首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proper surveillance of virus activity and a timely response to viral outbreaks depend upon the rapid diagnosis of viral infections. The immunoglobulin M (IgM) antibody-capture enzyme-linked immunosorbent assay (MAC-ELISA) is a fast, sensitive test routinely used for the diagnosis of the medically important West Nile and St. Louis encephalitis flaviviruses. However, the suckling mouse brain-derived (SMB) antigen used in this assay is tedious to prepare and has a risk of exposing personnel to live virus and hazardous chemicals. We report the development of a St. Louis encephalitis virus (SLEV) noninfectious recombinant antigen that is a safe and easily produced alternative antigen for use in diagnostic assays. The expression plasmid pCB8SJ2, containing the premembrane and envelope structural protein-encoding regions of SLEV, was constructed to express secreted extracellular virus-like particles (VLPs) from CHO cells. Blind-coded human serum panels were assembled from patients having recent SLEV, West Nile virus (WNV), Powassan virus, or La Crosse encephalitis virus infections to assess the sensitivity and specificity of assays with SLEV VLP or SMB antigen. MAC-ELISAs with either antigen had comparable sensitivity for the detection of IgM antibodies against SLEV. Importantly, when these two antigens were tested against a human serum panel from patients having recent WNV or Powassan virus infections, the SLEV VLPs were less likely than SMB antigen to detect flavivirus cross-reactive IgM antibodies. An optimized IgG antibody capture ELISA (GAC-ELISA) with both WNV and SLEV VLPs was developed to circumvent the frequently observed higher background in the antigen-capture IgG-ELISA (ACG-ELISA). For the detection of IgG antibodies against WNV, the GAC-ELISA resulted in a statistically significant higher performance accuracy (P = 0.003) than the ACG-ELISA when the WNV VLP antigen was used in both assays. However, no statistical difference was observed in the assay performance of the GAC-ELISA with SLEV VLP or the ACG-ELISA with SLEV SMB antigen.  相似文献   

2.
A diagnostic algorithm was developed to differentiate between human infections of West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) using positive-to-negative (P/N) ratios derived from the immunoglobulin M capture enzyme-linked immunosorbent assay (MAC-ELISA). To validate this algorithm, we tested 1,418 serum and cerebrospinal fluid (CSF) samples from confirmed WNV and SLEV infections collected during the WNV epidemic of 2002 in the United States. WNV P/N-to-SLEV P/N ratios (W/S ratios) were calculated and used to identify the infecting virus. These results were compared to results from the plaque reduction neutralization test (PRNT), which is currently the standard assay used to discriminate between closely related flavivirus infections. If the W/S ratio was > or =1, the predictive value positive (PNP) for WNV was 97.8%, where 95% of flavivirus cases were due to WNV infection and only 3.7% of specimens would require PRNT to differentiate WNV from SLEV infection. Use of the W/S ratio as part of the testing algorithm to interpret MAC-ELISA results generates reportable probable cases quickly, alleviating the need for PRNT in most instances.  相似文献   

3.
Focus Technologies developed an indirect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) and a mu-capture IgM ELISA for the detection of West Nile virus (WNV)-specific antibodies based on a WNV preM/E protein recombinant antigen. Normal and disease state serum panels were used to assess the performance characteristics of the two WNV ELISA kits. Totals of 807 and 1,423 sera were used to assess the IgG ELISA and IgM ELISA kits, respectively. The Focus Technologies IgG ELISA had a sensitivity of 97.6% and a specificity of 92.1% (excluding non-WNV flavivirus sera). The comparative method for WNV IgG may lack sensitivity in detecting IgG in early WNV infection, so the specificity of the Focus IgG ELISA may be higher than 92.1%. When sera from patients either infected with or vaccinated against other flaviviruses were tested on the WNV IgG assay, 35% of the sera reacted as positive for WNV IgG. Yellow fever and Japanese encephalitis vaccinees were less reactive in the IgG ELISA than St. Louis and dengue fever patients. The Focus Technologies IgM ELISA had a sensitivity and a specificity of 99.3% (excluding the non-WNV flavivirus sera). The overall cross-reactivity for the IgM ELISA to flavivirus sera was 12%, with 31% of St. Louis encephalitis patients found to be WNV IgM positive and no yellow fever vaccinees found to be WNV IgM positive. In a selected population of 706 sera, 15 false-positive WNV IgM sera were identified. The use of a background subtraction method for the IgM ELISA eliminated all 15 false-positive results, giving a specificity of 100% for the Focus IgM ELISA.  相似文献   

4.
5.
IgM antibody- and IgG antibody-capture enzyme-linked immunosorbent assays (MAC/GAC-ELISAs) targeted at envelope protein (E) of dengue viruses (DENV), West Nile virus, and Japanese encephalitis virus (JEV) are widely used as serodiagnostic tests for presumptive confirmation of viral infection. Antibodies directed against the flavivirus nonstructural protein 1 (NS1) have been proposed as serological markers of natural infections among vaccinated populations. The aim of the current study is to optimize an IgM and IgG antibody-capture ELISA (MAC/GAC-ELISA) to detect anti-NS1 antibodies and compare it with anti-E MAC/GAC-ELISA. Plasmids to express premembrane/envelope (prM/E) or NS1 proteins of six medically important flaviviruses, including dengue viruses (DENV-1 to DENV-4), West Nile virus (WNV), and Japanese encephalitis virus (JEV), were constructed. These plasmids were used for the production of prM/E-containing virus-like particles (VLPs) and secreted NS1 (sNS1) from COS-1 cells. Archived clinical specimens from patients with confirmed DENV, JEV, and WNV infections, along with naive sera, were subjected to NS1-MAC/GAC-ELISAs before or after depletion of anti-prM/E antibodies by preabsorption with or without VLPs. Human serum specimens from previously confirmed DENV infections showed significantly enhanced positive-to-negative (P/N) ratios for NS1-MAC/GAC-ELISAs after the depletion of anti-prM/E antibodies. No statistical differences in sensitivities and specificities were found between the newly developed NS1- and VLP-MAC/GAC-ELISAs. Further application of the assays to WNV- and JEV-infected serum panels showed similar results. A novel approach to perform MAC/GAC-ELISAs for NS1 antibody detection was successfully developed with great potential to differentiate antibodies elicited by the tetravalent chimeric yellow fever-17D/dengue vaccine or DENV infection.  相似文献   

6.
An indirect immunofluorescence assay for quantitation of flaviviruses was developed as an alternative to the standard plaque assay. The assay was validated with West Nile virus (WNV), St. Louis encephalitis virus (SLEV), and Dengue virus (DENV) types 1-4. Vero cells were plated in 8-well chamber slides, and infected with 10-fold serial dilutions of virus. About 1-3 days after infection, cells were fixed, incubated with specific monoclonal antibody, and stained with a secondary antibody labeled with a fluorescent tag. Fluorescent foci of infection were observed and counted using a fluorescence microscope, and viral titers were calculated as fluorescent focus units (FFU) per ml. The optimal time for performing the fluorescent focus assay (FFA) on Vero cells was 24 h for WNV, and 48 h for SLEV and the four DENV serotypes. In contrast, the time required to complete a standard Vero cell plaque assay for these viruses range from 3 days for WNV to 11 days for DENV-1. Thus, the FFA method of virus titration is useful for viruses whose plaques develop slowly. In addition, these viruses can be quantitated by FFA on a mosquito cell line (C6/36), which does not support plaque formation. The FFA for flaviviruses was validated for accuracy, precision, specificity, and robustness of the assay.  相似文献   

7.
An epitope-blocking enzyme-linked immunosorbent assay (b-ELISA) was evaluated for the diagnosis of West Nile virus (WNV) infections in humans. Sera from patients diagnosed with WNV infections from an outbreak in 2003 in Colorado and from patients diagnosed with dengue virus infections from Mexico and Thailand were tested with the b-ELISA. The b-ELISAs were performed using the WNV-specific monoclonal antibody (MAb) 3.1112G and the flavivirus-specific MAb 6B6C-1. Although the WNV-specific b-ELISA was effective in diagnosing WNV infections in humans from Colorado, it was not efficacious for diagnosing WNV infections in serum specimens from Mexico and Thailand. In serum specimens from patients from Colorado, the WNV b-ELISA and the WNV plaque reduction neutralization test showed an overall agreement of 91%. The sensitivity and specificity of the WNV b-ELISA were 89% and 92%, respectively, with a false-positive rate of 5%, based on receiver operating characteristic analysis. In contrast, false-positive rate results in specimens from the countries of Mexico and Thailand, where flaviviruses are endemic, were 79% and 80%, presumably due to the presence of antibodies resulting from previous dengue virus infections in Mexico and/or Japanese encephalitis virus infections or vaccination in Thailand. Thus, in regions where people have experienced previous or multiple flavivirus infections, the use of the b-ELISA for WNV diagnosis is contraindicated.The most medically important flaviviruses include dengue virus (DENV), Japanese encephalitis virus (JEV), West Nile virus (WNV), yellow fever virus (YFV), tick-borne encephalitis virus (TBEV), and Saint Louis encephalitis virus (SLEV) (16, 31, 38). Flaviviruses are positive-strand RNA viruses with genomes of approximately 11 kb that encode three structural and seven nonstructural (NS) proteins in the gene order C (capsid), M (membrane), E (envelope), NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5. WNV is a member of the JEV serocomplex within the genus Flavivirus, family Flaviviridae. The virus has been isolated in Africa, Australia, Eastern Europe, the Middle East, North America, and South America (7, 20, 24). WNV was first detected in the United States in July 1999 and spread rapidly throughout the country, causing large numbers of infections in humans, horses, and birds (19, 31).Prior to 1999, flavivirus infections in humans in the United States were infrequent, and most were attributed to sporadic cases of SLEV and travel-associated cases of DENV (41). In Thailand, all four DENV serotypes and JEV circulate (39), resulting in very high flavivirus transmission and seroprevalence rates. In the Yucatán Peninsula of Mexico, all four DENV serotypes circulate and seroprevalence rates are very high (8). Serological diagnosis of WNV infections is complicated by the high rates of both primary DENV infections and secondary DENV infections in inhabitants of Thailand and Yucatan, Mexico, with seroprevalence rates of >85% in Thailand (1) and 72% in the Yucatán in 1985 (12, 28). WNV introduction into the Yucatán in 2002 was revealed by detection of antibodies in horses (29) and then later in migratory and resident birds (10) and in zoo animals (11). However, no WNV infections of humans have been diagnosed in the Yucatán.The immunoglobulin M (IgM) capture enzyme-linked immunosorbent assay (ELISA) is the preferred test used for diagnosis of WNV in humans in the United States (32). The test is used to detect antibodies to WNV in serum and/or cerebrospinal fluid. The plaque reduction neutralization test (PRNT) is the gold standard for serodiagnosis of flavivirus infections and for identifying the infecting agent (2). However, both of these tests can be confounded if patients have had previous flavivirus infections. Indeed, diagnosis of flavivirus infections in humans is very difficult in geographic areas where multiple flaviviruses are circulating and cause sequential infections. Because of “original antigenic sin” the highest antibody titer may be due to a previous flavivirus infection rather than to the etiologic agent (18, 26). Serological diagnosis of WNV, SLEV, and YFV infections is extremely difficult in patients from areas where DENV is hyperendemic.Previously, we exploited an epitope-blocking ELISA (b-ELISA) to detect antibodies to WNV in diverse species of birds and domestic mammals (3, 4). The WNV b-ELISA measures the ability of antibodies present in sera to block the binding of a monoclonal antibody (MAb) to a WNV-specific epitope on the NS1 protein (17). The WNV b-ELISA had not been previously evaluated for use in humans. In this study, a WNV-specific and a flavivirus broadly reactive b-ELISAs were evaluated for their abilities to detect antibodies against WNV in human serum specimens from countries with differing levels of flavivirus endemicity: the United States, Thailand, and Mexico. The objectives of this study were (i) to determine the ability of the b-ELISA to detect antibodies to WNV in human serum samples and (ii) to determine the effects of previous flavivirus infections of patients (e.g., DENV and JEV) on the diagnostic efficacy of the WNV b-ELISA.  相似文献   

8.
West Nile virus (WNV) had its first recorded appearance in the western hemisphere in 1999 and has continued to spread across the United States, necessitating the development of serologic procedures to diagnose infection. We developed an immunofluorescence assay (IFA) protocol for the detection of WNV-specific IgG and IgM antibodies in serum and cerebrospinal fluid (CSF) specimens. We tested 82 serum and 16 CSF samples and compared the results with WNV IgG enzyme-linked immunosorbent assay (ELISA) and IgM antibody-capture (MAC) ELISA results. Agreement, clinical sensitivity, and clinical specificity for the IgG IFA were 92%, 100%, and 90%, respectively, and 98%, 96%, and 100% for the IgM IFA, respectively. Extensive arbovirus cross-reactions occurred in the IgG assays, but only minimal cross-reactions were observed in the IgM assays. The IFA protocol described herein is a cost-effective and sensitive alternative to ELISA and MAC-ELISA for the serologic diagnosis of WNV infection.  相似文献   

9.
Antibodies to non-structural protein 1 (NS1) of West Nile virus (WNV) have been used to differentiate WNV infection from infection by serologically cross-reactive flaviviruses, including Japanese encephalitis virus (JEV), in horses. However, since the inactivated West Nile (WN) vaccine has been reported to induce NS1 antibodies, there is concern about the reliability of using NS1-based assays for testing vaccinated horses. Therefore, the effect of inactivated WN vaccine-induced antibodies on an epitope-blocking ELISA and complement-dependent cytotoxicity (CDC) assay were investigated. Both assays are based on NS1 antibodies and were established previously to differentiate WNV from JEV infections in horses. Groups of three horses were vaccinated with two or three doses of a commercial inactivated WN vaccine and NS1 antibodies were detected by a conventional ELISA after the second vaccination. Vaccine-induced NS1 antibodies were also detected by blocking ELISA and a CDC assay and affected the ability of these assays to differentiate WNV from JEV infections. However, the effect was less significant in the CDC assay, where use of a low serum concentration ensured effective differentiation. The more efficient detection of infection-induced antibodies over vaccine-induced antibodies by the CDC assay was potentially attributable to the different IgG isotype profiles of these antibodies.  相似文献   

10.
The use of immunoglobulin M (IgM) antibody-capture enzyme-linked immunosorbent assay (MAC-ELISA) serves as a valuable tool for the diagnosis of acute flaviviral infections, since IgM antibody titers are detectable early, peak at about 2 weeks postinfection, and subsequently decline to lower levels over the next few months. Traditionally, virus-infected tissue culture or suckling mouse brain (SMB) has been the source of viral antigens used in the assay. In an effort to provide a reliable source of standardized viral antigens for serodiagnosis of the medically important flaviviruses, we have developed a eukaryotic plasmid vector to express the premembrane/membrane and envelope proteins which self-assemble into noninfectious virus-like particles (VLPs). In addition to the plasmids for Japanese encephalitis virus, West Nile virus (WNV), St. Louis encephalitis virus (SLEV), and dengue virus type 2 (DENV-2) reported earlier, we recently constructed the DENV-1, -3, and -4 VLP expression plasmids. Three blind-coded human serum panels were assembled from patients having recent DENV, SLEV, and WNV infections to assess the sensitivity and specificity of the MAC-ELISA using VLPs or SMB antigens. In addition, serum specimens from patients infected with either Powassan virus or La Crosse encephalitis virus were used to evaluate the cross-reactivity of seven mosquito-borne viral antigens. The results of the present studies showed higher sensitivity when using SLEV and WNV VLPs and higher specificity when using SLEV, WNV, and the mixture of DENV-1 to -4 VLPs in the MAC-ELISA than when using corresponding SMB antigens. Receiver operating characteristic (ROC) curve analysis, a plot of the sensitivity versus false positive rate (100 - specificity), was applied to discriminate the accuracy of tests comparing the use of VLPs and SMB antigen. The measurement of assay performance by the ROC analysis indicated that there were statistically significant differences in assay performance between DENV and WNV VLPs and the respective SMB antigens. Additionally, VLPs had a lower cutoff positive/negative ratio than corresponding SMB antigens when employed for the confirmation of current infections. The VLPs also performed better than SMB antigens in the MAC-ELISA, as indicated by a higher positive prediction value and positive likelihood ratio test. Cell lines continuously secreting these VLPs are therefore a significantly improved source of serodiagnostic antigens compared to the traditional sources of virus-infected tissue culture or suckling mouse brain.  相似文献   

11.
A diagnostic algorithm was developed to differentiate between human infections of West Nile virus (WNV) and St. Louis encephalitis virus (SLEV) using positive-to-negative (P/N) ratios derived from the immunoglobulin M capture enzyme-linked immunosorbent assay (MAC-ELISA). To validate this algorithm, we tested 1,418 serum and cerebrospinal fluid (CSF) samples from confirmed WNV and SLEV infections collected during the WNV epidemic of 2002 in the United States. WNV P/N-to-SLEV P/N ratios (W/S ratios) were calculated and used to identify the infecting virus. These results were compared to results from the plaque reduction neutralization test (PRNT), which is currently the standard assay used to discriminate between closely related flavivirus infections. If the W/S ratio was ≥1, the predictive value positive (PNP) for WNV was 97.8%, where 95% of flavivirus cases were due to WNV infection and only 3.7% of specimens would require PRNT to differentiate WNV from SLEV infection. Use of the W/S ratio as part of the testing algorithm to interpret MAC-ELISA results generates reportable probable cases quickly, alleviating the need for PRNT in most instances.  相似文献   

12.
During the 2001 U. S. West Nile virus (WNV) season, 163 specimens were reactive in an in-house WNV-specific immunoglobulin M (IgM) screening enzyme-linked immunosorbent assay (ELISA) and were referred to either the Centers for Disease Control and Prevention or the appropriate state public health laboratory (CDC/SPHL) for additional testing. CDC/SPHL supplied results for 124 specimens that could be further evaluated in-house: 70 specimens were nonreactive in the CDC/SPHL WNV-specific IgM screening assay, and 54 specimens were reactive. These specimens were used to evaluate a modified in-house WNV-specific IgM ELISA that incorporated background subtraction to identify nonspecific reactivity and thus improve assay specificity. Of the 70 CDC/SPHL nonreactive samples, 49 (70%) were nonreactive in the modified ELISA; of the 54 CDC/SPHL reactive samples, 51 (94%) were reactive in the modified ELISA. Confirmatory studies performed by CDC/SPHL indicated that 38 CDC/SPHL screen-reactive specimens represented true WNV infection; all 38 specimens were reactive in the modified in-house WNV-specific IgM ELISA. These findings demonstrate that an in-house ELISA system for WNV-specific IgM effectively identifies patients with WNV infection.  相似文献   

13.
During the 2001 U. S. West Nile virus (WNV) season, 163 specimens were reactive in an in-house WNV-specific immunoglobulin M (IgM) screening enzyme-linked immunosorbent assay (ELISA) and were referred to either the Centers for Disease Control and Prevention or the appropriate state public health laboratory (CDC/SPHL) for additional testing. CDC/SPHL supplied results for 124 specimens that could be further evaluated in-house: 70 specimens were nonreactive in the CDC/SPHL WNV-specific IgM screening assay, and 54 specimens were reactive. These specimens were used to evaluate a modified in-house WNV-specific IgM ELISA that incorporated background subtraction to identify nonspecific reactivity and thus improve assay specificity. Of the 70 CDC/SPHL nonreactive samples, 49 (70%) were nonreactive in the modified ELISA; of the 54 CDC/SPHL reactive samples, 51 (94%) were reactive in the modified ELISA. Confirmatory studies performed by CDC/SPHL indicated that 38 CDC/SPHL screen-reactive specimens represented true WNV infection; all 38 specimens were reactive in the modified in-house WNV-specific IgM ELISA. These findings demonstrate that an in-house ELISA system for WNV-specific IgM effectively identifies patients with WNV infection.  相似文献   

14.
West Nile virus (WNV) is an emerging zoonotic pathogen with a wide range of hosts, including birds, horses and humans. The development and evaluation of the performance of a new enzyme-linked immunosorbent assay (ELISA) are described for rapid detection of WNV-specific antibodies in samples originating from an extensive range of vertebrates susceptible to WNV infection. The assay uses a monoclonal antibody (MAb) which binds whole virus particles and neutralizes infection in vitro by recognizing a neutralizing epitope within the envelope (E) glycoprotein of the virus. This MAb, labelled with horseradish peroxidase, was used to compete with WNV-specific serum antibodies for virus-binding in vitro. The epitope-blocking ELISA was optimized in a manner that enabled its validation with a number of experimental and field sera, from a wide range of wild bird species, and susceptible mammals. The new ELISA exhibited high specificity (79.5-96.5%) and sensitivity (100%), using the virus-neutralization test as reference standard. It also required a much lower volume of sample (10 μl per analysis) compared to other ELISAs available commercially. This new method may be helpful for diagnosis and disease surveillance, particularly when testing samples from small birds, which are available in limited amounts.  相似文献   

15.
West Nile Virus (WNV) is a mosquito-borne flavivirus that was introduced into the U.S. in the New York City area in 1999. Despite its successful establishment and rapid spread in a naive environment, WNV has undergone limited evolution since its introduction. This evolutionary stability has been attributed to compromises made to permit alternating cycles of viral replication in vertebrate hosts and arthropod vectors. Outbreaks of a close relative of WNV, St. Louis encephalitis virus (SLEV), occur in the U.S. periodically and are also characterized by limited genetic change overtime. We measured both phenotypic and genotypic changes in WNV and SLEV serially passaged in mosquito cell culture in order to clarify the role of an individual host cell type in flavivirus adaptation and evolution. Genetic changes in passaged WNV and SLEV were minimal but led to increased relative fitness and replicative ability of the virus in the homologous cell line C6/36 mosquito cells. Similar increases were not measured in the heterologous cell line DF-1 avian cells. These phenotypic changes are consistent with the concept of cell-specific adaptation in flaviviruses.  相似文献   

16.
The rapid spread of West Nile Virus (WNV) across the North American continent has led to a need to understand what assays for WNV antibodies are available and how they are used as diagnostic and epidemiologic tools. In this article, we review six methods for measuring WNV antibodies in human serum, plasma, and cerebrospinal fluid. The complement fixation and hemagglutination inhibition assays were historically important; however, due to their low sensitivity, low specificity, and complex technical and reagent production issues, they are no longer in common use. The plaque reduction neutralization test is the gold standard for WNV antibody detection; due to its complexity and long turnaround time, however, it is increasingly reserved for establishing the presence of WNV infection in a geographic area and characterizing problematic samples. The immunofluorescence assay measures both IgG and IgM antibodies to WNV. Although historically considered insensitive, recent studies using commercially available slides have shown acceptable performance; the immunofluorescence assay is thus a cost-effective way to measure WNV antibodies in laboratories that routinely test small numbers of samples. The enzyme-linked immunosorbent assay (ELISA) format is the most popular method currently used to detect WNV IgG and IgM. Both indirect and monoclonal antibody-mediated antigen capture formats of IgG ELISAs have been described, whereas nearly all IgM ELISAs utilize the IgM capture format. Before 2000, WNV antibody ELISAs employed native WNV antigens; since then, there has been a dramatic shift toward using recombinant WNV antigens, particularly subviral particles containing the envelope protein. Like in the other assays mentioned, however, antibodies induced by other flavivirus infections may crossreact with both native and recombinant WNV antigens, necessitating concurrent measurement of antibodies to flaviviruses endemic in a given geographic area. The new microsphere immunoassay shows great promise as a sensitive, specific, and cost-effective method for simultaneously measuring antibodies to multiple flaviviruses. This method has also been used to characterize antibodies to nonstructural WNV proteins; these antibodies appear to be highly specific for WNV, and their measurement may soon be the test of choice for diagnosing WNV infection.  相似文献   

17.
West Nile virus (WNV) is a mosquito-borne flavivirus that has spread rapidly throughout the U.S. and there is currently no effective treatment. Understanding the pathogenesis of WNV infection in humans is critical for development of a potent therapy. In this study, we examined the activation of primary human macrophages in response to WNV infection, and showed that WNV interacts with human macrophages at multiple levels. While infection with WNV induced production of interleukin (IL)-8, production of IL-1beta, and type I interferon was inhibited. Infection with WNV interferes with the downstream JAK/STAT pathway, which is important for macrophage activation. In comparison to other related flaviviruses, the differential response of proinflammatory cytokines is distinct to WNV.  相似文献   

18.
The immunogenicity in horses of a recombinant equine herpesvirus type 1 (EHV-1) vaccine expressing West Nile virus (WNV) prM and E proteins was studied. To construct the recombinant EHV-1, two-step en passant mutagenesis was employed for manipulation of a bacterial artificial chromosome (BAC) of vaccine strain RacH. Recombinant EHV-1 stably expressed the WNV prM and E proteins as demonstrated by indirect immunofluorescence and Western blotting. In addition, growth properties in vitro of the EHV-1/WNV recombinant were found to not be significantly different from those of the parental virus. To determine if vaccination of horses induces an antibody response, 10 horses were allocated in two groups. Group A consisted of six horses that were vaccinated three times with the recombinant EHV-1/WNV virus in 28- to 31-day intervals. Group B consisted of four horses that were sham-vaccinated using the same regimen. Serum was collected on days 0, 31, 45 and 66. Plaque reduction neutralization test and IgG(T)- and IgGb-specific WNV E antibody-capture ELISAs were used. After a single vaccination (day 31), at least four of the six horses from group A had detectable levels of serum neutralizing antibodies against WNV, and three horses retained SN titers until the end of the study. None of the horses in the control group B sero-converted. On days 31 and 45, five of the six horses in group A had a marked increase of WNV-specific IgG(T), and at least four exhibited modestly elevated WNV-specific IgGb titers. From the results, we concluded that the EHV-1 vectored virus is able to express the WNV structural proteins and that vaccination of horses results in the induction of WNV E-protein-specific IgG(T), IgGb, and neutralizing antibodies.  相似文献   

19.
Serological diagnosis of West Nile virus (WNV) infection is complicated by extensive antigenic cross-reactivity with other closely related flaviviruses, such as St. Louis encephalitis virus. Here we describe a recombinant, bacterially expressed antigen equivalent to structural domain III of the WNV envelope protein that has allowed clear discrimination of antibody responses to WNV from those against other related flaviviruses in indirect enzyme-linked immunosorbent assays using standardized control antisera and field-collected samples.  相似文献   

20.
Hughes HR  Crill WD  Davis BS  Chang GJ 《Virology》2012,424(2):129-137
Flaviviruses, such as dengue virus (DENV) and West Nile virus (WNV), are among the most prevalent human disease-causing arboviruses world-wide. As they continue to expand their geographic range, multivalent flavivirus vaccines may become an important public health tool. Here we describe the immune kinetics of WNV DNA vaccination and the identification of a CD4 epitope that increases heterologous flavivirus vaccine immunogenicity. Lethal WNV challenge two days post-vaccination resulted in 90% protection with complete protection by four days, and was temporally associated with a rapid influx of activated CD4 T cells. CD4 T cells from WNV vaccinated mice could be stimulated from epitopic regions in the envelope protein transmembrane domain. Incorporation of this WNV epitope into DENV-2 DNA and virus-like particle vaccines significantly increased neutralizing antibody titers. Incorporating such potent epitopes into multivalent flavivirus vaccines could improve their immunogenicity and may help alleviate concerns of imbalanced immunity in multivalent vaccine approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号