首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MHC II and the Endocytic Pathway: Regulation by Invariant Chain   总被引:1,自引:0,他引:1  
The major histocompatibility complex (MHC) class I and II molecules perform vital functions in innate and adaptive immune responses towards invading pathogens. MHC class I molecules load peptides in the endoplasmatic reticulum (ER) and display them to the T cell receptors (TcR) on CD8+ T lymphocytes. MHC class II molecules (MHC II) acquire their peptides in endosomes and present these to the TcR on CD4+ T lymphocytes. They are vital for the generation of humoral immune responses. MHC II assembly in the ER and trafficking to endosomes is guided by a specialized MHC II chaperone termed the invariant chain (Ii). Ii self-associates into a trimer in the ER, this provides a scaffold for the assembly of three MHC II heterodimers and blocks their peptide binding grooves, thereby avoiding premature peptide binding. Ii then transports the nascent MHC II to more or less specialized compartment where they can load peptides derived from internalized pathogens.  相似文献   

2.
MHC class I antigen presentation refers to the co-ordinated activities of many intracellular pathways that promote the cell surface appearance of MHC class I/beta2m heterodimers loaded with a spectrum of self or foreign peptides. These MHC class I peptide complexes form ligands for CD8 positive T cells and NK cells. MHC class I heterodimers are loaded within the endoplasmic reticulum (ER) with peptides derived from intracellular proteins. Alternatively, MHC class I molecules may be loaded with peptides derived from extracellular proteins in a process called MHC class I cross presentation. This pathway is less well defined but can overlap those pathways operating in classical MHC class I presentation and has recently been reviewed elsewhere (1). This review will address the current concepts regarding the intracellular assembly of MHC class I molecules with their peptide cargo within the ER and their subsequent progress to the cell surface.  相似文献   

3.
Dendritic cells have the capacity to trigger T cell responses in lymphoid organs against antigens captured in the periphery. T cell stimulation depends on the ability of MHC class II molecules to present peptides at the cell surface that are acquired in MHC class II compartments. The high capacity of dendritic cells to stimulate T lymphocytes is related to their ability to regulate the distribution of MHC class II molecules intracellularly. To analyze the molecular components involved in the generation of MHC class II-peptide complexes in human immature dendritic cells, mAb were raised against purified MHC class II compartments. One of the antigens turned out to be CD63, a member of the tetraspanin superfamily. CD63 localized exclusively intracellularly where it associated with peptide-loaded class II molecules. In contrast, the tetraspanins CD9, CD53 and CD81 associated with class II molecules at the plasma membrane. Selective association of distinct tetraspanins may be involved in the regulation of MHC class II distribution in human dendritic cells.  相似文献   

4.
The mechanisms of antigen recognition employed by both class I and class II MHC-restricted T cells are very similar, yet many of the T cell determinants described to date are recognized in the context of a single class of MHC molecules, and generally with only one or a very few different MHC alleles. To determine whether this might be due to a structural difference between class I and class II restricted T cell determinants, peptides previously shown to be recognized in the context of MHC class I proteins by mouse or human CD8+ T lymphocytes were tested for their capacity to bind to HLA-DR molecules on the surface of B lymphoblastoid cell lines (B-LCL). Four out of five class I restricted T cell determinants tested bound to a panel of B-LCL, and the binding was inhibited by anti-HLA-DR mAb. The peptides did not bind to the class II-negative B-LCL RJ2.2.5 nor to mouse L cells, but did bind to L cells transfected with HLA-DR1.  相似文献   

5.
Watts C 《Nature immunology》2004,5(7):685-692
The endosomes and lysosomes of antigen-presenting cells host the processing and assembly reactions that result in the display of peptides on major histocompatibility complex (MHC) class II molecules and lipid-linked products on CD1 molecules. This environment is potentially hostile for T cell epitope and MHC class II survival, and the influence of regulators of protease activity and specialized chaperones that assist MHC class II assembly is crucial. At present, evidence indicates that individual proteases make both constructive and destructive contributions to antigen processing for MHC class II presentation to CD4 T cells. Some features of CD1 antigen capture within the endocytic pathway are also discussed.  相似文献   

6.
Alloreactivity, the capacity of a large number of T lymphocytes to react with foreign MHC molecules, represents the cellular basis for the rejection of tissue grafts. Although it was originally assumed that the TCR of alloreactive T cells focus their recognition on the polymorphic residues that differ between the MHC molecules of responder and stimulator cells, studies in the MHC class I system have clearly demonstrated that MHC-bound peptides can influence this interaction. It remains unclear, however, whether peptides play an equally important role for the recognition of MHC class II molecules by alloreactive CD4+ T cells. Another issue that remains unresolved is the overall frequency of peptide-dependent versus peptide-independent alloreactive T cells. We have addressed these questions with antigen-presenting cells (APC) from H2-M mutant mice that predominantly express a single MHC class II-peptide complex, H2-Ab bound by a peptide (CLIP) derived from the class II-associated invariant chain. APC from these mice were used as targets and stimulators for alloreactive CD4+ T cells. Results demonstrated that the vast majority of CD4+ alloreactive T cells recognize MHC class II molecules in a peptide-dependent fashion.  相似文献   

7.
The number of class I MHC/peptide complexes on the surface of antigen presenting cells crucially influences the activation of T cells. The formation of these complexes depends on selection processes at the level of peptide generation from proteins (predominantly in the cytosol), peptide transport into the ER and binding requirements of individual MHC class I molecules. These individual events have co-evolved to what is called 'antigen processing and presentation' and result in the representative presentation of peptides from every cellular protein by a species-specific combination of MHC class I molecules for recognition by MHC class I-restricted T cells.  相似文献   

8.
In an adaptive immune response, antigen is recognized by two distinct sets of highly variable receptor molecules: (1) immunoglobulins, that serve as antigen receptors on B cells and (2) the antigen-specific receptors on T cells. T cells play important role in the control of infection and in the development of protective immunity. These cells can also mediate anti-tumor effects and, in case of autoimmune syndromes, contribute to the development and pathology of disease. The specificity of T cells is determined by T cell receptors (TCR). Understanding of the success of immune responses requires the direct measurement of antigen-specific T lymphocytes. Cell with major histocompatibility complex (MHC) class I molecules are able to present antigens to antigen-specific CD8+ cytotoxic T lymphocytes. MHC class I molecules present small peptides (epitopes) processed from intracellular antigens such as viruses and intracellular bacteria. MHC class I molecules in humans are designated as human leukocyte antigen (HLA) class I and divided into HLA-A, -B and -C. CD8+ T cells recognize MHC class I molecules and after activation produce proteins that destroy infected cells. MHC class II molecules receive their peptides mainly from extracellular and soluble antigens and present them to the CD4+ T helper cells. A recently described technique that can be used in flow cytometry enables us to quantify ex vivo antigen-specific T cells by binding of soluble tetramer MHC-peptide complexes attached to fluorochrome. Quantitative analyses of antigen-specific T cell populations provide important information on the natural course of immune responses. The interaction of T cell receptors on T lymphocytes with tetrameric MHC-peptide complexes mimics the situation on the cell surface, and allows for reliable binding. Tetramers consist of four biotinylated HLA-peptide epitope complexes bound to streptavidin conjugated with fluorescent dye. Tetramer technology has sensitivity of detection as little as 0.02% of total cytotoxic T cell pool or T helper cell pool (i.e. approximately 1 in 50.000 lymphocytes). The combination of this technology with intracellular cytokine staining methods opens up significantly better ways of studying these cells than previously possible, allowing immunologists to look at their life cycle (activation and proliferation), manner of death (aging and apoptosis) and effector function (cytotoxic potential and cytokine production). MHC tetramers class I have yielded useful insights into in vivo dynamic and function of antigen-specific CD8+ T cells in viral infections, parasitic infections, cancer, autoimmune disease and transplantation. This knowledge is of special interest for immunotherapy, diagnostic monitoring of T cell mediated immunity, and the development of new vaccination strategies. There is some possibility for cell therapy with antigen-specific CD8+ T cells for various diseases including cancer and viral infections. Targeted immunotherapy of selective deletion of auto--or alloreactive T cells with MHC tetramers may be important for the treatment of autoimmune disease, or to prevent the rejection of transplanted organs. The utility of this technique for the immunotherapy in vivo needs to be confirmed and modified in further research. Understanding how antigen-specific cells develop and function in different circumstances and pathologies will be the key to unravelling the secrets of cellular immune system.  相似文献   

9.
Major histocompatibility complex (MHC) class II molecules are expressed by antigen-presenting cells and stimulate CD4+ T cells, which initiate humoral immune responses. Over the past decade, interest has developed to therapeutically impact the peptides to be exposed to CD4+ T cells. Structurally diverse small molecules have been discovered that act on the endogenous peptide exchanger HLA-DM by different mechanisms. Exogenously delivered peptides are highly susceptible to proteolytic cleavage in vivo; however, it is only when successfully incorporated into stable MHC II–peptide complexes that these peptides can induce an immune response. Many of the small molecules so far discovered have highlighted the molecular interactions mediating the formation of MHC II–peptide complexes. As potential drugs, these small molecules open new therapeutic approaches to modulate MHC II antigen presentation pathways and influence the quality and specificity of immune responses. This review briefly introduces how CD4+ T cells recognize antigen when displayed by MHC class II molecules, as well as MHC class II–peptide-loading pathways, structural basis of peptide binding and stabilization of the peptide–MHC complexes. We discuss the concept of MHC-loading enhancers, how they could modulate immune responses and how these molecules have been identified. Finally, we suggest mechanisms whereby MHC-loading enhancers could act upon MHC class II molecules.  相似文献   

10.
The MHC class II and CD40 molecules are two major components of the immune system that are involved in cell-cell interactions and signal transduction. Data obtained in the course of the present investigation show that these two molecules are physically associated on the surface of various human B cell lines and on normal tonsilar B cells. The CD40 / MHC class II complexes were not detected on the germinal center B cell line Ramos. However, stimulation of these cells via CD40 or MHC class II triggered their association, suggesting that the formation of the complex is related to the activation status of the cells. The formation of these complexes did not alter the interaction of MHC class II molecules with one of their natural ligands, the staphylococcal enterotoxin A (SEA), as evidenced by the ability of SEA to bind MHC class II / CD40 complexes. Cross-linking of MHC class II or CD40 molecules leads to the association as well as the co-association of both molecules to the NP-49-insoluble cellular matrix. Such association allowed us to demonstrate that only a fraction of these molecules can be physically associated on the cell surface. Based on previous observations and those presented here, it is highly possible that the CD40 / MHC class II complexes may have an important role in signal(s) induced via both molecules and during T / B cells interactions.  相似文献   

11.
T cells detect infected and transformed cells via antigen presentation by major histocompatibility complex (MHC) molecules on the cell surface. For T cell stimulation, these MHC molecules present fragments of proteins that are expressed or taken up by the cell. These fragments are generated by distinct proteolytic mechanisms for presentation on MHC class I molecules to cytotoxic CD8+ and on MHC class II molecules to helper CD4+ T cells. Proteasomes are primarily involved in MHC class I ligand and lysosomes, in MHC class II ligand generation. Autophagy delivers cytoplasmic material to lysosomes and, therefore, contributes to cytoplasmic antigen presentation by MHC class II molecules. In addition, it has been recently realized that this process also supports extracellular antigen processing for MHC class II presentation and cross-presentation on MHC class I molecules. Although the exact mechanisms for the regulation of these antigen processing pathways by autophagy are still unknown, recent studies, summarized in this review, suggest that they contribute to immune responses against infections and to maintain tolerance. Moreover, they are targeted by viruses for immune escape and could maybe be harnessed for immunotherapy.  相似文献   

12.
T Kerkau  S Gernert  C Kneitz  A Schimpl 《Immunobiology》1992,184(4-5):402-409
HIV infection of CD4+ peripheral blood lymphocytes leads to a loss of MHC class I molecules on the surface of the infected cells as detectable by monoclonal antibody staining and flow cytometry. Incubation of the infected cells at 26 degrees C or treatment at 37 degrees C with peptides leads to upregulation of MHC class I to levels equal to those found on uninfected cells cultured under the same conditions. The data suggest that, after HIV infection, the mechanisms responsible for peptide generation, peptide transport and thus stable association between peptides and MHC class I molecules are severely affected.  相似文献   

13.
Summary: Major histocompatibihty complex (MHC)-encoded glycoproteins bind peptide antigens through non-covalent interactions to generate complexes that are displayed on tbe surface of antigen-presenting cells (APC) for recognition by T ceils, Peptide-binding site occupancy is necessary for stable assembly of newly synthesized MHC proteins and export from the endoplasmic reticulum (ER), The MHC class II antigen-processing pathway provides a mechanism for presentation of peptides generated in the endosomal pathway of APC, The chaperone protein, invariant chain, includes a surrogate peptide that stahilizes newly synthesized class II molecules during transport to endosomal compartments. The invariant chain-derived peptide must be replaced through a peptide exchange reaction that is promoted by acidic pH and the MHC-encoded co-factor HLA-DM, Peptide exchange reactions are not required for presentation of antigens by MHC class I molecules because they bind antigens during initial assembly in the ER, However, exchange reactions may play an important role in editing the repertoire of peptides presented by both class II and class I molecules, thus influencing the specificity of immunity and tolerance.  相似文献   

14.
The central event in the cellular immune response to invading pathogens is the presentation of non-self antigenic peptides by major histocompatibility complex (MHC) class I molecules to cytotoxic T lymphocytes (CTLs). As peptide binding and transport proteins, MHC class I molecules have evolved distinct biochemical and cellular strategies for acquiring antigenic peptides, providing CTLs an extracellular representation of the intracellular antigen content. Whereas efficient generation of MHC class I binding peptides depends on the intracellular, immunoproteasome-mediated proteolysis machinery, translocation of peptides into the lumen of the endoplasmic reticulum requires the endoplasmic reticulum-resident, adenosine 5'-triphosphate (ATP) binding cassette transporter associated with antigen processing (TAP). Here we show, for the first time, that immunoproteasomes, TAP complexes, and MHC class I molecules are physically associated, providing an effective means of transporting MHC class I binding peptides from their sites of generation into the lumen of the endoplasmic reticulum for loading onto MHC class I molecules. In this review, we assess the current understanding of the functional regulation of immunoproteasomes and transporter associated with antigen processing.  相似文献   

15.
Molecular chaperones such as heat shock protein 90 (Hsp90) have been shown to form complexes with tumor antigens and can be used to prepare anticancer vaccines largely due to this property. Earlier studies had suggested that mice immunized with a molecular chaperone-based vaccine derived from tumors became immune to further vaccination and that both CD8+ and CD4+ T cells were activated by the chaperone vaccine in a manner dependent on scavenger receptor SREC-I. Here we have investigated mechanisms whereby SREC-I might facilitate uptake of Hsp90-conjugated peptides by APC into the MHC class II pathway for presentation to CD4+ T cells. Our studies showed that antigenic peptides associated with Hsp90 were taken up into the class II pathway by a mechanism dependent on SREC-I binding and internalization and presented to CD4+ T cells. In addition our studies showed that SREC-I could associate with MHC class II molecules on the cell surface and in intracellular endosomes, suggesting a mechanism involving facilitated uptake of peptides into the MHC class II pathway. These studies in addition to our earlier findings showed SREC-I to play a primary role in chaperone-associated antigen uptake both through cross priming of MHC class I molecules and entry into the class II pathway.  相似文献   

16.
Summary: Assembly of major histocompatibility complex (MHC) class I molecules in the endoplasmic reticulum is a highly coordinated process that results in abundant class I/peptide complexes at the cell surface for recognition by CD8+ T cells and natural killer cells. During the assembly process, a number of chaperones and accessory molecules, such as transporter associated with antigen processing, tapasin, ER60, and calreticulin, assist newly synthesized class I molecules to facilitate loading of antigenic peptides and to optimize the repertoire of surface class I/peptide complexes. This review focuses on the relative importance of these accessory molecules for CD8+ T‐cell responses in vivo and discusses reasons that may help explain why some CD8+ T‐cell responses develop normally in mice deficient in components of class I assembly, despite impaired antigen presentation.  相似文献   

17.
Transport of major histocompatibility complex (MHC) class II molecules to the endocytic route is directed by the associated invariant chain (Ii). In the endocytic pathway, Ii is proteolytically cleaved and, upon removal of residual Ii fragments, class II alpha beta dimers are charged with antigenic peptide and recognized by CD4+ T cells. Although distinct peptide-loading compartments such as MIIC (MHC class II loading compartment) and CIIV (MHC class II vesicles) have been characterized in different cells, there is growing evidence of a multitude of subcellular compartments in which antigenic peptide loading takes place. We employed a physiological cellular system in which surface Ii (CD74) and surface human leucocyte antigen (HLA)-DR were induced either alone or in combination. This was achieved by transient exposure of HT-29 cells to recombinant interferon-gamma (rIFN-gamma). Using distinct cellular variants, we showed that: (i) the majority of Ii molecules physically associate on the cell membrane with class II dimers to form DR alpha beta:Ii complexes; (ii) the presence of surface Ii is a prerequisite for the rapid uptake of HLA-DR-specific monoclonal antibodies into early endosomes because only the surface DR+/Ii+ phenotype, and not the DR+/Ii- variant, efficiently internalizes; and (iii) the HLA-DR:Ii complexes are targeted to early endosomes, as indicated by co-localization with the GTPase, Rab5, and endocytosed bovine serum albumin. Internalization of HLA-DR:Ii complexes, accommodation of peptides by DR alphabeta heterodimers in early endosomes and recycling to the cell surface may be a mechanism used to increase the peptide repertoire that antigen-presenting cells display to MHC class II-restricted T cells.  相似文献   

18.
Processing of exogenous hepatitis B surface antigen (HBsAg) particles in an endolysosomal compartment generates peptides that bind to the major histocompatibility complex (MHC) class I molecule Ld and are presented to CD8+ cytotoxic T lymphocytes. Surface-associated ‘empty’ MHC class I molecules associated neither with peptide, nor with β2-microglobulin (β2m) are involved in this alternative processing pathway of exogenous antigen for MHC class I-restricted peptide presentation. Here, we demonstrate that internalization of exogenous β2m is required for endolysosomal generation of presentation-competent, trimeric Ld molecules in cells pulsed with exogenous HBsAg. These data point to a role of endocytosed exogenous β2m in the endolysosomal assembly of MHC class I molecules that present peptides from endosomally processed, exogenous antigen.  相似文献   

19.
CD4+ helper T cells recognize short peptides stably associated with class II MHC molecules displayed on the surface of antigen presenting cells. Very little is known about the sequence of events that lead to the generation of these peptides from protein antigens. It is likely that native proteins must partially unfold before they are cleaved by endopeptidases or bind to MHC proteins. For many antigens, the rate-limiting step in unfolding may involve reduction of disulfide bonds. Evidence that disulfide reduction occurs in endocytic compartments is reviewed and potential mechanisms for the reduction of antigen disulfide bonds are proposed.  相似文献   

20.
MHC Ⅰ类分子是启动机体免疫应答的重要分子。当细胞遭受病毒感染或本身发生癌变,MHCⅠ类分子能结合病毒或癌变细胞蛋白降解形成的多肽,向CD8+T细胞报告病毒或者肿瘤的存在,从而促使其对异常细胞的杀伤。在此过程中,MHCⅠ类分子的胞内转运途径精密调控着免疫应答的效率,但目前对MHCⅠ类分子在胞内转运途径的机制了解不多。本综述就MHCⅠ类分子在内质网的组装、外运以及内吞后降解或再循环过程中的主要机制做一阐述,并且介绍一些新发现的相关调控分子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号