首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolic effects of dobutamine in normal man.   总被引:4,自引:0,他引:4  
1. Dobutamine in 5% (w/v) D-glucose was infused at sequential doses of 2, 5 and 10 micrograms min-1 kg-1, 45 min at each dose, into eight healthy male subjects, and the effects were compared with those produced by infusion of the corresponding volumes of 5% (w/v) D-glucose alone. 2. The energy expenditure increased and was 33% higher than control (P less than 0.001) at 10 micrograms of dobutamine min-1 kg-1. The respiratory exchange ratio decreased from 0.85 (SEM 0.02) before infusion to 0.80 (SEM 0.01) at 10 micrograms of dobutamine min-1 kg-1, but did not alter during the placebo infusion (P less than 0.001). 3. Plasma noradrenaline concentrations were lower during the dobutamine infusion compared with during the infusion of D-glucose alone (P less than 0.025). Plasma dopamine concentrations remained below 0.1 nmol/l throughout both infusions. 4. Compared with during the placebo infusion, the blood glucose concentration decreased (P less than 0.001), the plasma glycerol and free fatty acid concentrations increased by 150 and 225%, respectively (both P less than 0.001), and the plasma potassium concentration decreased from 3.8 (SEM 0.07) to 3.6 (SEM 0.04) mmol/l (P less than 0.01) during dobutamine infusion. The plasma insulin concentration increased at 2 and 5 micrograms of dobutamine min-1 kg-1 (P less than 0.001) with no further rise at 10 micrograms of dobutamine min-1 kg-1. 5. Compared with during the placebo infusion, the systolic and diastolic blood pressures and the heart rate increased during dobutamine infusion (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effect of low-dose dopamine infusion on anterior pituitary hormone secretion in a group of seven healthy female subjects is reported. Subjects were infused with NaCl solution (154 mmol/l) (control) or dopamine (0.01 and 0.1 micrograms min-1 kg-1 for 120 min at each rate) on separate days in the early follicular phase of consecutive menstrual cycles. Serum prolactin decreased during infusion of dopamine at 0.01 micrograms min-1 kg-1 but a similar fall was found in the control group. When the rate of dopamine infusion was increased to 0.1 micrograms min-1 kg-1 a further substantial decrease in prolactin concentration occurred, whereas prolactin in the control group showed no change. At the end of the period of dopamine infusion at 0.1 micrograms min-1 kg-1 serum prolactin remained significantly (P less than 0.025) lower than in the control group (85 +/- 12 vs 180 +/- 21 m-units/1). No change in thyrotrophin (TSH), growth hormone (GH) or luteinizing hormone (LH) was seen during either rate of dopamine infusion compared with control. While dopamine infusion at 0.1 micrograms min-1 kg-1 caused significant inhibition of prolactin secretion in normal female subjects, other pituitary hormone secretion was not affected: it is suggested that under the conditions of this study dopamine in hypophysial portal blood is not of primary importance in the control of basal TSH, GH and LH release.  相似文献   

3.
1. Experimental elevation of plasma non-esterified fatty acid concentrations has been postulated to decrease insulin-stimulated glucose oxidation and storage rates. Possible mechanisms were examined by measuring skeletal muscle glycogen synthase activity and muscle glycogen content before and during hyperinsulinaemia while fasting plasma non-esterified fatty acid levels were maintained. 2. Fasting plasma non-esterified fatty acid levels were maintained in seven healthy male subjects by infusion of 20% (w/v) Intralipid (1 ml/min) for 120 min before and during a 240 min hyperinsulinaemic euglycaemic clamp (100 m-units h-1 kg-1) combined with indirect calorimetry. On the control day, 0.154 mol/l NaCl was infused. Vastus lateralis muscle biopsy was performed before and at the end of the insulin infusion. 3. On the Intralipid study day serum triacylglycerol (2.24 +/- 0.20 versus 0.67 +/- 0.10 mmol/l), plasma nonesterified fatty acid (395 +/- 13 versus 51 +/- 1 mumol/l), blood glycerol (152 +/- 2 versus 11 +/- 1 mumol/l) and blood 3-hydroxybutyrate clamp levels [mean (95% confidence interval)] [81 (64-104) versus 4 (3-5) mumol/l] were all significantly higher (all P less than 0.001) than on the control study day. Lipid oxidation rates were also elevated (1.07 +/- 0.07 versus 0.27 +/- 0.08 mg min-1 kg-1, P less than 0.001). During the clamp with Intralipid infusion, insulin-stimulated whole-body glucose disposal decreased by 28% (from 8.53 +/- 0.77 to 6.17 +/- 0.71 mg min-1 kg-1, P less than 0.005).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
gamma-L-Glutamyl-L-dopa was given by intravenous infusion to eight normal subjects at doses of 12.5 and 100 micrograms min-1 kg-1. Both doses of the dipeptide resulted in an increase in mean urinary sodium excretion. Mean effective renal plasma flow rose at both doses, but mean glomerular filtration rate increased only at the lower dose. There was a fall in mean plasma renin activity after the infusion of both 12.5 and 100 micrograms min-1 kg-1. Mean urine free dopamine excretion increased by 280- and 2500-fold at infusion rates of 12.5 and 100 micrograms min-1 kg-1 respectively. Mean plasma free dopamine rose at both doses but the increase at 12.5 micrograms min-1 kg-1 was not to a level previously associated with systemic effects of the catecholamine. On administration of the dipeptide at 12.5 micrograms min-1 kg-1 there were no changes in blood pressure or heart rate, but at the higher dose there was a fall in diastolic blood pressure. At a dose of 12.5 micrograms min-1 kg-1 in man, there is kidney specific conversion of gludopa to dopamine.  相似文献   

5.
1. Using the renal clearance of lithium (CLi) as an index of proximal tubular outflow of sodium and water, together with simultaneous measurements of effective renal plasma flow, glomerular filtration rate (GFR) and sodium clearance (CNa), renal function and the tubular segmental reabsorption rates of sodium and water during dopamine infusion (3 micrograms min-1 kg-1) were estimated in 12 normal volunteers. 2. CNa increased by 128% (P less than 0.001). Effective renal plasma flow and GFR increased by 43% (P less than 0.001) and 9% (P less than 0.01), respectively. CLi increased in all subjects by, on average, 44% (P less than 0.001). Fractional proximal reabsorption [1-(CLi/GFR)] decreased by 13% after dopamine infusion (P less than 0.001), and estimated absolute proximal reabsorption rate (GFR-CLi) decreased by 8% (P less than 0.01). Absolute distal sodium reabsorption rate [(CLi-CNa) x PNa, where PNa is plasma sodium concentration] increased (P less than 0.001), and fractional distal sodium reabsorption [(CLi-CNa)/CLi] decreased (P less than 0.001). 3. It is concluded that natriuresis during low-dose dopamine infusion is caused by an increased outflow of sodium from the proximal tubules that is not fully compensated for in the distal tubules.  相似文献   

6.
1. The effects of intravenous metoclopramide on baseline values and dopamine dose-response curves for renal haemodynamics and natriuresis were investigated in healthy volunteers and patients with renal disease. 2. Dopamine infusion alone, in doses ranging from 0.25 to 8 micrograms min-1 kg-1, resulted in a dose-dependent increase in effective renal plasma flow (ERPF) and glomerular filtration rate (GFR) with a fall in filtration fraction (FF) in eight hydrated healthy volunteers and, to a lesser degree, in 12 patients with renal disease. An increase in natriuresis (urinary excretion of sodium, UNa+V), fractional excretion of sodium (FENa+) and diuresis (urine flow rate, UV) was found in both groups for doses of 2 micrograms min-1 kg-1 and higher. 3. Metoclopramide infusion did not alter baseline values of GFR, ERPF or FF, but shifted the dopamine dose-response curve for ERPF and FF in the healthy volunteers. Metoclopramide induced a fall in UNa+V and FENa+ in both groups (fall in baseline FENa+ from 1.52 to 0.71 during metoclopramide in healthy volunteers and from 1.23 to 0.56 in patients; P less than 0.01) and blunted the natriuretic response to subsequent dopamine infusion. The fall in UNa+V during metoclopramide infusion showed a strong correlation with baseline GFR (r = -0.944). In the patients, the response for the fractional excretions of beta 2-microglobulin and gamma-glutamyltransferase was comparable with that of FENa+. 4. Dopamine infusion induced a fall, and metoclopramide led to rise, in plasma aldosterone concentration. 5. We conclude that metoclopramide acts as a dopamine antagonist at the renal level in man.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
1. To investigate the possible role of adrenaline as a modulator of noradrenaline release from the sympathetic nervous system, the responses of cardiac and whole-body noradrenaline kinetics to intravenous infusions of adrenaline (30 ng min-1 kg-1) and matching saline placebo were determined at rest and during supine bicycle exercise in 16 patients undergoing cardiac catheterization, in whom beta-adrenoceptor antagonists had been discontinued for 72 h. 2. At rest and compared with placebo, infusion of adrenaline was associated with a small increase in arterial plasma noradrenaline from 211 +/- 29 pg/ml to 245 +/- 29 pg/ml (P less than 0.05). Increases in whole-body noradrenaline spillover to arterial plasma were larger (from 282 +/- 40 ng min-1 m-2 to 358 +/- 41 ng min-1 m-2, P less than 0.01) and there was a trend towards an increase in whole-body noradrenaline clearance. Cardiac noradrenaline clearance was modestly increased during adrenaline infusion, but cardiac noradrenaline spillover was not altered despite increases in heart rate and coronary sinus plasma flow. Adrenaline infusion was associated with symptomatic myocardial ischaemia in four of 14 patients with coronary heart disease. 3. Supine bicycle exercise was associated with significant increases in peripheral noradrenaline concentrations and in cardiac and whole-body noradrenaline spillover. The increases on exercise were not significantly different for these variables during saline and adrenaline infusions. 4. Infusion of adrenaline to produce 'physiological' increases in plasma adrenaline concentration was associated with an increase in total noradrenaline release, as assessed by whole-body noradrenaline spillover to plasma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
1. The response of systemic and regional haemodynamic indices to increasing infusion rates of angiotensin II (1, 3 or 10 ng min-1 kg-1) or placebo [5% (w/v) D-glucose] was studied in eight normal male subjects. 2. As compared with placebo, angiotensin II infusion caused an incremental rise in the serum angiotensin II level [14.5 +/- 7.7 (placebo) to 187.2 +/- 36.1 (10 ng of angiotensin II min-1 kg-1) pmol/l; mean +/- 95% confidence interval] associated with a stepwise increase in total peripheral resistance [880 +/- 42 (placebo) to 1284 +/- 58 (10 ng of angiotensin II min-1 kg-1) dyn s cm-5] and a progressive reduction in cardiac output [8.3 +/- 0.4 (placebo) to 7.0 +/- 0.4 (10 ng of angiotensin II min-1 kg-1) litres/min]. 3. A stepwise fall in renal blood flow was observed with increasing angiotensin II infusion rate [1302 +/- 65 (placebo) to 913 +/- 64 (10 ng of angiotensin II min-1 kg-1) ml/min]. In contrast, calf blood flow was unaffected by 1 ng or 3 ng of angiotensin II min-1 kg-1 and was significantly increased by 10 ng of angiotensin II min-1 kg-1 (P less than 0.01). 4. Calf venous capacitance was uninfluenced by 1 ng of angiotensin II min-1 kg-1, but was significantly increased by both 3 ng (P less than 0.005) and 10 ng (P less than 0.001) of angiotensin II min-1 kg-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The contribution of pulmonary and hind limb circulation to the clearance of exogenous catecholamines was analyzed quantitatively. During infusion of clinical doses of norepinephrine, epinephrine and dopamine in dogs, the plasma level of catecholamine and the plasma flow were measured simultaneously. Percentage of contribution was calculated from the following equation; transorgan difference of plasma catecholamine (nanograms per milliliter) X plasma flow (milliliters per minute) X 100/dose (nanograms per minute). This value means the percentage of the amount of catecholamine cleared by an organ to the amount of catecholamine administered into the body. Small but significant transpulmonary gradients of plasma levels of norepinephrine, epinephrine and dopamine and large translimb gradients of plasma levels of these catecholamines were observed. The plasma flow of pulmonary circulation was increased by infusion of epinephrine and dopamine, whereas it remained unchanged by infusion of norepinephrine. The plasma flow of hind limb circulation showed no significant change by infusion of catecholamines. The calculated contribution values indicate that pulmonary circulation clears 35.7% of norepinephrine (at 0.2 ng X kg-1 X min-1), 27.1% of epinephrine (0.2 ng X kg-1 X min-1) and 21.5% of dopamine (10 micrograms X kg-1 X min-1) administered exogenously, and that the corresponding figures for hind limb circulation are 8.2, 7.8 and 4.5%.  相似文献   

10.
Airway, cardiovascular and metabolic responses were measured in six asthmatic patients with stable asthma during separate adrenaline, noradrenaline and control infusions. Four incremental infusion rates (4, 10, 25 and 62.5 ng min-1 kg-1) produced circulating catecholamine concentrations within the physiological range. Specific airways conductance and maximal expiratory flow rates measured from complete and partial flow-volume curves increased significantly (P less than 0.05) during adrenaline infusion, in a dose-response manner. No changes in specific airways conductance or maximal expiratory flow rates were seen during the noradrenaline or control infusion. The highest adrenaline infusion rate caused a rise in systolic blood pressure (P less than 0.05) and plasma glucose (P less than 0.05) and a fall in plasma potassium (P less than 0.05). Noradrenaline infusion caused a slight increase in diastolic blood pressure (P less than 0.05) but no metabolic changes. No cardiovascular or metabolic changes occurred during the control infusion. Infused adrenaline, producing circulating concentrations within the physiological range, caused dose-related bronchodilatation in asthmatic patients. Circulating noradrenaline does not appear to have a role in the control of basal airway tone in asthmatic patients.  相似文献   

11.
1. The effect of hyperketonaemia on counter-regulatory hormone responses to hypoglycaemia has been examined in six healthy subjects. 2. A controlled, step-wise reduction in blood glucose concentration was achieved by adjusting the rate of glucose infusion during a primed-continuous infusion of soluble insulin (1.5 m-units min-1 kg-1 body weight, plasma insulin concentration approximately 90 m-units/l). Simultaneous infusion of either saline or beta-hydroxybutyrate (3 mg min-1 kg-1 body weight) was administered in a single-blind fashion, in random order. Despite a need for 40% more glucose during the ketone infusion, an identical fall in blood glucose concentration was achieved in each study. 3. The glycaemic threshold for stimulating an adrenaline response of 0.41 nmol/l was reduced from 3.1 to 2.8 mmol/l (P less than 0.05) during ketone infusion, and that for stimulating a response of more than 50% of basal from 3.6 to 3.1 mmol/l (P less than 0.001). The peak adrenaline response fell from 7.97 to 2.6 nmol/l (P less than 0.04). Peak noradrenaline, cortisol and growth hormone responses were also significantly lower during ketone infusion (P = 0.04, 0.001 and 0.006, respectively). Glucagon responses alone were unaffected by hyperketonaemia. 4. The provision of an alternate metabolic fuel thus produced immediate changes in the neurohumoral responses to hypoglycaemia. This is consistent with the hypothesis that human nervous tissue can metabolize ketones acutely.  相似文献   

12.
1. The cardiovascular and metabolic responses to low doses of isoprenaline (15 and 5 ng min-1 kg-1 body weight infused over 30 min) were determined in six healthy males. The study was performed to investigate whether there were sustained effects after the termination of the isoprenaline infusion, as has been observed previously after the infusion of adrenaline. 2. The isoprenaline infusions produced dose-dependent increases in heart rate, systolic blood pressure and metabolic rate, but similar increases in calf blood flow and decreases in diastolic blood pressure for the two infusion rates. Finger tremor was increased in amplitude by the 15 ng min-1 kg-1 infusion only. The changes in each of these physiological variables largely resolved within a few minutes of discontinuing the isoprenaline infusions. 3. There were no changes in arterialized venous plasma adrenaline or noradrenaline levels during the isoprenaline infusions. Mean peak plasma isoprenaline levels were 0.16 +/- 0.02 nmol/l during the 5 ng min-1 kg-1 infusion and 0.71 +/- 0.05 nmol/l during the 15 ng min-1 kg-1 infusion. 4. Plasma insulin levels increased with isoprenaline but blood glucose concentrations were unchanged, consistent with a direct effect of isoprenaline on beta 2-adrenoceptors mediating insulin release from pancreatic beta-cells. Blood glycerol concentration also increased with isoprenaline but blood lactate concentration was unaltered. 5. The present study demonstrates pronounced cardiovascular and metabolic effects of low dose isoprenaline infusions. Differences in the rate of resolution of the changes induced by isoprenaline and by adrenaline seen in previous studies may result from a significant difference in their metabolism.  相似文献   

13.
Haemodynamic and metabolic effects of infused adenosine in man   总被引:5,自引:0,他引:5  
1. Haemodynamic and metabolic effects of intravenous infusion of adenosine, an endogenous vasodilator, were studied in healthy humans. 2. Catheters were inserted into pulmonary and brachial arteries and into the hepatic and subclavian veins. Cardiac output was determined according to the Fick principle, and splanchnic blood flow was measured by using extraction of Indocyanine Green. Skin blood flow was estimated by a laser Doppler technique, calf blood flow by venous occlusion plethysmography and skeletal muscle and adipose tissue blood flow by a local isotope clearance technique. 3. Adenosine (infused in steps from 40 to 80 micrograms min-1 kg-1 into a central vein) elicited a gradual reduction in the peripheral vascular resistance to less than 50% of the basal level. There was a slight increase in the systemic blood pressure, but the pulmonary arterial and the ventricular filling pressures were unchanged. Cardiac output was doubled, accomplished by a combination of a positive chronotropic effect and an increase in stroke volume, which may be secondary to diminished peripheral resistance. 4. Skin blood flow increased by 100% at 50 micrograms of adenosine min-1 kg-1, whereas splanchnic blood flow rose significantly at 60 micrograms of adenosine min-1 kg-1. Blood flow in the calf, gastrocnemius muscle and adipose tissue did not change significantly. 5. Arterial concentrations of noradrenaline and adrenaline increased by 62 and 43%, respectively, during infusion of adenosine. Arterial levels of glycerol were depressed by more than 50%, but those of glucose and pyruvate were unchanged. 6. In conclusion, exogenous adenosine caused a marked systemic vasodilatation, with different responsiveness in the investigated vascular beds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Synthetic oxyntomodulin, a predicted product of the glucagon gene, which is produced in the human lower intestinal mucosa, was infused in doses of 100 and 400 ng kg-1 h-1 into six volunteers to study its pharmacokinetics and effects on pentagastrin-stimulated gastric acid secretion (100 ng kg-1 h-1). The concentration of oxyntomodulin in plasma measured with a cross-reacting glucagon assay increased from 37 +/- 5 to 106 +/- 17 and 301 +/- 40 pmol l-1, respectively. The metabolic clearance rate was 5.2 +/- 0.7 ml kg-1 min-1 and the half-life in plasma was 12 +/- 1 min. Oxyntomodulin reduced the pentagastrin-stimulated acid secretion by 20 +/- 9% during the low-rate infusion (P less than 0.05) and by 76 +/- 10% during the high-rate infusion (P less than 0.05). In accordance with the homology with glucagon, there was a small, significant rise in plasma concentrations of insulin and insulin C-peptide during oxyntomodulin infusion. Oxyntomodulin may therefore be included among the potential incretins and enterogastrones in man.  相似文献   

15.
23 patients received controlled infusions of 10% glycerol solution using an "Infusomat". During various rates of infusion biokinetic parameters and renal excretion were measured. The concentration of glycerol in the serum rises over-proportional with increasing rates of infusion. The extrapolated maximal metabolic turnover capacity is 54 micronmol.kg-1.min-1. Halb-maximal turnover rate is reached at a serum level of 0,56 micronmol.ml-1. After an infusion of 0,3 g.kg-1.min-1 glycerol disappears from the blood with an elimination constant of 0,024 min-1 and a half life of 28,9 minutes. Renal excretion increases with the dose but remains below 10% of the dose in the investigated range. From the data it can be concluded that glycerol cannot be applicated in higher doses than other polyols. No adverse reactions have been observed in the range up to 0,3 g.kg-1.min-1.  相似文献   

16.
1. The blood pressure, heart rate, hormonal and pressor responses to constant rate infusion of various doses of the angiotensin (type 1) receptor antagonist Losartan (DuP 753/MK 954) were studied in the conscious salt-deplete dog. 2. Doses in the range 0.1-3 micrograms min-1 kg-1 caused no change in blood pressure, heart rate or pressor response to angiotensin II (54 ng min-1 kg-1), and a dose of 10 micrograms min-1 kg-1 had no effect on blood pressure, but caused a small fall in the pressor response to angiotensin II. Infusion of Losartan at 30 micrograms min-1 kg-1 for 3 h caused a fall in mean blood arterial pressure from baseline (110.9 +/- 11.2 to 95.0 +/- 12.8 mmHg) and a rise in heart rate (from 84.6 +/- 15.1 to 103 +/- 15.2 beats/min). Baseline plasma angiotensin II (42.5 +/- 11.8 pg/ml) and renin (64.5 +/- 92.7 mu-units/ml) concentrations were already elevated in response to salt depletion and rose significantly after Losartan infusion to reach a plateau by 70 min. The rise in mean arterial blood pressure after a test infusion of angiotensin II (35.3 +/- 11.6 mmHg) was reduced at 15 min (11.8 +/- 6.8 mmHg) by Losartan and fell progressively with continued infusion (3 h, 4.3 +/- 3.3 mmHg). The peak plasma angiotensin II concentration during infusion of angiotensin II was unaffected by Losartan, but the rise in plasma angiotensin II concentration during infusion was reduced because of the elevated background concentration. Noradrenaline infusion caused a dose-related rise in mean blood arterial pressure (1000 ng min-1 kg-1, +19.9 +/- 8 mmHg; 2000 ng min-1 kg-1, +52.8 +/- 13.9 mmHg) with a fall in heart rate (1000 ng min-1 kg-1, -27.9 +/- 11.5 beats/min; 2000 ng min-1 kg-1, -31.2 +/- 17.3 beats/min).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Ten healthy volunteers received intravenous infusions of arginine vasopressin (AVP) at 0.1 m-unit min-1 kg-1 and 5% D-glucose on separate days. AVP caused a small fall in forearm blood flow and small rises in mean arterial pressure and systemic vascular resistance. Cardiac output was unaffected. When subjects were tilted to 50 degrees the fall in forearm blood flow was much greater, mean fall being 44.8% with AVP compared with 18.2% with D-glucose. Cardiac output also fell significantly more with AVP, and diastolic pressure, mean arterial pressure and systemic vascular resistance rose significantly more on tilting during AVP infusion than with D-glucose. Six of the same volunteers were given sequential infusions of 'low dose' (0.0125 m-unit min-1 kg-1) and 'high dose' (0.3 m-unit min-1 kg-1) AVP on a third occasion. Tilting still produced a mean fall in forearm blood flow of 41.2% during low dose infusion, despite a mean plasma AVP level of only 1.9 pg/ml, which is well within the physiological range. When the AVP concentration was increased 24-fold to the high dose, forearm blood flow fell only a further 8.8%. The low dose infusion was also associated with a marked fall in cardiac output on tilting and a rise in systemic vascular resistance. We conclude that AVP has profound haemodynamic effects in man at physiological concentrations. Although these effects are modest in the supine position, they become marked on tilting, suggesting a possible role for AVP in the postural control of blood pressure.  相似文献   

18.
The pulmonary venous admixture, PaO2, and pulmonary and systemic haemodynamics were studied in six mongrel dogs during infusion of dobutamine (infusion rate 7.5 micrograms . kg-1 . min-1), dopamine (7.5 micrograms . kg-1 . min-1) and isoproterenol (0.1 microgram . kg-1 . min-1). Anaesthesia was performed by a single injection of Fentanyl (0.35 mg/kg). The carbon dioxide tension and body temperature were strictly maintained within limits. Only isoproterenol produced a significant change in pulmonary arterial pressure from an average of 1.2 +/- 0.4 kPa to 1.6 +/- 0.2 kPa (P less 0.05). There was no significant change in systemic haemodynamics with any of the three drugs. The use of catecholamines in dogs with healthy lungs does not induce any development in pulmonary venous admixture when haemodynamics are unchanged. Changes in these variables are dependent upon changes in pulmonary blood flow rather than being direct effects of the catecholamine.  相似文献   

19.
1. The importance of circulating non-esterified fatty acids as a substrate during and after low-grade exercise has been examined by using a nicotinic acid analogue to inhibit lipolysis. Seven healthy men received acipimox or placebo on separate occasions. After 90 min, bicycle exercise was performed for 45 min (40% of pre-determined maximum oxygen uptake), followed by a 60 min recovery period. 2. The plasma concentration of non-esterified fatty acids increased during exercise after placebo (320 +/- 80 to 630 +/- 110 mumol/l) and remained elevated in the post-exercise period. Basal concentrations were lower after acipimox (100 +/- 10 mumol/l; P less than 0.05); they declined to 60 +/- 10 mumol/l during exercise and remained at this level for the rest of the study. 3. Lipid oxidation increased from 0.8 +/- 0.1 to 4.2 +/- 0.5 mg min-1 kg-1 during exercise after placebo (P less than 0.001) and remained elevated in the post-exercise period (1.2 +/- 0.1 mg min-1 kg-1). It was lower after acipimox, but still increased from 0.3 +/- 0.1 to 2.3 +/- 0.2 mg min-1 kg-1 with exercise. Carbohydrate oxidation was increased after acipimox compared with after placebo, but only reached significance during the post-exercise period (P less than 0.05). 4. Although acipimox abolished the rise in the plasma concentration of non-esterified fatty acids during exercise, there was only a 50% decrease in the rate of lipid oxidation. This suggests that an alternative source of non-esterified fatty acids makes an important contribution to the supply of lipid for oxidation during exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
OBJECTIVE: To assess the thermogenic response of dopamine at three different infusion rates and to analyze its effects on various biochemical variables. DESIGN: Randomized sequential experimental treatment bracketed by control periods. PATIENTS: Eight young healthy male volunteers with normal body weight (51 to 89 kg). INTERVENTIONS: Three experimental periods during which dopamine was administered iv in a randomized order at rates of 2.5, 5, or 10 micrograms/kg.min with one preinfusion baseline and two recovery periods in between. MEASUREMENTS AND MAIN RESULTS: A significant (p less than .01) increase in resting energy expenditure was observed in response to the two highest dopamine infusion rates (5 and 10 micrograms/kg.min), corresponding to 6% and 15% median increases, respectively, as compared with preinfusion values. At the lowest dopamine infusion rate, no variation in resting energy expenditure was observed. Dopamine induced a significant (p less than .01) increase in hyperglycemia at all three infusion rates, and, at the highest infusion rate, dopamine induced a significant (p less than .05) increase of plasma free fatty acid concentrations. Insulin plasma concentrations were significantly (p less than .05 to p less than 0.1) increased at the three dopamine infusion rates. CONCLUSIONS: Dopamine infusion produces a dose-dependent thermogenic effect and induces various metabolic actions in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号