首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary: There are two distinct pathways by which T cells may MHC alloantigens. The direct pathway involves T-cell recognition of intact MHC molecules expressed by donor antigen-presenting cells (APCs). The second, or indirect, pathway describes T-cell recognition of peptides derived from the processing and presentation of allogeneic MHC molecules on self APCs. Recent data demonstrates that indirect recognition plays a central role in both acute and chronic rejection of human organ allografts. Our studies have shown that, at the onset of primary acute rejection, recipient T-cell responses lo donor HLA-DR alloantigens are limited to a single dominant determinant present on erne of the disparate alloantigens and restricted by one of the responder's HLA-DR molecules. In allograft recipients with recurring episodes of rejection, and/or at the onset of chronic rejection, recipient T-cell reactivity may spread lo other epitopes within the allogeneic MHC molecule as well as to other alloantigens expressed by graft tissue. Both quantitative and qualitative alterations in T-cell allopeptide reactivity are associated with increased risk of cellular and/or humoral rejection. These studies provide a basis for the design of new therapeutic strategies and for immunologic monitoring of transplant recipients.  相似文献   

2.
《Human immunology》1997,53(1):57-63
Transplant rejection is mediated by the direct and indirect pathways. To explore the role of the indirect recognition pathway in the rejection of liver allografts, T cells obtained from peripheral blood were expanded in medium containing IL-2 and tested in LDA for reactivity to synthetic peptides corresponding to the hypervariable regions of the mismatched HLA-DR antigen(s) of the donor. Serial investigations of 17 recipients showed that T-cell reactivity to donor HLA-DR peptides was strongly associated with acute rejection episodes. In recipients carrying a graft that was mismatched by two HLA-DR alleles, a single donor antigen was targeted during primary rejection, although allopeptide reactivity against the second HLA-DR antigen was observed during subsequent episodes of acute rejection. The finding that allopeptide reactivity occurs early following transplantation and is predictive of rejection is consistent with the notion that processing of donor alloantigens by recipient APCs activates the indirect T-cell recognition pathway that plays a major role in initiating and amplifying allograft rejection.  相似文献   

3.
T cells can recognize foreign MHC antigens by two distinct routes, either directly as intact molecules, or indirectly as processed peptides. Recent evidence strongly suggests that the indirect pathway of allorecognition plays a key role in initiating and sustaining graft rejection. Theoretically, all mismatched HLA alloantigens could generate immunogenic peptides which may be recognized in the context of any of the two self HLA-DR molecules. However, indirect recognition appears to be limited to a single peptide determinant of an allogeneic HLA-DR molecule and restricted by one self HLA-DR molecule. Furthermore, T cells involved in the self-restricted allopeptide recognition express a limited array of T cell receptor variable genes. These findings suggest that selective immune interventions, such as peptide blockade of the self HLA-DR molecule involved in the presentation of the dominant allopeptide, induction of high-zone tolerance or TCR antagonism, may be devised to prevent graft rejection.  相似文献   

4.
The contribution of direct and indirect alloresponses by CD4+ Th1 and Th2 cells in acute and chronic rejection of allogeneic transplants remains unclear. In the present study, we addressed this question using a transplant model in a single MHC class I‐disparate donor–recipient mouse combination. BALB/c‐dm2 (dm2) mutant mice do not express MHC class I Ld molecules and reject acutely Ld+ skin grafts from BALB/c mice. In contrast, BALB/c hearts placed in dm2 mice are permanently accepted in the absence of chronic allograft vasculopathy. In this model, CD4+ T cells are activated following recognition of a donor MHC class I determinant, Ld 61–80, presented by MHC Class II Ad molecules on donor and recipient APC. Pre‐transplantation of recipients with Ld 61–80 peptide emulsified in complete Freund's adjuvant induced a Th1 response, which accelerated the rejection of skin allografts, but it had no effect on cardiac transplants. In contrast, induction of a Th2 response to the same peptide abrogated the CD8+ cytotoxic T cells response and markedly delayed the rejection of skin allografts while it induced de novo chronic rejection of heart transplants. This shows that Th2 cells activated via indirect allorecognition can exert dual effects on acute and chronic rejection of allogeneic transplants.  相似文献   

5.
Recognition of allogeneic major histocompatibility complex (MHC) molecules expressed on donor lung antigen-presenting cells (APCs) by host T lymphocytes is believed to stimulate lung allograft rejection. However, the specific roles of donor MHC molecules in the rejection response is unknown. We report a murine model in which instilling allogeneic lung APCs into recipient lungs induces pathology analogous to acute rejection, and the production of interferon (IFN)-gamma, immunoglobulin (Ig) G2a, and alloantibodies in recipient lungs. Using allogeneic lung APCs (C57BL/6, I-a(b), H-2(b)) deficient in MHC class I, II, or both for instillation into lungs of BALB/c mice (I-a(d), H-2(d)), the purpose of the current study was to determine the specific roles of donor MHC molecules in stimulating local alloimmune responses. The data show that MHC class I or II on donor APCs induced IFN-gamma and IgG2a synthesis locally, though less than that induced by wild-type cells. Both MHC class I and II were required to induce alloantibody production. Instillation of wild-type or class I- or class II-deficient APCs induced comparable pathologic lesions in recipient lungs, and more severe than that induced by MHC-deficient cells. These data show that donor MHC class I and II molecules have differential effects in the stimulation of local alloimmune responses.  相似文献   

6.
Indirect alloreactivity, i.e., the recognition of allopeptides on self-MHC molecules, contributes both to acute and chronic rejection of transplants. The antigen presenting cell priming these allo-specific self-restricted T cells is unknown. We demontrate that dendritic cells, which have been matured in the presence of necrotic allogeneic cells, can crossprime allo-specific self-restricted CD4(+) T cells in vitro. We demonstrate dendrtitic cell mediated crosspriming of HLA-DR13 specific, HLA-DR7 restricted and HLA-DR1 specific, HLA-DR11 restricted CD4(+) T cells. The allo-specific self-restricted CD4(+) T cells primed in our culture system secrete predominantly Th1 and not Th2 cytokines. The use of dendritic cells to monitor the indirect pathway of alloreactivity should help to design and understand interventions against acute and chronic transplant rejection.  相似文献   

7.
Transgenic mice expressing human major histocompatibility complex (MHC) class II molecules would provide a valuable model system for studying murine anti-human MHC immune response. We have previously shown that skin from HLA-DR1 transgenic mice was rejected by control littermates and spleen cells from rejecting mice were able to proliferate to donor cells. The aim of this paper is to analyze the mechanism of recognition of this xenoantigen and the possible involvement of antibody response in anti-HLA-DR1 immune response. Control littermates were immunized with spleen cells from HLA-DR1 transgenic (TG) mice; at indicated times, xenoantigen-specific proliferation and IFNgamma production was assessed using APC obtained from HLA-DR1 TG mice. Mixed direct-indirect pathway of xenoantigen recognition was suggested by the following findings: i)T cell response to HLA-DR1 was inhibited adding in culture monoclonal antibodies directed either to donor (HLA-DR) or to recipient MHC (I-A); ii) APC from control mice pulsed with purified DR1 molecules were able to induce proliferation by FVB/N mice immunized with transgenic spleen cells. HLA-DR1 recognition permits DR peptide-specific T cell response by lymphocytes of control littermates immunized with the xenoantigen. In addition, we detected xenoreactive IgM and IgG2 antibodies. Our data suggest that HLA-DR1 xenoantigen may be recognized through direct or indirect pathway and provide additional information on mouse anti-human HLA immune response.  相似文献   

8.
We have shown that tacrolimus (TAC)-induced liver allograft acceptance is associated with migration and persistence of donor B cells and dendritic cells (DC). To clarify whether these MHC class II+ leukocytes have favorable roles in inducing tolerance, we analyzed recipient T cell reactions after allogeneic B or DC infusion. LEW rat B cells localized exclusively in BN host B cell follicles without any direct contact with host T cells. While few donor DC migrated to T cell areas and marginal zones, they were captured by host APC, suggesting that allogeneic MHC class II+ cells may induce immune reactions via the indirect pathway. Although DC-infused non-immunosuppressed recipients showed enhanced ex vivo anti-donor responses, persistent in vitro donor-specific hyporeactivity was seen equally with donor DC or B cell infusion under TAC. The results indicate that donor MHC class II+ APC are capable of regulating recipient immune reactions under TAC. Possible involvement of the indirect pathway of allorecognition is discussed.  相似文献   

9.
T cell immunity and graft-versus-host disease (GVHD)   总被引:7,自引:0,他引:7  
Graft-versus-host disease (GVHD), induced by the reaction of donor T cells to recipient histoincompatible antigens, is a serious complication of allogeneic bone marrow transplantation (BMT), resulting in considerable morbidity and mortality. In MHC-disparate BMT, donor T cells directly react with major histocompatibility complex (MHC) antigens, while in MHC-matched BMT, T cells react with minor histocompatibility antigens (miHA) presented by shared MHC molecules. Clinically, acute and chronic GVHD can be distinguished on the basis of the time of onset, clinical manifestations and distinct pathobiological mechanisms. Acute GVHD usually occurs within 2 to 6 weeks following allogeneic BMT and primarily affects the skin, liver and the gastrointestinal tract with T cell infiltration of the epithelia of the skin, mucous membranes, bile ducts and gut. In addition, hair follicle cells, airways, bone marrow, and a variety of other tissue systems can be involved. Acute GVHD occurs in up to 50% of allogeneic HLA-matched and 70% of HLA-disparate BMT recipients despite prophylactic immunosuppressive drugs. Chronic GVHD involves a wider range of organs and clinical manifestations include scleroderma, liver failure, immune complex disease, glomerulonephritis, and autoantibody formation.  相似文献   

10.
Summary:  Although the optimal donor for allogeneic hematopoietic stem cell transplantation (HSCT) is a human leukocyte antigen-matched sibling, 75% of patients do not have a match, and alternatives are matched unrelated volunteers, unrelated umbilical cord blood units, and full-haplotype-mismatched family members. To cure leukemia, allogeneic HSCT relies on donor T cells in the allograft, which promote engraftment, eradicate malignant cells, and reconstitute immunity. Here, we focus on the open issues of rejection, graft-versus-host disease (GVHD), and infections and the benefits of natural killer (NK) cell alloreactivity and its underlying mechanisms. Donor-versus-recipient NK cell alloreactivity derives from a mismatch between inhibitory receptors for self-major histocompatibility complex (MHC) class I molecules on donor NK clones and the MHC class I ligands on recipient cells. These NK clones sense the missing expression of the self-MHC class I allele on the allogeneic targets and mediate alloreactions. HSCT from 'NK alloreactive' donors controls acute myeloid relapse without causing GVHD. We review the translation of NK cell recognition of missing self into the clinical practice of allogeneic hematopoietic transplantation and discuss how it has opened innovative perspectives in the cure of leukemia.  相似文献   

11.
Current interpretation based on analytical in vitro works that actions of Ia antigens and accessory cells such as macrophages and dendritic cells are crucial for inducing cytotoxic T cell responses to class I major histocompatibility complex (MHC) alloantigens has been challenged by experiments performed in a newly developed system handling in vivo cytotoxic T cell immunity. We first characterized the transplantation immunity for second-set rejection of ascitic tumor allografts as principally induced by allogeneic stimulator cells via direct pathway, and as exclusively mediated by class I MHC alloantigen-specific in vivo cytotoxic T cell activity. By comparison of activities of limiting effective doses (10(4)-10(5) cells per mouse) of various stimulator cells in this defined system, we could demonstrate that genetic disparity at the D region of H-2 to the recipient is just enough for inducing the immunity, and presence of allogeneic or syngeneic Ia antigens in addition to H-2D alloantigens on stimulator cells does not give any premium effect. Further study revealed that allogeneic peritoneal cells rich in macrophages or glass-adherent spleen cells enriched for dendritic cells are not stronger stimulators than allogeneic adherent cell-depleted spleen cells and semi-allogeneic thymocytes. These results fit with the alternative concept that the physiological pathway inducing in vivo cytotoxic T cell immunity for graft rejection entirely depends on class I MHC antigens on live lymphocytes as self-supported stimulators, and does not crucially involve additional stimulator activities of Ia antigens and special accessory cell types, which must be in vivo concerned with induction of other types of transplantation immunity.  相似文献   

12.
Indirect presentation of allogeneic MHC antigen is an important pathway by which allografts are rejected and tolerance maintained by regulatory CD4+ T cells. In this study HLA-A2 derived synthetic peptides were used to determine whether T cells of non-HLA-A2 renal graft recipients, which had been HLA-A2 mismatched to their organ donors, recognize some of the HLA-A2-derived peptides. Among the HLA-A2 mismatched patients, 60% recognized residues 56–69, 65–79, and 75–89. Peripheral blood lymphocytes derived from healthy individuals showed low reactivity towards allopeptides, indicating that sensitization towards HLA-A2 induced response towards HLA-A2 derived peptides. The response to the peptides was blocked by antibodies to HLA-DR, -DQ, and CD4. Depletion of antigen presenting cells abrogated response towards the allopeptides, confirming that the observed proliferation was mediated by the indirect pathway. Interestingly, although none of the HLA-A2 mismatched patients had any signs for either acute or chronic rejection, considerable response to allo-derived HLA-A2 was observed.  相似文献   

13.
Major histocompatibility complex (MHC) class I molecules present peptides from endogenous proteins. However, in some cases class I-restricted peptides can also derive from exogenous antigens. This MHC class I exogenous presentation could be involved in minor histocompatibility antigen (mHAg)-disparate allograft rejection when donor alloantigens are not expressed in graft antigen-presenting cells (APC) that initiate the rejection mechanism. Here we addressed this question by using a skin graft experimental model where donors (H-2b or H-2d Tgβ-gal mice) expressed the mHAg like β-galactosidase (β-gal) in keratinocytes but not in Langerhans' cells (LC) which have an APC function. Rejection of Tgβ-gal skin by a β-gal-specific CD8 cytotoxic T lymphocyte (CTL) effector mechanism should require presentation by donor and/or recipient LC of MHC class I-restricted peptides of exogenous β-gal shed by keratinocytes. Indeed, our results showed that 1) H-2b Tgβ-gal skin was rejected by H-2bxs and H-2bxd recipients; 2) rejection was mediated by β-gal-specific CD8+ CTL effectors; and 3) H-2bxd mice having rejected H-2b Tgβ-gal skin generated β-gal-specific CTL restricted by H-2b and H-2d class I molecules and rejected subsequently grafted H-2d Tgβ-gal skin in an accelerated fashion, demonstrating that recipient LC have presented exogenous β-gal-derived MHC class I epitopes. These results lead to the conclusion that MHC class I exogenous presentation of donor mHAg can initiate allograft rejection.  相似文献   

14.
Rejection of solid organ allografts is promoted by T cells. Recipient T cells can directly recognize intact allo-MHC molecules on donor cells and can also indirectly recognize processed donor-derived allo-peptides presented by recipient antigen-presenting cells in the context of self-MHC molecules. Although CD4(+) T cells primed through the indirect allorecognition pathway alone are sufficient to promote acute allograft rejection, it is unknown how they can mediate graft destruction without cognate recognition of donor cells. In this study, we analyzed the indirect effector mechanism of skin allograft rejection using a mouse model in which SCID recipients bearing MHC class II-deficient skin allografts were adoptively transferred with CD4(+) T cells. Histologically, entire graft necrosis was preceded by mononuclear cell infiltration in the graft epithelia with epithelial cell apoptosis, indicating cell-mediated cytotoxicity against donor cells as an effector mechanism. Beside CD4(+) T cells and macrophages, NK cells infiltrated in the rejecting grafts. Depletion of NK cells as well as blocking of the activating NK receptor NKG2D allowed prolonged survival of the grafts. Expression of NKG2D ligands was up-regulated in the rejecting grafts. These results suggest that NK cells activated through NKG2D contribute to the skin allograft rejection promoted by indirectly primed CD4(+) T cells.  相似文献   

15.
FTY720 is a novel immunosuppressant that improves the outcomes after solid organ and bone marrow transplantation (BMT) due to the sequestration of T cells into LN. We tested the hypothesis that the sequestration of donor T cells in LN by FTY720 would enhance their interaction with host APC, thus causing a greater degree of activation-induced apoptosis of alloreactive T cells, and thereby resulting in a reduction of graft-vs.-host disease (GVHD). The short-term administration of FTY720 improved the recipient survival after allogeneic BMT. FTY720 treatment facilitated a rapid contraction of the donor T cell pool in association with an increased degree of apoptosis of donor T cells. The donor T cell reactivity to host alloantigens was diminished in host's LN and adoptive transfer of donor T cells isolated from LN of FTY720-treated recipients of allogeneic BMT induced less severe GVHD in secondary recipients than the transfer from controls. Caspase-dependent apoptosis was involved in this mechanism because FTY720-induced protection was abrogated when a pan-caspase inhibitor was administered. These findings thus demonstrate the presence of a novel mechanism by which FTY720 modulates the allogeneic T cell responses: namely, by the induction of activation-induced apoptosis of alloreactive T cells in LN.  相似文献   

16.
GVHD is a major complication in allogeneic bone marrow transplantation (BMT). MHC class I mismatching increases GVHD, but in MHC-matched BMT minor histocompatibility antigens (mH) presented by MHC class I result in significant GVHD. To examine the modification of GVHD in the absence of cell surface MHC class I molecules, β2-microglobulin-deficient mice (β2m-/-) were used as allogeneic BMT recipients in MHC- and mH-mismatched transplants. β2m-/- mice accepted MHC class I-expressing BM grafts and developed significant GVHD. MHC (H-2)-mismatched recipients developed acute lethal GVHD. In contrast, animals transplanted across mH barriers developed indolent chronic disease that was eventually fatal. Engrafted splenic T cells in all β2m-/- recipients were predominantly CD3+ αβ TCR+ CD4+ cells (15–20% of all splenocytes). In contrast, CD8+ cells engrafted in very small numbers (1–5%) irrespective of the degree of MHC mismatching. T cells proliferated against recipient strain antigens and recognized recipient strain targets in cytolytic assays. Cytolysis was blocked by anti-MHC class II but not anti-CD8 or anti-MHC class I monoclonal antibodies (MoAbs). Cytolytic CD4+ T cells induced and maintained GVHD in mH-mismatched β2m-/- mice, supporting endogenous mH presentation solely by MHC class II. Conversely, haematopoietic β2m-/- cells were unable to engraft in normal MHC-matched recipients, presumably due to natural killer (NK)-mediated rejection of class I-negative cells. Donor-derived lymphokine-activated killer cells (LAK) were unable to overcome graft rejection (GR) and support engraftment.  相似文献   

17.
T cells specific for foreign antigen recognize a complex of peptides and self-major histocompatibility complex (MHC) molecules and can also cross-react with allo-MHC molecules. It remains controversial, however, what alloreactive T cells exactly recognize. It has been proposed that alloreactive T cells recognize endogenous peptides presented by allo-MHC molecules. To test this hypothesis, we examined an influenza virus-specific T cell clone (6H5), specific for neuraminidase N2 and restricted by HLA-DR1. In the absence of influenza virus, this clone cross-reacted with HLA-DR1Dw1+ but not with HLA-DR1Dw20+ Epstein-Barr virus-transformed lymphoblastoid cells (B-LCL). Cold target inhibition experiments and the rearrangement pattern of the T cell receptor beta chain indicated that 6H5 was a monoclonal T cell population most likely using the same T cell receptor for both responses. To determine whether determinants other than HLA-DR1Dw1+ B-LCL or activated B cells, but, surprisingly, not to other cell types expressed HLA-DR1Dw1, including monocytes and transfected L cells. These experiments further support the concept that recognition of allogeneic MHC (in this case HLA-DR1Dw1) may result from a cross-reactivity of T cells specific for a complex of foreign antigen and self-MHC (neuraminidase N2 and HLA-DR1Dw20). Furthermore, allorecognition of T cell clone 6H5 appears to depend upon the recognition of a complex of allogeneic MHC and a cell-type specific endogenous peptide presented by activated B cells.  相似文献   

18.
After transplantation, recipient T cells can recognize donor antigens either by interacting with MHC class II on donor bone marrow‐derived cells (direct allorecognition), or by recognizing allogeneic peptides bound to self‐MHC class II molecules on recipient antigen presenting cells (indirect allorecognition). The activation of pro‐inflammatory T cells via either of these pathways leads to allograft rejection, so the suppression of both of these pathways is needed to achieve transplantation tolerance. A study in this issue of the European Journal of Immunology [Eur. J. Immunol. 2013. 43: 734–746] shows that allogeneic dendritic cells (DCs) modified to either lack expression of CD80/86 or over‐express indoleamine 2,3‐dioxygenase (IDO) are able to inhibit direct and/or indirect alloresponses in vitro and in vivo in mice. Notably, both allorecognition pathways were suppressed by the coexpression of self‐ and allo‐MHC molecules on semi‐allogeneic DCs. This Commentary discusses the challenges and potential of using genetically‐modified DCs to suppress alloreactivity in the context of transplant tolerance.  相似文献   

19.
The alloresponse     
The alloresponse can be divided into two components. The first of these is allorecognition, which refers to the recognition of antigens, expressed on the surface of cells of non-self origin, by the host's lymphocytes. The second part is the immune effector mechanisms generated by this recognition process. The molecules recognised have been termed histocompatibility antigens and fall into two categories. The strongest responses are provoked by allogeneic major histocompatibility complex (MHC) antigens. T cells recognise these antigens either directly or after being processed like conventional antigens by antigen-presenting cells, in what has been termed indirect presentation. In the context of MHC identity, responses are observed against the second category of antigens, namely minor histocompatibility antigens (mHAgs). Although weaker, these responses are of clinical importance, particularly in bone marrow transplant recipients. CD4+ T cells play a central role in orchestrating the immune response to alloantigens. They secrete cytokines to attract effector cells, such as macrophages and CD8+ T cells, into the graft and are able to interact with B cells that will secrete highly specific alloreactive antibodies. In clinical terms, the result of the immune response to transplanted allografts can be classified as hyperacute rejection, acute and chronic rejection. The immunological effector mechanisms involved in each of these processes are discussed.  相似文献   

20.
The recognition of major histocompatibility complex (MHC) allopeptides by recipient MHC class II-restricted CD4(+) T cells via indirect pathway is a prerequisite for the generation of an immune response to the allograft. We tested 13-mer to 24-mer peptides from the MHC class I molecule for their possible immunogenicity in a fully MHC-mismatched rat strain combination. Our results confirm the hierarchical distribution of the immunogenicity of donor MHC class I peptides in the T cell alloactivation via indirect pathway. In addition, we show that allopeptide-induced immune response is critical for acute rejection of heart allografts. Among the seven allopeptides tested, peptide P1 was identified as immunodominant; it induced the greatest T cell proliferation and cytokine production in vitro as well as a significant reduction in allograft survival time. The TCR repertoire of T cells involved in the in vitro and in vivo responses induced by the dominant allopeptide P1 was found to be limited to the Vbeta10 and Vbeta 19 gene families. The identification of dominant allopeptides should greatly facilitate characterization of the specific T cell population responsible for allograft rejection and may be used to modulate the alloimmune response through antigen-specific therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号