015–2016 or trivalent LAIV (LAIV3) 2015–2016 formulations (LAIV4A/Bolivia or LAIV3A/Bolivia, respectively) on days 1 and 28. The primary endpoint was strain-specific hemagglutination inhibition (HAI) antibody seroresponse at 28 days post each dose, and secondary endpoints included immunogenicity, shedding, and safety. Solicited symptoms, adverse events (AEs), and serious AEs (SAEs) were recorded. Pre-specified statistical testing was limited to the primary endpoint of HAI antibody responses.ResultsA total of 200 children were randomized (median age 35.3 months; 53% male; 57% had previously received influenza vaccine). Significantly higher HAI antibody responses for the A/Slovenia strain were observed after Dose 1 and Dose 2. Neutralizing antibodies and nasal immunoglobulin A antibody responses were higher for A/Slovenia versus A/Bolivia. More children shed the A/Slovenia vaccine strain than the A/Bolivia strain on Days 4–7 after Dose 1. No deaths, SAEs, or discontinuations from vaccine occurred.ConclusionsThe new A(H1N1)pdm09 A/Slovenia LAIV strain demonstrated improved immunogenicity compared with a previous strain with reduced effectiveness and induced immune responses comparable to a highly efficacious pre-pandemic H1N1 LAIV strain. These results support the use of LAIV4 containing A/Slovenia as a vaccine option in clinical practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号