首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A small fraction of children with febrile seizures appears to develop cognitive impairments. Recent studies in a rat model of hyperthermia‐induced febrile seizures indicate that prolonged febrile seizures early in life have long‐lasting effects on the hippocampus and induce cognitive deficits. However, data on network plasticity and the nature of cognitive deficits are conflicting. We examined three specific measures of hippocampal plasticity in adult rats with a prior history of experimental febrile seizures: (i) activity‐dependent synaptic plasticity (long‐term potentiation and depression) by electrophysiological recordings of Schaffer collateral/commissural‐evoked field excitatory synaptic potentials in CA1 of acute hippocampal slices; (ii) Morris water maze spatial learning and memory; and (iii) hippocampal mossy fiber plasticity by Timm histochemistry and quantification of terminal sprouting in CA3 and the dentate gyrus. We found enhanced hippocampal CA1 long‐term potentiation and reduced long‐term depression but normal spatial learning and memory in adult rats that were subjected to experimental febrile seizures on postnatal day 10. Furthermore, rats with experimental febrile seizures showed modest but significant sprouting of mossy fiber collaterals into the inner molecular layer of the dentate gyrus in adulthood. We conclude that enhanced CA1 long‐term potentiation and mild mossy fiber sprouting occur after experimental febrile seizures, without affecting spatial learning and memory in the Morris water maze. These long‐term functional and structural alterations in hippocampal plasticity are likely to play a role in the enhanced seizure susceptibility in this model of prolonged human febrile seizures but do not correlate with overt cognitive deficits.  相似文献   

2.
Adenosine is an endogenous modulator that has an inhibitory effect on neuronal activity. The aim of this work was to investigate the role of aminophylline, an adenosine receptor antagonist, on the long-term effects of status epilepticus (SE) in the developing brain. Four groups of rats at the postnatal age of 12 days were intraperitoneally administered with saline, aminophylline (50 mg/kg), lithium-pilocarpine (Li-PC) (3 mEq/kg-60 mg/kg), and Li-PC plus aminophylline, respectively. The four groups were tested for spatial memory using the Morris water maze task at P80 and motor performance by the Rotarod test at P100. The brains were then analyzed with cresyl violet stain for histological lesions and evaluated for mossy fiber sprouting with the Timm stain. At the acute stage, all rats subjected to Li-PC developed SE and no seizures were elicited in the saline-treated or aminophylline-treated rats. The seizure duration was longer in the Li-PC plus aminophylline group (346.9+/-32.7 min) as compared with that in the Li-PC group (265.2+/-9.8 min). The difference of mortality was not significant. Rats without seizures exhibited no motor imbalance, spatial deficits, or morphological changes. The rats with Li-PC-induced SE demonstrated spatial memory deficits without motor incoordination or morphological changes. However, the rats subjected to Li-PC plus aminophylline exhibited motor impairment and morphological changes, including neuronal cell loss in CA1 area and increased mossy fiber sprouting in CA3 area. In addition, the rats of Li-PC plus aminophylline had greater spatial memory deficits than that seen in rats with Li-PC. We concluded that an adenosine receptor antagonist, such as aminophylline, had synergistic effects on the SE-induced long-term deficit of cognition and motor performance in the developing brain. The present study may provide experimental evidence and lead to novel therapeutic interventions.  相似文献   

3.
Neonatal seizures are frequently associated with cognitive impairment and reduced seizure threshold. Previous studies in our laboratory have demonstrated that rats with recurrent neonatal seizures have impaired learning, lower seizure thresholds, and sprouting of mossy fibers in CA3 and the supragranular region of the dentate gyrus in the hippocampus when studied as adults. The goal of this study was to determine the age of onset of cognitive dysfunction and alterations in seizure susceptibility in rats subjected to recurrent neonatal seizures and the relation of this cognitive impairment to mossy fiber sprouting and expression of glutamate receptors. Starting at postnatal day (P) 0, rats were exposed to 45 flurothyl-induced seizures over a 9-day period of time. Visual-spatial learning in the water maze and seizure susceptibility were assessed in subsets of the rats at P20 or P35. Brains were evaluated for cell loss, mossy fiber distribution, and AMPA (GluR1) and NMDA (NMDAR1) subreceptor expression at these same time points. Rats with neonatal seizures showed significant impairment in the performance of the water maze and increased seizure susceptibility at both P20 and P35. Sprouting of mossy fibers into the CA3 and supragranular region of the dentate gyrus was seen at both P20 and P35. GluR1 expression was increased in CA3 at P20 and NMDAR1 was increased in expression in CA3 and the supragranular region of the dentate gyrus at P35. Our findings indicate that altered seizure susceptibility and cognitive impairment occurs prior to weaning following a series of neonatal seizures. Furthermore, these alterations in cognition and seizure susceptibility are paralleled by sprouting of mossy fibers and increased expression of glutamate receptors. To be effective, our results suggest that strategies to alter the adverse outcome following neonatal seizures will have to be initiated during, or shortly following, the seizures.  相似文献   

4.
5.
Children with seizures are at risk for long-term cognitive deficits. Similarly, recurrent seizures in developing rats are associated with deficits in spatial learning and memory. However, the pathophysiological bases for these deficits are not known. Hippocampal place cells, cells that are activated selectively when an animal moves through a particular location in space, provides the animal with a spatial map. We hypothesized that seizure-induced impairment in spatial learning is a consequence of the rat's inability to form accurate and stable hippocampal maps. To directly address the cellular concomitants of spatial memory impairment, we recorded the activity of place cells from hippocampal subfield CA1 in freely moving rats subjected to 100 brief flurothyl-induced seizures during the first weeks of life and then tested them in the Morris water maze and radial-arm water maze followed by place cell testing. Compared to controls, rats with recurrent seizures had marked impairment in Morris water maze and radial-arm water maze. In parallel, there were substantial deficits in action potential firing characteristics of place cells with two major defects: i) the coherence, information content, center firing rate, and field size were reduced compared to control cells; and ii) the fields were less stable than those in control place cells. These results show that recurrent seizures during early development are associated with significant impairment in spatial learning and that these deficits are paralleled by deficits in the hippocampal map. This study thus provides a cellular correlate for how recurrent seizures during early development lead to cognitive impairment.  相似文献   

6.
In some children, epilepsy is a catastrophic condition, leading to significant intellectual and behavioral impairment, but little is known about the consequences of recurrent seizures during development. In the present study, we evaluated the effects of 15 daily pentylenetetrazol-induced convulsions in immature rats beginning at postnatal day (P) 1, 10, or 60. In addition, we subjected another group of P10 rats to twice daily seizures for 15 days. Both supragranular and terminal sprouting in the CA3 hippocampal subfield was assessed in Timm-stained sections by using a rating scale and density measurements. Prominent sprouting was seen in the CA3 stratum pyramidale layer in all rats having 15 daily seizures, regardless of the age when seizures began. Based on Timm staining in control P10, P20, and P30 rats, the terminal sprouting in CA3 appears to be new growth of axons and synapses as opposed to a failure of normal regression of synapses. In addition to CA3 terminal sprouting, rats having twice daily seizures had sprouting noted in the dentate supragranular layer, predominately in the inferior blade of the dentate, and had a decreased seizure threshold when compared with controls. Cell counting of dentate granule cells, CA3, CA1, and hilar neurons, with unbiased stereological methods demonstrated no differences from controls in rats with daily seizures beginning at P1 or P10, whereas adult rats with daily seizures had a significant decrease in CA1 neurons. Rats that received twice daily seizures on P10–P25 had an increase in dentate granule cells. This study demonstrates that, like the mature brain, immature animals have neuronal reorganization after recurrent seizures, with mossy fiber sprouting in both the CA3 subfield and supragranular region. In the immature brain, repetitive seizures also result in granule cell neurogenesis without loss of principal neurons. Although the relationship between these morphological changes after seizures during development and subsequent cognitive impairment is not yet clear, our findings indicate that during development recurrent seizures can result in significant alterations in cell number and axonal growth. J. Comp. Neurol. 404:537–553, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

7.
Recurrent neonatal seizures are associated with a high risk of neurological sequelae. The major concern is whether recurrent neonatal seizures induce adverse effects on long-term cognition and/or motor performance. Rats were treated with intraperitoneal (ip) bicuculline for 3 consecutive days, starting from Postnatal Day 5 (P5). Kainic acid (KA, 4 mg/kg ip) was injected at P53 to investigate the susceptibility to a second insult, and then cognitive function was tested using the Morris water maze, and motor performance using the Rotarod test, in adulthood (P60). Finally, histological assessments of brains were performed. The rats treated with bicuculline had no deficits in cognition function and pathology findings, but had worse motor performance and increased susceptibility to later KA challenge. Our findings indicate that recurrent bicuculline-induced seizures in the developing brain result in long-term motor deficits and increase the risk of subsequent cognitive damage in response to a second insult.  相似文献   

8.
While the majority of children with febrile seizures have an excellent prognosis, a small percentage are later discovered to have cognitive impairment. Whether the febrile seizures produce the cognitive deficits or the febrile seizures are a marker or the result of underlying brain pathology is not clear from the clinical literature. We evaluated hippocampal and prefrontal cortex function in adult rats with a prior history of experimental febrile seizures as rat pups. All of the rat pups had MRI brain scans following the seizures. Rats subjected to experimental febrile seizures were found to have moderate deficits in working and reference memory and strategy shifting in the Morris water maze test. A possible basis for these hippocampal deficits involved abnormal firing rate and poor stability of hippocampal CA1 place cells, neurons involved in encoding and retrieval of spatial information. Additional derangements of interneuron firing in the CA1 hippocampal circuit suggested a complex network dysfunction in the rats. MRI T2 values in the hippocampus were significantly elevated in 50% of seizure-experiencing rats. Learning and memory functions of these T2-positive rats were significantly worse than those of T2-negative cohorts and of controls. We conclude that cognitive dysfunction involving the hippocampus and prefrontal cortex networks occur following experimental febrile seizures and that the MRI provides a potential biomarker for hippocampal deficits in a model of prolonged human febrile seizures.  相似文献   

9.
Sayin U  Sutula TP  Stafstrom CE 《Epilepsia》2004,45(12):1539-1548
PURPOSE: Seizures in the developing brain cause less macroscopic structural damage than do seizures in adulthood, but accumulating evidence shows that seizures early in life can be associated with persistent behavioral and cognitive impairments. We previously showed that long-term spatial memory in the eight-arm radial-arm maze was impaired in rats that experienced a single episode of kainic acid (KA)-induced status epilepticus during early development (postnatal days (P) 1-14). Here we extend those findings by using a set of behavioral paradigms that are sensitive to additional aspects of learning and behavior. METHODS: On P1, P7, P14, or P24, rats underwent status epilepticus induced by intraperitoneal injections of age-specific doses of KA. In adulthood (P90-P100), the behavioral performance of these rats was compared with that of control rats that did not receive KA. A modified version of the radial-arm maze was used to assess short-term spatial memory; the Morris water maze was used to evaluate long-term spatial memory and retrieval; and the elevated plus maze was used to determine anxiety. RESULTS: Compared with controls, rats with KA seizures at each tested age had impaired short-term spatial memory in the radial-arm maze (longer latency to criterion and more reference errors), deficient long-term spatial learning and retrieval in the water maze (longer escape latencies and memory for platform location), and a greater degree of anxiety in the elevated plus maze (greater time spent in open arms). CONCLUSIONS: These findings provide additional support for the concept that seizures early in life may be followed by life-long impairment of certain cognitive and behavioral functions. These results may have clinical implications, favoring early and aggressive control of seizures during development.  相似文献   

10.
目的 探讨癫痫持续状态(SE)对发育期大鼠认知功能的影响及环磷酸腺苷/蛋白激酶A(cAMP/PKA)信号转导通路在其中所起的作用.方法 SD大鼠32只按照完全随机数字表法分为SE组、生理盐水(NS)组,每组16只.戊四氮(PTZ)诱导大鼠SE,Morris水迷宫和Y迷宫实验观察大鼠学习记忆功能的改变,放射免疫分析法测定海马组织cAMP的含量,免疫组织化学方法检测海马各区PKA的表达.结果 SE组大鼠在Morris水迷宫中平均逃避潜伏期延长,原平台所在象限的游泳时间缩短,与NS组比较差异有统计学意义(P<0.05).在Y迷宫中达标所需的训练次数增多,24 h记忆保持率下降,与NS组比较差异有统计学意义(P<0.05).NS组大鼠海马cAMP的含量为(280.38±22.66)pmol/g,SE组为(147.25±16.83)pmol/g,差异有统计学意义(P<0.05).SE组CA3区和CA1区PKA的表达较NS组明显减少.结论 SE可以导致发育期大鼠认知功能障碍,其机制可能与cAMP/PKA信号转导通路的功能受损有关.
Abstract:
Objective To observe the influence of status epilepticus (SE) on cognitive function of immature rats and explore the role of hippocampal cAMP/PKA signaling pathway in cognitive function impairment of immature rats. Methods Immature male SD rats were assigned randomly to 2 groups: SE group, induced by intraperitoneal injection of pentylenetetrazole (PTZ, n=16), and normal saline control group (n=16). Learning and memory tests using the Morris water maze and Y-maze were performed 7 d after SE. After testing, alterations of content of cAMP were detected by radioimmunoassay,and the expression of PKA in the hippocampus was examined by immunohistochemistry. Results SE rats exhibited learning and memory deficits in the Morris water maze and Y-maze tests: as compared with those in the controls in Morris water maze, the mean escape latency of searching the platform obviously prolonged and the swimming time in the original platform region significantly shortened in SE rats (P<0.05); as compared with those in the controls in Y maze, the number of standard training times obviously increased and the rate of retention of memory significantly decreased in SE rats (P<0.05). At the same time, the cAMP content in hippocampus of SE rats ([147.25±16.83] pmol/g) was significantly lower as compared with that in controls ([280.38±22.66] pmol/g), and the expression of PKA in the CA3 and CA1 areas within hippocampal area of SE rats was obviously decreased as compared with that in controls (P<0.05). Conclusion SE could result in learning and memory deficits in immature rats, which may be related to the impairment of hippocampal cAMP/PKA signaling pathway.  相似文献   

11.
BACKGROUND:Animal experiments have demonstrated that isoflurane exposure alone induces learning and memory deficits for weeks or months. However, the molecular mechanisms of learning and memory remain poorly understood. Hippocampal expression of calcium/phospholipid- dependent protein kinase (PKC) and cAMP-dependent protein kinase (PKA) in rats have been shown to be associated with memory processing. OBJECTIVE:To investigate changes in rat spatial memory and hippocampal CA1 neuronal kinase system following isoflurane anesthesia, and to explore the correlation between molecular changes in cerebral neurons and behavioral manifestations following anesthesia.DESIGN, TIME AND SETTING:A randomized, controlled, animal study. All experiments were performed at the Department of Anesthesia, Beijing Chaoyang Hospital, Capital Medical University from November 2007 to December 2008.MATERIALS:A total of 72 male, 3 month-old (young group), Sprague Dawley rats, and 36 male, 20 month-old (aged group), Sprague-Dawley rats were used in the study. Isoflurane was purchased from Baxter, USA. METHODS:Young and aged rats were randomly assigned to control, training (no anesthesia, Morris water maze training), and isoflurane (1.2% isoflurane, Morris water maze training) groups. The isoflurane group was further subdivided into four groups, which were exposed to anesthesia for 2 or 4 hours, and were subjected to Morris water maze training at 2 days or 2 weeks post- anesthesia. Finally, each aged group comprised 6 rats, and the young group comprised 12 rats. MAIN OUTCOME MEASURES:Spatial learning and memory were observed during Morris water maze training. Hippocampal CA1 PKA and PKC expression and activity were detected by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). RESULTS:A 4-hour isoflurane exposure induced spatial memory deficits in all rats for 2 days to 2 weeks. In particular, aged rats exhibited more severe spatial memory deficits. Immunohistochemistry and ELISA results showed a significant increase in PKC and PKA expression and activity in the hippocampus CA1 subfield following Morris water maze training (P < 0.05). Moreover, isoflurane anesthesia inhibited PKC and PKA expression and activity, and this inhibition increased with increasing exposure duration and increasing age. CONCLUSION:Results suggested that increased isoflurane exposure and age could extensively inhibit the hippocampal CA1 kinase system. Inhibition of protein kinases could play an important role in the cognitive decline following anesthesia.  相似文献   

12.
We investigated the effects of hippocampally kindled seizures on spatial performance of rats in the Morris water maze (MWM). Seizures were elicited with stimulation of field CA1 of dorsal hippocampus 25-45 min prior to daily testing in the water maze. One group of rats was naive to the MWM (acquisition groups), while another group received pretraining in the MWM (retention groups). These groups were further subdivided into rats that experienced non-convulsive seizures prior to daily testing and rats that experienced fully generalized convulsive seizures prior to daily testing. We found that CA1 seizures significantly disrupted water maze performance during both acquisition and retention, and the effects were similar when either non-convulsive or fully generalized convulsive seizures were evoked. Our findings are consistent with previous reports suggesting that epileptiform activity in the hippocampus acutely impairs performance in tasks sensitive to spatial learning and memory deficits and suggest that both new learning and demonstration of an established place response are susceptible to such disruption.  相似文献   

13.
Accumulated evidence have shown that a series of morphological alternations occur in patients with epilepsy and in different epileptic animal models. Given most of animal model studies have been focused on adulthood stage, the effect of recurrent seizures to immature brain in neonatal period has not been well established. This study was designed to observe the certain morphological changes following recurrent seizures occurred in the neonatal rats. For seizure induction, neonatal Wistar rats were intraperitoneally injected with pilocarpine on postnatal day 1 (P1), P4 and P7. Rat pups were grouped and sacrificed at 1d, 7d, 14d and 42d after the last pilocarpine injection respectively. Bromodeoxyuridine (BrdU) was intraperitoneally administered 36h before the rats were sacrificed. BrdU single and double labeling with neuronal markers were used to analyze cell proliferation and differentiation. Nissl and Timm staining were performed to evaluate cell loss and mossy fiber sprouting. Rats with neonatal seizures had a significant reduction in the number of Bromodeoxyuridine-(BrdU) labeled cells in the dentate gyrus compared with the control groups when the animals were killed either 1 or 7 days after the third seizure (P<0.05) but there was no difference between two groups on P21. On the contrary, BrdU-labeled cells significantly increased in the experimental group compared with control group on P49 (P<0.05). The majority of the BrdU-labeled cells colocalized with neuronal marker-NF200 (Neurofilament-200). Nissl staining showed that there was no obvious neuronal loss after seizure induction over all different time points. Rats with the survival time of 42 days after neonatal seizures developed to increased mossy fiber sprouting in both the CA3 region and supragranular zone of the dentate gyrus compared with the control groups (P<0.05). Taken together, the present findings suggest that synaptic reorganization only occurs at the later time point following recurrent seizures in neonatal rats, and neonatal recurrent seizures can modulate neurogenesis oppositely over different time window with a down-regulation at early time and up-regulation afterwards.  相似文献   

14.
Seizures in adult rats result in long-term deficits in learning and memory, as well as an enhanced susceptibility to further seizures. In contrast, fewer lasting changes have been found following seizures in rats younger than 20 days old. This age-dependency could be due to differing amounts of hippocampal neuronal damage produced by seizures at different ages. To determine if there is an early developmental resistance to seizure-induced hippocampal damage, we compared the effects of kainic acid (KA)-induced status epilepticus and amygdala kindling on hippocampal dentate gyrus anatomy and electrophysiology, in immature (16 day old) and adult rats. In adult rats, KA status epilepticus resulted in numerous silver-stained degenerating dentate hilar neurons, pyramidal cells in fields CA1 and CA3, and marked numerical reductions in CA3c pyramidal neuron counts (-57%) in separate rats. Two weeks following the last kindled seizure, some, but significantly less, CA3c pyramidal cell loss was observed (-26%). Both KA status epilepticus and kindling in duced mossy-fiber sprouting, as evidenced by ectopic Timm staining in supragranular layers of the dentate gyrus. In hippocampal slices from adult rats, paired-pulse stimulation of perforant path axons revealed a persistent enhancement of dentate granule-cell inhibition following KA status epilepticus or kindling. While seizures induced by KA or kindling in 16-day-old rats were typically more severe than in adults, the immature hippocampus exhibited markedly less KA-induced cell loss (-22%), no kindling-induced loss, no detectable synaptic rearrangement, and no change in dentate inhibition. These results demonstrate that, in immature rats, neither severe KA-induced seizures nor repeated kindled seizures produce the kind of hippocampal damage and changes associated with even less severe seizures in adults. The lesser magnitude of seizure-induced hippocampal alterations in immature rats may explain their greater resistance to long-term effects of seizures on neuronal function, as well as future seizure susceptibility. Conversely, hippocampal neuron loss and altered synaptic physiology in adults may contribute to increased sensitivity to epileptogenic stimuli, spontaneous seizures, and behavioral deficits.  相似文献   

15.
Previous studies have demonstrated that recurrent seizures during the neonatal period lead to permanent changes in seizure threshold and learning and memory. The pathophysiological mechanisms for these changes are not clear. To determine if neonatal seizures cause changes in hippocampal excitability or inhibition, we subjected rats to 50 flurothyl-induced seizures during the first 10 days of life (five seizures per day). When the rats were adults, we examined seizure threshold using flurothyl inhalation, and learning and memory in the water maze. In separate groups of animals, we evaluated in vivo paired-pulse facilitation and inhibition in either CA1 with stimulation of the Schaffer collaterals or dentate gyrus with stimulation of the perforant path. Following these studies, the animals were sacrificed and the brains evaluated for mossy fiber sprouting with the Timm stain. Compared to control animals, rats with 50 flurothyl seizures had a reduced seizure threshold, impaired learning and memory in the water maze, and sprouting of mossy fibers in the CA3 pyramidal cell layer and molecular layer of the dentate gyrus. No significant differences in impaired paired-pulse inhibition was noted between the flurothyl-treated and control rats. This study demonstrates that recurrent neonatal seizures result in changes of neuronal connectivity and alterations in seizure susceptibility, learning and memory. However, the degree of impairment following 50 seizures was modest, demonstrating that the immature brain is remarkably resilient to seizure-induced damage.  相似文献   

16.
Cognitive deficits associated with cardiac arrest have been well documented; however, the corresponding deficits in animal models of global ischemia have not been comprehensively assessed, particularly after long‐term, clinically relevant survival times. We exposed male Sprague–Dawley rats to 10 min of bilateral carotid artery occlusion + systemic hypotension (40–45 mmHg) or sham surgery, and used histopathological assessments for short‐term survival animals (16 days) and both behavioral and histopathological assessments for long‐term survival animals (270 days). Analyses revealed significant long‐term deficits in ischemic animals’ learning, memory (T‐maze, radial arm maze), working memory (radial arm maze), and reference memory (Morris water maze, radial arm maze) abilities that were not associated with a general cognitive decline. Histological results showed significant increases in glial fibrillary acidic protein, neuron glia 2, OX‐42 and ED‐1 staining, as well as significant decreases in microtubule‐associated protein 2 staining and cornu ammonis area 1 (CA1) cell counts 16 days post‐ischemia. The pattern at 270 days was similar, but notably there was a persistent elevation of ED‐1 staining, suggesting recent cell death as well as significant atrophy of CA1. Whereas previous work has primarily reported transient changes in behavior after global ischemia, this study describes disturbances in several different functional domains following CA1 cell loss at clinically relevant survival times. Moreover, the histopathological outcome is suggestive of a spontaneous repopulation of CA1, but this was not sufficient to offset the behavioral impairments arising from the ischemic insult.  相似文献   

17.
The present study examined the long-standing concept that changes in hippocampal circuitry contribute to age-related learning impairment. Individual differences in spatial learning were documented in young and aged Long-Evans rats by using a hippocampal-dependent version of the Morris water maze. Postmortem analysis used a confocal laser-scanning microscopy method to quantify changes in immunofluorescence staining for the presynaptic vesicle glycoprotein, synaptophysin (SYN), in the principal relays of hippocampal circuitry. Comparisons based on chronological age alone failed to reveal a reliable difference in the intensity of SYN staining in any region that was examined. In contrast, aged subjects with spatial learning deficits displayed significant reductions in SYN immunoreactivity in CA3 lacunosum-moleculare (LM) relative to either young controls or age-matched rats with preserved learning. SYN intensity values for the latter groups were indistinguishable. In addition, individual differences in spatial learning capacity among the aged rats correlated with levels of SYN staining selectively in three regions: outer and middle portions of the dentate gyrus molecular layer and CA3-LM. The cross-sectional area of SYN labeling, by comparison, was not reliably affected in relation cognitive status. These findings are the first to demonstrate that a circuit-specific pattern of variability in the connectional organization of the hippocampus is coupled to individual differences in the cognitive outcome of normal aging. The regional specificity of these effects suggests that a decline in the fidelity of input to the hippocampus from the entorhinal cortex may play a critical role.  相似文献   

18.
目的探讨新生期大鼠反复痫性发作后的形态学,行为学以及糖皮质激素水平的变化。方法64只出生后一天的Wistar大鼠随机分为惊厥组40只和对照组24只。惊厥组的新生鼠在出生后1天(P1)、4天(P4)、7天(P7)给予腹腔注射匹罗卡品,制备新生鼠癫痫模型;对照组的新生鼠腹腔注射生理盐水。惊厥组分别在第3次致痫后在即刻(Ⅰ组)、第4天(Ⅱ组)、第14天(Ⅲ组)、第42天(Ⅳ组)四个时间点处死,各时间点设相应对照组,处死前36h惊厥组和对照组的大鼠腹腔注射BrdU。所有大鼠处死前均取血检测糖皮质激素。第Ⅳ组从P40开始进行Morris水迷宫试验。结果新生鼠3次发作后即刻和第4天与相应日龄对照组相比,齿状回BrdU阳性细胞数明显减少(P〈0.05),而癫痫发作后14天和42天BrdU阳性细胞数增加,但发作后14天差异无统计学意义(P〉0.05)。在4天的Morris水迷宫试验中,匹罗卡品处理组大鼠到达平台的时间均长于对照组,但是只有第1天和第2天有统计学意义(P〈0.05)。检测结果表明高水平的糖皮质激素一直持续到发作后第4天,糖皮质激素水平与BrdU阳性细胞数呈负相关。结论新生大鼠反复痫性发作会造成早期神经发生减少,而后期神经发生增加;造成大鼠成年后认知功能缺陷;造成糖皮质激素水平增高,这与痫性大鼠形态学和行为学方面的改变有关。  相似文献   

19.
Topiramate, an antiepileptic drug with a number of mechanisms of action including blockade of AMPA/KA receptor subtypes, was assessed as a neuroprotective agent following seizures. We administered topiramate or saline chronically during and following a series of 25 neonatal seizures. After completion of the topiramate treatment, animals were tested in the water maze for spatial learning and the open field for activity level. Brains were then examined for cell loss and sprouting of mossy fibers. Rats treated with topiramate performed significantly better in the water maze than rats treated with saline. Topiramate treatment also reduced the amount of seizure-induced sprouting in the supragranular region. There were no differences between topiramate- and saline-treated rats in activity level in the open field, swimming speed, or weight gain. These findings show that long-term treatment with topiramate after neonatal seizures changes the long-term consequences of seizures and improves cognitive function.  相似文献   

20.
Purpose: To study the development of epilepsy following hypoxia‐induced neonatal seizures in Long‐Evans rats and to establish the presence of spontaneous seizures in this model of early life seizures. Methods: Long‐Evans rat pups were subjected to hypoxia‐induced neonatal seizures at postnatal day 10 (P10). Epidural cortical electroencephalography (EEG) and hippocampal depth electrodes were used to detect the presence of seizures in later adulthood (>P60). In addition, subdermal wire electrode recordings were used to monitor age at onset and progression of seizures in the juvenile period, at intervals between P10 and P60. Timm staining was performed to evaluate mossy fiber sprouting in the hippocampi of P100 adult rats that had experienced neonatal seizures. Key Findings: In recordings made from adult rats (P60–180), the prevalence of epilepsy in cortical and hippocampal EEG recordings was 94.4% following early life hypoxic seizures. These spontaneous seizures were identified by characteristic spike and wave activity on EEG accompanied by behavioral arrest and facial automatisms (electroclinical seizures). Phenobarbital injection transiently abolished spontaneous seizures. EEG in the juvenile period (P10–60) showed that spontaneous seizures first occurred approximately 2 weeks after the initial episode of hypoxic seizures. Following this period, spontaneous seizure frequency and duration increased progressively with time. Furthermore, significantly increased sprouting of mossy fibers was observed in the CA3 pyramidal cell layer of the hippocampus in adult animals following hypoxia‐induced neonatal seizures. Notably, Fluoro‐Jade B staining confirmed that hypoxic seizures at P10 did not induce acute neuronal death. Significance: The rodent model of hypoxia‐induced neonatal seizures leads to the development of epilepsy in later life, accompanied by increased mossy fiber sprouting. In addition, this model appears to exhibit a seizure‐free latent period, following which there is a progressive increase in the frequency of electroclinical seizures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号