首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Aberrant reinnervation of target organs caused by misdirected axonal growth at the repair site is a major reason for the poor functional outcome usually seen after peripheral nerve transection and repair. The following two studies investigate whether criss-crossing of regenerating rat sciatic nerve axons between tibial and peroneal nerve fascicles can be reduced by using a barrier at the coaption site. The left sciatic nerve was transected and repaired at mid-thigh as follows: epineural sutures (group A, A-II), fascicular repair of tibial and peroneal nerve fascicles (group B, B-II), fascicular repair of tibial and peroneal nerve fascicles separating the two fascicles with a pedicled fat flap (group C), Integra (group D) or non-vascularized autologous fascia (group C-II). In the control groups E and D-II, only the left tibial fascicle was transected and repaired. Four and 5 months postoperatively, the outcome of regeneration was evaluated by histology, by retrograde tracing, and by assessment of the muscle force of the gastrocnemius and tibial anterior muscles. The tracing experiments showed that specificity of muscle reinnervation significantly improved when a barrier was employed, which significantly or clearly improved muscle twitch tension in groups C and D. However, muscle contraction force was not better when fascia was used as barrier. The histological picture indicated that this inferior result in group C-II was due to nerve compression caused by fibrotic scar tissue at the site of the fascia graft. Results of this study show that a pedicle fat flap and Integra used as barrier significantly prevent aberrant reinnervation between two sutured nerve fascicles in adjacency resulting in improved motor recovery in rats. Non-vascularized autologous fascia however, reduces also criss-crossing of regenerating axons between the fascicles, but causes significant nerve compression.  相似文献   

2.
《Neurological research》2013,35(4):363-370
Abstract

Aberrant reinnervation of target organs caused by misdirected axonal growth at the repair site is a major reason for the poor functional outcome usually seen after peripheral nerve transection and repair. The following two studies investigate whether criss-crossing of regenerating rat sciatic nerve axons between tibial and peroneal nerve fascicles can be reduced by using a barrier at the coaption site. The left sciatic nerve was transected and repaired at mid-thigh as follows: epineural sutures (group A, A-II), fascicular repair of tibial and peroneal nerve fascicles (group B, B-II), fascicular repair of tibial and peroneal nerve fascicles separating the two fascicles with a pedicled fat flap (group C), Integra® (group D) or non-vascularized autologous fascia (group C-II). In the control groups E and D-II, only the left tibial fascicle was transected and repaired. Four and 5 months postoperatively, the outcome of regeneration was evaluated by histology, by retrograde tracing, and by assessment of the muscle force of the gastrocnemius and tibial anterior muscles. The tracing experiments showed that specificity of muscle reinnervation significantly improved when a barrier was employed, which significantly or clearly improved muscle twitch tension in groups C and D. However, muscle contraction force was not better when fascia was used as barrier. The histological picture indicated that this inferior result in group C-II was due to nerve compression caused by fibrotic scar tissue at the site of the fascia graft. Results of this study show that a pedicle fat flap and Integra® used as barrier significantly prevent aberrant reinnervation between two sutured nerve fascicles in adjacency resulting in improved motor recovery in rats. Non-vascularized autologous fascia however, reduces also criss-crossing of regenerating axons between the fascicles, but causes significant nerve compression.  相似文献   

3.
The effects of nerve predegeneration on the preferential growth of regenerating axons were studied using a silicone Y-chamber model. This system provided a choice for axons to grow towards two distal nerve options, either a 7-day predegenerated nerve segment (PNS) or a fresh nerve segment (FNS). The rat peroneal or tibial nerve was inserted into the proximal intlet and the PNS and FNS of the corresponding nerve were inserted into the distal outlets. At 28 days postoperative, the size of the distal regenerate was significantly greater (26%) towards the PNS for the tibial nerve group. The density and number of regenerated myelinated axons in the distal nerve segment was greater on the PNS for both the tibial (97 and 88%, respectively) and peroneal (221 and 221%, respectively) nerve groups. In contrast, the elevated density and number of nonvascular nuclei was relatively constant for both PNS and FNS. Immunocytochemical and ultrastructural evidence support the hypothesis that the early activation of Schwann cells is primarily responsible for the enhanced regeneration and maturation observed in PNS. It is suggested that PNS might improve the outcome after clinical repair of injured peripheral nerves.  相似文献   

4.
There are indications that specific factors are present in the distal stump of transected nerves which preferentially attract axons of the corresponding proximal stump into the distal nerve stumps. However, the impact of these factors is unclear, since there is abundant evidence that numerous regenerating motor and sensory axons are topographically misdirected after nerve transection and repair. Topographic reinnervation is improved after fascicular repair of fasciculated nerves, and quite precise after nerve crush. The latter may not be true, however, for non-myelinated axons, which show a high degree of aberrant growth even after crush. In contrast, regenerative outgrowth appears to be topographically specific after neonatal nerve transection. Reinnervation of muscle fibers appears to be unspecific in adult mammals, but specific after neonatal injury under certain circumstances. Some preference for reinnervation of the appropriate sensory receptors seems to exist although this preference does not preclude reinnervation of receptors by 'foreign' sensory fibers. In conclusion, incorrect topographic and target reinnervation commonly occurs after peripheral regeneration in adult mammals, and most certainly explains some of the functional disturbances after peripheral nerve lesions. Topographic regeneration appears to be better after nerve injury in developing mammals indicating that mechanisms from the developmental period may persist and aid in accurate regenerative outgrowth.  相似文献   

5.
Selective reinnervation of distal motor stumps by peripheral motor axons   总被引:13,自引:3,他引:13  
Random matching of regenerating axons with Schwann tubes in the distal nerve stump is thought to contribute to the often poor results of peripheral nerve repair. Motor axons would be led to sensory end organs and sensory axons to motor end plates; both would remain functionless. However, the ability of regenerating axons to differentiate between sensory and motor environments has not been adequately examined. The experiments reported here evaluated the behavior of regenerating motor axons when given equal access to distal sensory and motor nerve stumps across an unstructured gap. "Y"-shape silicon chambers were implanted within the rat femoral nerve with the proximal motor branch as axon source in the base of the Y. The distal sensory and motor branches served as targets in the branches of the Y, and were placed 2 or 5 mm from the axon source. After 2 months for axon regeneration, horseradish peroxidase was used to label the motoneurons projecting axons into either the motor or the sensory stump. Equal numbers of motoneurons were labeled from the sensory and motor stumps at 2 mm, but significantly more motoneurons were labeled from the motor stump at 5 mm. (P = 0.016). This finding is consistent with selective reinnervation of the motor stump. Augmentation of this phenomenon to produce specific reunion of individual motor axons could dramatically improve the results of nerve suture.  相似文献   

6.
In 6 baboons a tourniquet round the knee was used to produce a prolonged local conduction block. This was followed, within a few days, by a surgical crush of the tibial or deep peroneal nerve at the ankle, in order to produce Wallerian degeneration distally. Electrophysiological recordings from small foot muscles were then used to study the time-course of regeneration in motor fibres. When the results were compared with those from crushed but unblocked nerves of the opposite leg, there was no evidence that either reinnervation of muscles or the subsequent maturation of the regenerating motor nerve fibres was delayed by the prolonged proximal conduction block.  相似文献   

7.
Previous studies indicated that axons from proximal stumps of transected peripheral nerves "prefer" to grow through Silastic tubes attached to their native (originally associated) rather than foreign (not originally associated) distal stumps. We determined whether or not this specificity is expressed at the level of the neuromuscular junction. Proximal stumps of transected rat sciatic nerves (peroneal and tibial branches) were attached to single inlet ends of 6-mm-long, Y-shape Silastic implants. One outlet was attached to the distal peroneal and the other to the distal tibial stump. Ten weeks later, innervation of the anterior tibialis and interosseous muscles (normally innervated predominantly by peroneal and tibial nerve fibers, respectively) was assessed by measuring compound muscle action potential amplitudes and latencies that follow supramaximal peroneal and tibial nerve stimulation. Results showed higher amplitudes in anterior tibialis muscle, induced by "native" peroneal (vs. tibial) stimulation in four of five animals, and higher amplitudes in interosseous muscles after "native" tibial (vs. peroneal) stimulation in all cases examined. Preparations in which bridges between proximal and distal nerve stumps were bridged with unbranched tubes showed random patterns of muscle innervation. The results suggest that if allowed to express "specificity" at the level of nerve trunk transection, regenerating mammalian peripheral axons can grow into, and form functional connection with, native (vs. foreign) muscle groups. This finding has possible clinical significance.  相似文献   

8.
Volkensin is a neurotoxic lectin which, when injected into a peripheral nerve is retrogradely transported to the cell body and causes it to die. Accordingly, volkensin-affected peripheral nerves rapidly degenerate. It is, however, not clear whether axonal growth can take place within these degenerated nerves. In this study the ability of volkensin-treated and untreated degenerated peripheral nerves to support regeneration of healthy axons was compared. Four groups of animals were used, in Group 1 the peroneal nerve was cut and 10 days later the proximal stump of the deep tibial nerve was sutured to the distal stump of the peroneal nerve (10 days after axotomy). In the second group of animals the peroneal nerve was treated with volkensin, 10 days later the proximal stump of the deep tibial nerve was connected to the distal section of the cut, thus giving a volkensin-treated peroneal nerve. In the third group, 10 days after the peroneal nerve was treated with volkensin, the proximal stump of the deep tibial nerve was connected directly to the extensor digitorum longus (EDL) muscle. In Group 4 the volkensin-treated peroneal nerve was left intact. Six weeks after surgical intervention the tension of both EDL muscles was recorded and the muscles were processed for histological visualisation of endplates and axons. EDL muscles from Group 1 animals produced 36.5 ± 11.3% S.E.M of maximal tetanic tension produced by the contralateral EDL muscle. Significantly less recovery of function was achieved by EDL muscles in Group 2 animals (9.3 ± 2.5%). Muscles from Group 3, where the healthy nerve was sutured directly into the EDL muscle that had been denervated by volkensin treatment had a significantly better recovery than Group 2 muscles (23 ± 3%). Sprouting of nerve fibres and proliferation of Schwann cells was observed in the muscles from Groups 1 and 3, but not in Group 2. Thus, volkensin-treated peripheral nerves provide a poor conduit for regenerating nerve fibres though muscles denervated, by treatment with volkensin, and can accept reinnervation by healthy nerves. The possible mechanisms that render the volkensin treated peripheral stump a poor conduit for healthy axons is discussed.  相似文献   

9.
Preferential reinnervation of motor nerves by regenerating motor axons   总被引:14,自引:0,他引:14  
Regeneration of axons into inappropriate distal nerve branches may adversely affect functional recovery after peripheral nerve suture. The degree to which motor axons reinnervate sensory nerves, and vice versa, has not been determined. In these experiments, HRP is used to quantify the sensory and motor neurons that reinnervate sensory and motor branches of the rat femoral nerve after proximal severance and repair. Motoneurons preferentially reinnervate the motor branch in juveniles and adults, even if the repair is intentionally misaligned or a gap is imposed between proximal and distal stumps. A specific interaction thus occurs between regenerating motor axons and the Schwann cell tubes that lead to the motor branch. This interaction is independent of mechanical axon alignment.  相似文献   

10.
Wallerian degeneration is very slow in the mouse strain now known as C57BL/Ola. Sensory axon regrowth following peripheral nerve lesions is very poor in these animals but motor axons succeed in reinnervating the distal nerve stump even while the majority of severed axons are still intact (Lunn et al., Eur. J. Neurosci., 1, 27 - 33, 1989). To see if motor axons could grow into a completely undegenerated portion of nerve, the proximal stumps of the peroneal and tibial nerves were sutured together in six BALB/c mice and the ability of large motor and sensory fibres from the tibial nerve to grow into the peroneal nerve was examined electrophysiologically in four of them. For the acute experiment the peroneal nerve was cut approximately 7 mm central to the point of suture to the tibial nerve. Both at 2 weeks and 7 weeks after surgery the size of the potential recorded in the ventral roots on stimulating the portion of peroneal nerve into which tibial axons were directed to grow was only approximately 8% of the potential recorded when the tibial nerve was itself stimulated. The potential recorded in the dorsal roots was only approximately 2%. Counts of axon numbers in electron micrographs showed a small but non-significant increase over normal in the number of unmyelinated axons in the peroneal nerves which had been connected to the tibial nerve in this way. It is concluded, in agreement with Langley and Anderson (J. Physiol., 31, 365 - 391, 1904), that axon growth into intact nerves is extremely limited in mammals and that the distal nerve stump of C57BL/Ola mice, although it degenerates very slowly, is not therefore equivalent to an intact peripheral nerve.  相似文献   

11.
In this study, we evaluated the long-term maintenance of regenerated axons in an experimental nerve amputee model. The sciatic nerve of adult rats was transected and repaired with a silicone tube leaving a short gap; the distal nerve segment was again transected 10 mm distally and the distal stump either introduced in a capped silicone chamber (amputee group) or connected to denervated targets (tibial branch into the gastrocnemius muscle and peroneal nerve apposed to skin) (reinnervation group). Morphological studies were performed at 2.5, 6, and 9 months after surgery. In all cases, axons regenerated across the silicone tube and grew in the distal nerve segment. In the amputee group, the morphological results show the expected features of a neuroma that is formed when regenerating axons are prevented from reaching the end organs, with a large number of axonal profiles indicative of regenerative sprouting. The number of myelinated axons counted at the distal nerve was sustained over 9 months follow-up, indicating that regenerated axons are maintained chronically. Immunohistochemical labeling showed maintained expression of choline acetyltransferase, calcitonin gene-related peptide, and growth-related peptides 43 in the distal neuroma at 6 and 9 months. Reconnection of the distal nerve to foreign targets mildly improved the pattern of nerve regeneration, decreasing the number of excessive sprouts. These results indicate that axons regenerated may be eventually interfaced with external input-output systems over long time, even if ending in the absence of distal targets as will occur in amputee limbs.  相似文献   

12.
Schwann cell mitosis in response to regenerating peripheral axons in vivo   总被引:4,自引:0,他引:4  
Schwann cell mitosis has been demonstrated in chronically denervated cat tibial nerves re-innervated by axons regenerating from the proximal stump of a coapted peroneal nerve. Thymidine incorporation rose above baseline levels at the axon front, with no detectable increase in more distal regions occupied by denervated Schwann cells. Schwann cells therefore enter S phase upon the arrival of a regenerating axon in vivo as previously described in tissue culture. Intraneural treatment of the denervated distal stump with Mitomycin C prior to re-innervation delayed the subsequent appearance of myelin formation. This supports the notion that axonally stimulated division of Schwann cells is a prerequisite for myelination during nerve regeneration. Axonal advancement was also retarded by drug treatment, possibly because of a reduced level of trophic support provided by the compromised Schwann cells. A comparable absence of myelin and poor re-innervation was found in chemically untreated distal stumps that had been maintained in the denervated state for prolonged periods when Schwann cell columns are known to undergo progressive atrophy. These observations suggest that nerve repair should be delayed for limited periods if efficacious regeneration is desired.  相似文献   

13.
Patterns of expression of the extracellular matrix molecule thrombospondin (TSP) were examined during peripheral nerve regeneration following sciatic nerve crush or transection. In noninjured nerve, was present in the axoplasm, Schwann cells, endoneurium, and perineurium of the adult mouse sciatic nerve. Following nerve crush or nerve transection, levels of TSP rapidly increased distal to the trauma site. Elevated levels of TSP were present distal to regenerating axons, while expression gradually returned to normal proximal to the regenerating axons. When reinnervation was blocked, TSP levels remained high in the endoneurium in excess of 30 days, but TSP was absent by 60 days. Following reanastomosis of the proximal and distal segments after 60 days of denervation, TSP was re-expressed in the distal nerve stump. These results indicate that TSP, which is involved in neuronal migrations in the embryo and neurite outgrowth in vitro, appears to play a role in axonal regeneration in the adult peripheral nervous system.  相似文献   

14.
The normal rat tibialis anterior (TA) muscle was found to be innervated by approximately 154 spinal motor cells of which 95 are alpha motoneurons. Most of these axons ran in the L4 root and connected with glycolytic type 2B muscle fibers. The L5 root supplied 8.4% to 14.7% of the motor axons of TA muscle and innervated type 1 and 2A muscle fibers rich in oxidative enzymes. Two months after section of the peroneal nerve, there was marked fiber-type grouping and compact rearrangement of the L4 and L5 motor units. After section of the L4 radicular nerve, the TA muscle remained atrophic with no evidence of fiber-type grouping until 3 months when the L4 regenerating axons reached the muscle. Similar results were obtained after ligation of the divided ends of the L4 radicular nerve, which delayed but did not prevent reinnervation. These data suggest that, after partial denervation, muscle reinnervation by collateral sprouting is a slowly developing process.  相似文献   

15.
Regeneration in the peripheral nervous system is impaired after prolonged periods of denervation. Currently, no interventions exist to alter the outcome after prolonged denervation. To examine the role of transplanted neural stem cells (NSC), we prepared chronically denervated distal tibial nerve segments. After 6 months of chronic denervation, we transplanted vehicle, C17.2 mouse NSCs, or C17.2 mouse NSCs engineered to overexpress GDNF to the distal tibial nerve and performed a peroneal nerve cross-suture. In animals transplanted with the NSCs, there was better regeneration of the peroneal axons into the tibial nerve as measured by counting the number of axons and by the emergence of compound motor action potentials in the tibial innervated foot muscles. Improved regeneration correlated with a reduction of chondroitin sulphate proteoglycan (CSPG) immunoreactivity in the extracellular matrix (ECM). In vitro, supernatant from C17.2 NSCs contained large quantities of secreted matrix metalloprotease-2 (MMP-2), degraded the CSPGs on chronically denervated tibial nerve sections, and reversed the CSPG-induced inhibition of neuritic outgrowth of DRG neurons. This reversal was inhibited by selective MMP-2 inhibitors. This is the first successful demonstration of regeneration through a chronically denervated nerve. These findings suggest that improved regeneration in the PNS can be accomplished by combining neurotrophic factor support and removal of axon growth inhibitory components in the extracellular matrix.  相似文献   

16.
Our previous studies have confirmed that during nerve transposition repair to injured peripheral nerves, the regenerated nerve fibers of motor neurons in the anterior horn of the spinal cord can effectively repair distal nerve and target muscle tissue and restore muscle motor function. To observe the effect of nerve regeneration and motor function recovery after several types of nerve transposition for median nerve defect(2 mm), 30 Sprague-Dawley rats were randomly divided into sham operation group, epineurial neurorrhaphy group, musculocutaneous nerve transposition group, medial pectoral nerve transposition group, and radial nerve muscular branch transposition group. Three months after nerve repair, the wrist flexion test was used to evaluate the recovery of wrist flexion after regeneration of median nerve in the affected limbs of rats. The number of myelinated nerve fibers, the thickness of myelin sheath, the diameter of axons and the cross-sectional area of axons in the proximal and distal segments of the repaired nerves were measured by osmic acid staining. The ratio of newly produced distal myelinated nerve fibers to the number of proximal myelinated nerve fibers was calculated. Wet weights of the flexor digitorum superficialis muscles were measured. Muscle fiber morphology was detected using hematoxylin-eosin staining. The cross-sectional area of muscle fibers was calculated to assess the recovery of muscles. Results showed that wrist flexion function was restored, and the nerve grew into the distal effector in all three nerve transposition groups and the epineurial neurorrhaphy group. There were differences in the number of myelinated nerve fibers in each group. The magnification of proximal to distal nerves was 1.80, 3.00, 2.50, and 3.12 in epineurial neurorrhaphy group, musculocutaneous nerve transposition group, medial pectoral nerve transposition group, and radial nerve muscular branch transposition group, respectively. Nevertheless, axon diameters of new nerve fibers, cross-sectional areas of axons, thicknesses of myelin sheath, wet weights of flexor digitorum superficialis muscle and cross-sectional areas of muscle fibers of all three groups of donor nerves from different anterior horn motor neurons after nerve transposition were similar to those in the epineurial neurorrhaphy group. Our findings indicate that donor nerve translocation from different anterior horn motor neurons can effectively repair the target organs innervated by the median nerve. The corresponding spinal anterior horn motor neurons obtain functional reinnervation and achieve some degree of motor function in the affected limbs.  相似文献   

17.
In order to test the regenerative capacity of atrophic axons, a constricting ligature was placed around the proximal tibial nerve of the rabbit, and the nerve crushed at the ankle one week later. Axonal atrophy with altered g ratios was subsequently confirmed in fibres distal to the site of ligature and proximal to the site of crush. In nerves with tight proximal ligatures the reinnervation of plantar muscles and the subsequent recovery of distal motor latency were delayed, indicating impaired regeneration. This result may be relevant to the "double-crush" theory of nerve damage.  相似文献   

18.
Misdirection of regenerating axons is one of the factors that can explain the poor results often found after nerve injury and repair. In this study, we quantified the degree of misdirection and the effect on recovery of function after different types of nerve injury and repair in the rat sciatic nerve model; crush injury, direct coaptation, and autograft repair. Sequential tracing with retrograde labeling of the peroneal nerve before and 8 weeks after nerve injury and repair was performed to quantify the accuracy of motor axon regeneration. Digital video analysis of ankle motion was used to investigate the recovery of function. In addition, serial compound action potential recordings and nerve and muscle morphometry were performed. In our study, accuracy of motor axon regeneration was found to be limited; only 71% (± 4.9%) of the peroneal motoneurons were correctly directed 2 months after sciatic crush injury, 42% (± 4.2%) after direct coaptation, and 25% (± 6.6%) after autograft repair. Recovery of ankle motion was incomplete after all types of nerve injury and repair and demonstrated a disturbed balance of ankle plantar and dorsiflexion. The number of motoneurons from which axons had regenerated was not significantly different from normal. The number of myelinated axons was significantly increased distal to the site of injury. Misdirection of regenerating motor axons is a major factor in the poor recovery of nerves that innervate different muscles. The results of this study can be used as basis for developing new nerve repair techniques that may improve the accuracy of regeneration.  相似文献   

19.
The functional outcome of microsurgical repair of divided nerves is disappointing since many regenerating axons fail to reach appropriate targets. Sorting of regenerating axons according to target tissue might be used to improve functional regeneration. The aim of the present study is to see if regenerating axons can be sorted into functionally different bundles with target-derived molecules. The proximal stump of the adult rat sciatic nerve was sutured into the inlet of a silicon Y-tube. The two branches of the Y-tube were filled with agarose primed with filtrates prepared from skin and muscle homogenates from the operated rat. The tibial and sural nerves were inserted in the two branches of the Y-tube. Six weeks later the sciatic nerve axons showed vigorous regeneration into both branches. Electron microscopic examination of regenerated nerve segments showed numerous myelinated and unmyelinated axons. The proportion of myelinated axons was significantly larger in the muscle-gel branch than in the skin-gel branch. Retrograde tracing from the nerve regenerates with Fast Blue and Fluoro-Ruby showed that ventral horn neurons at L4-L5 segmental levels were preferentially labeled from the muscle-gel branch. Neurons in corresponding dorsal root ganglia were labeled from both Y-tube branches (no significant numerical difference). A few neurons of both types contained both tracers. Measurements revealed that sensory neurons labeled from the muscle-gel branch were significantly larger (mean perikaryal area 870 microm(2)) than neurons labeled from the skin-gel branch (mean area 580 microm(2)). We conclude that regenerating motor and sensory axons can be sorted with target-derived molecules.  相似文献   

20.
Functional recovery following a peripheral nerve injury is made easier when regenerating axons correctly reinnervate their original targets. Polyethylene glycol (PEG) has recently been used in attempts to fuse severed peripheral axons during suture‐based repair, but an analysis of target selectivity following such repair has not been undertaken. The rat femoral nerve (in which muscle and cutaneous pathways comingle proximally but segregate distally into separate terminal nerve branches) is a convenient in vivo model for assessing motor neuron regeneration accuracy. The present study uses retrograde labeling of motor neurons to compare reinnervation accuracy after suture‐based nerve repair with and without PEG fusion. The results show that adding PEG to the suture repair site blocked the preference of motor neurons to reinnervate correctly the distal terminal nerve branch to muscle that was seen with suture repair. Retrograde transport and diffusion studies also determined that PEG fusion allowed passage of probes across the repair site, as has previously been seen, but did not result in motor neuron labeling in the spinal cord. The results suggest that PEG fusion disrupts the beneficial trophic influence of muscle on motor neuron reinnervation accuracy normally seen after suture repair and that such fusion‐based approaches may be best suited to nerve injuries in which accurate target reinnervation at the terminal nerve branch level is not a priority. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号