首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In trigeminal and hypoglossal motor nuclei of adult cats, hypocretin immunoreactive fiber varicosities were observed in apposition to retrogradely labeled motoneuron somata and dendrites. Among those lateral hypothalamus neurons that project to the hypoglossal nucleus some were determined to be hypocretin immunoreactive and were located amongst the single-labeled hypocretinergic neurons. These data suggest that hypocretin may play a role in the synaptic control of these motoneurons.  相似文献   

2.
Kir6.2, a subunit of the ATP-sensitive K(+) channel (K(ATP)), was localized in adult rat brain by immunohistochemistry and in situ hybridization. The Kir6.2 mRNA was widely expressed in most rat brain neuronal populations and nuclei examined, intensely in the mitral cell layer and tufted cells of the olfactory bulb, pontine nucleus, pontine reticular nucleus, motor and spinal trigeminal nuclei and cuneate nuclei of the brain stem, moderately in the neocortex and cerebellar Purkinje cells, and weakly in the granular cell layer of the olfactory bulb and the granular layer of the cerebellum. In addition, glial cells also expressed the Kir6.2 gene weakly in the corpus callosum and cerebellar white matter. This wide localization of the gene was quite similar to that of Kir6.2 protein. Double stainings with anti-GFAP and anti-Kir6.2 antibodies were performed in this study. Glial cells showing immunoreactivity to both anti-Kir6.2 and anti-GFAP were confirmed to be astrocytes, and those showing only immunoreactivity to anti-Kir6.2 but not to anti-GFAP were presumed to be oligodendrocytes and confirmed by immunoelectron microscopy. Thus, it may be concluded that both oligodendrocytes and astrocytes contain Kir6.2. Under the electron microscope, we showed in vivo for the first time that the immunoreactive products were localized in the endoplasmic reticulum and Golgi apparatus as well as the plasma membranes of neurons and glial cells.  相似文献   

3.
We have used in situ hybridization and immunocytochemistry to map the cellular localization of NGF receptor (NGF-R) mRNA and protein in the adult rat brain. In addition to basal forebrain magnocellular neurons, NGF-R is widely expressed within the CNS, including neurons of the caudate/putamen, ventral premamillary nucleus, mesencephalic trigeminal nucleus, prepositus hypoglossal nucleus, raphe nucleus, nucleus ambiguous, and Purkinje cells of the cerebellum. Cells of the vestibulocochlear ganglion also contain NGF-R mRNA and protein. Ventricular subependymal cells and tanycytes are clearly stained by immunocytochemistry, yet only very weak hybridization is detectable in these cells. Also, greater amounts of NGF-R protein than of mRNA appear to be present in the glomeruli of the olfactory bulb, area postrema, and nucleus tractus solitarius. Areas that contain only NGF-R immunoreactive fibers and terminals can be distinguished from the cellular sites of NGF-R biosynthesis and include the suprachiasmatic nucleus, the principal olivary pretectal nucleus, the superior colliculus, the inferior olive, and the principal and spinal trigeminal nuclei. This study shows that NGF-R is widely expressed within individual neurons in different areas of the rat brain and identifies new potential CNS target sites of endogenous NGF.  相似文献   

4.
5.
The expression of mRNA of the β subunit of the glycine receptor was investigated in the rat by in situ hybridization histochemistry using an oligonucleotide probe specific to the sequence of the β subunit. Neurons expressing β subunit mRNA were widely and abundantly distributed in the rat brain from the olfactory bulb to the spinal cord. The pattern of distribution of cells containing β subunit mRNA in the lower brainstem was very similar to that of cells containinga1 subunit mRNA. In addition, β subunit mRNA was strongly expressed by the neurons of the cerebral cortex, hippocampal formation and diencephalon as well as by the Purkinje cells wherea1 subunit mRNA expression is rare. These findings indicated that the glycine receptor is heterogeneous. The sites where strong labeling was noted were as follows. In the forebrain and diencephalon, strongly labeled neurons were abundant in the olfactory region, hippocampal formation, cerebral cortex, and thalamus. In the hippocampal formation, neurons in the subiculum, pyramidal cells in Ammon's horn, and neurons in the polymorphic layer of the dentate gyrus were strongly labeled. In the thalamus, the anterodorsal, reticular, parafascicular, and the subthalamic nuclei were strongly labeled. In the brainstem, the red nucleus, almost all of the motor neurons in the cranial motor nuclei innervating striated muscles, the trigeminal mesencephalic nucleus, the ventral tegmental nucleus of Gudden, and the pontine nucleus were strongly labeled. In the cerebellum, Purkinje cells in the Purkinje cell layer and all of the cerebellar nuclei were strongly labeled.  相似文献   

6.
Expression of connexin 45 in the olfactory system   总被引:4,自引:0,他引:4  
  相似文献   

7.
The cellular distribution of choline acetyltransferase (ChAT) mRNA within the adult rat central nervous system was evaluated using in situ hybridization. In forebrain, hybridization of a 35S-labeled rat ChAT cRNA densely labeled neurons in the well-characterized basal forebrain cholinergic system including the medial septal nucleus, diagonal bands of Broca, nucleus basalis of Meynert and substantia innominata, as well as in the striatum, ventral pallidum, and olfactory tubercle. A small number of lightly labeled neurons were distributed throughout neocortex, primarily in superficial layers. No cellular labeling was detected in hippocampus. In the diencephalon, dense hybridization labeled neurons in the ventral aspect of the medial habenular nucleus whereas cells in the lateral hypothalamic area and supramammillary region were more lightly labeled. Hybridization was most dense in neurons of the motor and autonomic cranial nerve nuclei including the oculomotor, Edinger-Westphal, and trochlear nuclei of the midbrain, the abducens, superior salivatory, trigeminal, facial and accessory facial nuclei of the pons, and the hypoglossal, vagus, and solitary nuclei and nucleus ambiguus of the medulla. In addition, numerous cells in the pedunculopontine and laterodorsal tegmental nuclei, the ventral nucleus of the lateral lemniscus, the medial and lateral divisions of the parabrachial nucleus, and the medial and lateral superior olive were labeled. Occasional labeled neurons were distributed in the giantocellular, intermediate, and parvocellular reticular nuclei, and the raphe magnus nucleus. In the medulla, light to moderately densely labeled cells were scattered in the nucleus of Probst's bundle, the medial vestibular nucleus, the lateral reticular nucleus, and the raphe obscurus nucleus. In spinal cord, the cRNA densely labeled motor neurons of the ventral horn, and cells in the intermediolateral column, surrounding the central canal, and in the spinal accessory nucleus. These results are in good agreement with reports of the immunohistochemical localization of ChAT and provide further evidence that cholinergic neurons are present within neocortex but not hippocampus.  相似文献   

8.
The cellular distribution of insulin-like growth factor I (IGF-I) immunoreactivity was examined in the rat brain from embryonic day 15 to maturity. IGF-I immunoreactivity was found in the perikarya of neurons distributed along the entire extension of the neuronal tube in all the embryonic ages studied (E15, E17, E19 and E21). In E21 animals, the majority of immunoreactive neurons was located in the olfactory bulb, cerebral cortex, hippocampus, striatum, diencephalon, mesencephalic colliculi, trigeminal ganglion and in motoneurons of the brainstem. In 10- and 20-day-old rats, in addition to the above areas, IGF-I immunoreactivity was also observed in capillary walls, ependymal cells, choroid plexus, glial cells and most fiber paths. In postnatal ages, immunoreactivity in neuronal somas mainly restricted to the cell nuclei. However, IGF-I immunoreactivity in the neuron cytoplasm was observed in 20-day-old rats treated with colchicine while fiber paths and neuronal cell nuclei were negative in these animals. In the telencephalon of 20-day-old rats injected with colchicine, the most intense immunoreactive neurons were observed in the olfactory bulb, cerebral cortex, tenia tecta, hippocampus, islands of Calleja, septal nuclei, striatum, endopyriform nucleus and amygdala. Most diencephalic nuclei, the substantia nigra, the mesencephalic colliculi, Purkinje cells in the cerebellar cortex and several nuclei in mesencephalon, pons and medulla oblongata were also immunoreactive. In adult rats injected with colchicine, IGF-I immunoreactivity was located in the same areas as in 20-day-old rats. The number of immunoreactive cells and the intensity of the staining was reduced in adult rats as compared to that found in young postnatal animals. Glial cells were negative in adults. The distribution of IGF-I in the developing and mature rat brain supports the proposed roles of this peptide as a neuromodulator and neurotrophic factor.  相似文献   

9.
In addition to being an astroglial protein, S-100β is localised in distinct populations of neurons in the adult rat hindbrain. We report, here, the expression of S-100β in both neurons and glia of the rat brain during development. Prenatally, S-100β immunoreactivity was confined to glial cells close to the germinal zone. After birth, S-100β positive glial cells were seen mainly in the brainstem and cerebellum, while only a few were detected in cerebral cortex and hippocampus. The number of S-100β containing glial cells increased steadily during the first 2 postnatal weeks after which the adult pattern was attained. No S-100β containing neurons were present prenatally. The first S-100β containing neurons were seen in the mesencephalic trigeminal nucleus at postnatal day 1 (P1), and in the motor trigeminal nucleus at P3. Neuronal S-100β immunoreactivity in other nuclei was mostly attained from the 10th to the 21st postnatal day. The neuronal S-100β immunoreactivity was first detected in the cell nuclei during development, then increased in the cytoplasm with ages. A nuclear staining in many immunoreactive neurons persisted until the adult. It usually took 1 to 2 weeks for neuronal S-100β to attain the adult staining pattern, i.e., heavy staining of the cytoplasm and processes, after its appearance. The forebrain never contained S-100β positive neurons. The S-100β is first expressed in glial cells, suggesting it is primarily of the glial origin. Coupled with neurotrophic effects of the protein, the time course of neuronal S-100β expression during the critical period of neuronal development implies that it may be involved in neuronal differentiation and maturation.  相似文献   

10.
Clusterin (SGP-2) is a newly described glycoprotein associated with several putative functions including responses to brain injury. This study reports the regional and cell type expression of clusterin mRNA and its encoded glycoprotein in the rat brain; a limited comparison was also done with the human brain. Using in situ hybridization combined with immunocytochemistry, we found that astrocytes and neurons may express clusterin mRNA in the normal adult brain. While astrocytes throughout the brain contained clusterin mRNA, there was regional selectivity for neuronal clusterin expression. In the striatum, clusterin mRNA was not detected in neurons. Only a subset of substantia nigra dopaminergic neurons or locus ceruleus noradrenergic neurons (tyrosine hydroxylase immunopositive) contained clusterin mRNA. However, neuronal clusterin mRNA was prevaìent in pontine nuclei and in the red nucleus of the midbrain tegmentum. Similarly, clusterin mRNA was prevalent in both rat and human hippocampal neuron-specific enolase immunopositive pyramidal neurons, although rat CA1 neurons had less mRNA than CA2–CA3 neurons. Monotypic primary cell cultures from the neonatal rat showed clusterin mRNA in both neurons and astrocytes, but not in microglia. By immunocytochemistry, no clusterin immunopositive glia were observed in any region of the rat brain, confirming previous studies. However, clusterin immunopositive cells (putative neurons) were observed in the Purkinje cell layer of the cerebellum, medial and interposed cerebellar nuclei, trigeminal motor nucleus, and red nucleus. Finally, in vitro studies suggest that astrocytes, but not neurons, secrete clusterin, which is pertinent to clusterin immunodeposits found after experimental lesioning. © 1994 Wiley-Liss, Inc.  相似文献   

11.
We have mapped the spatio-temporal expression of the multidomain serine protease neurotrypsin in the developing mouse by in situ hybridization. On embryonic day (E) 8, mRNA is detected in giant trophoblast cells, later in embryonic mesenchymal tissues. On E11, expression begins in Schwann cell precursors, olfactory epithelium, trigeminal ganglion, and midbrain. The floor plate shows strong expression on E12. Further prenatal development is characterized by rising neurotrypsin mRNA in sensory ganglia and motor neurons. Staining in cerebral cortex emerges around birth and culminates toward the end of the first week with a complex laminar and areal pattern. Expression in peripheral nerves and nonneural tissues vanishes soon after birth and the adult neuronal distribution is gradually established until weaning age. This developmental expression pattern suggests roles of neurotrypsin in morphogenesis of nonneural tissues, as well as in neural development, in particular in axonal target invasion, synaptogenesis, and Schwann cell differentiation.  相似文献   

12.
Recent molecular cloning studies by our laboratory and others have identified the existence of a novel rat galanin receptor subtype, GALR2. In the present study, we examined the regional and cellular distribution of GALR2 mRNA in the rat central nervous system (CNS) by in situ hybridization. For comparative purposes, adjacent sections were probed for GALR1 mRNA expression. Our findings indicate that dorsal root ganglia express by far the highest levels of GALR2 mRNA in the rat CNS. Hybridization signal is mainly concentrated over small and intermediate primary sensory neurons. In spinal cord, the large alpha motoneurons of the ventral horn are moderately labeled and several small, but less intensely labeled, cells are scattered throughout the gray matter. In brain sections, the highest levels of GALR2 mRNA are detected in granule cells of the dentate gyrus, in the mammillary nuclei, and in the cerebellar cortex. Moderate levels of GALR2 mRNA are observed in the olfactory bulb, olfactory tubercle, piriform and retrospinal cortices, hypothalamus (namely the preoptic area, arcuate nucleus, and dorsal hypothalamic area), substantia nigra pars compacta, and sensory trigeminal nucleus. Moderate to weak hybridization signal is also present in several other hypothalamic nuclei, specific layers of the neocortex, periaqueductal gray, and several nuclei within the pons and medulla, including locus coeruleus, lateral parabrachial, motor trigeminal, pontine reticular, hypoglossal, vestibular complex, ambiguus, and facial and lateral reticular nuclei. This novel pattern of GALR2 distribution within the rat CNS differs considerably from that of GALR1, suggesting that specific physiologic effects of galanin may be ascribed to the GALR2 galanin receptor subtype.  相似文献   

13.
GABA is the main inhibitory neurotransmitter in the adult brain, which causes Cl- influx into the cell via GABAA receptors. The direction of Cl- inflow is dependent on the Cl- gradient across the membrane. Cation-Cl- cotransporters have been considered to play pivotal roles in controlling intracellular Cl- concentration ([Cl-]i) of neurons; hence, they modulate the GABAergic function. To elucidate how these cotransporters are distributed in the trigeminal nuclei, we investigated the expressions of K+-Cl- cotransporters (KCC1 and KCC2) and Na+-K+-2Cl- cotransporter (NKCC1) mRNAs by using in situ hybridization histochemistry. KCC2 mRNA was expressed in the motor trigeminal nucleus (Mo5), the principal trigeminal nucleus (Pr5), and the spinal trigeminal nucleus (Sp5), but not in the trigeminal ganglion (TG) and the mesencephalic trigeminal nucleus (Me5). On the other hand, KCC1 and NKCC1 mRNAs were expressed in all the trigeminal nuclei. The resting [Cl-]i of Me5 neurons was significantly higher than that of Mo5 neurons. Thus, in primary sensory neurons such as the TG and the Me5, [Cl-]i would be higher than those in the other trigeminal nuclei because of the lack of KCC2 mRNA expression. Since Me5 neurons, but not Mo5 neurons, responded to GABA by depolarization, GABA would have differential physiological functions among trigeminal nuclei and TG.  相似文献   

14.
The immunohistochemical localization of basic fibroblast growth factor (bFGF) was studied in the adult rat brain, using a specific antibody against a synthetic bFGF fragment (the N-terminal 12 residues). Widespread but uneven regional localization of bFGF-like immunoreactive neurons and fibers was observed. Ependymal cells were also stained. The immunoreactive neurons were found in the cerebral cortex, olfactory bulb, septum, basal magnocellular nuclei, thalamus, hypothalamus, globus pallidus, hippocampus, amygdala, red nucleus, central gray of the midbrain, cerebellum, dorsal tegmental area, reticular formation, cranial motor nuclei and spinal cord. Immunoreactive fiber bundles and nerve terminals were also detected. These results indicate that bFGF is produced by or present in a specific neuronal cell population of the central nervous system.  相似文献   

15.
Localization of mRNA for the c-kit receptor and its ligand (Sl factor) in the brain of adult rats was studied using in situ hybridization histochemistry. The mRNA for the c-kit receptor was detected in the forebrain, the lower brain stem and the cerebellum. In the forebrain, the c-kit mRNA signals were detected in the olfactory bulb, the caudate-putamen, throughout the superficial cortex, the accumbens nucleus, the nucleus of vertical limb diagonal band, the bed nucleus of anterior commissure, Ammon's horn, the entopeduncular nucleus, the subthalamic nucleus, the dorsal raphe nucleus, the parasubiculum, the presubiculum, the ventricular nucleus of lateral lemniscus, and the entorhinal cortex. In the lower brain stem, the signals were detected in the inferior colliculus, the spinal vestibular nucleus, the spinal tract nucleus of trigeminal nerve, and the pyramidal tract. In the cerebellum, the signals were detected in the molecular layer of the cortex and cerebellar nuclei. By contrast, the signals of mRNA for Sl factor were detected in the forebrain and the cerebellum. In the forebrain, the signals were detected in the olfactory bulb, the endopiriform nucleus, the septohippocampal nucleus, the habenular nuclei, and most of the thalamic nuclei. In the cerebellum, the signals were detected in Purkinje cells. Several pairs of structures were found in which mRNA of either the c-kit receptor or the Sl factor was expressed and between which the synaptic connection had been reported, suggesting that the interaction between the c-kit receptor and the Sl factor may play some roles in the development of such synaptic connections.  相似文献   

16.
Lee M  Jo Y  Chun M  Chung J  Kim M  Min D 《Brain research》2000,864(1):52-59
Phospholipase D (PLD) is one of the intracellular signal transduction enzymes and plays an important role in a variety of cellular functions. We investigated the distribution of PLD isozyme, PLD1 in the rat brain and spinal cord using an immunological approach. Western blot analysis showed the presence of PLD1 protein in all tissues studied, with significantly higher levels in the brainstem and spinal cord, which was correlated with the results obtained from PLD activity assay. Prominent and specific signals of PLD1 were observed in many functionally diverse brain areas, including the olfactory bulb, medial septum-diagonal band complex, cerebral cortex, brainstem, cerebellum, and spinal cord. In the brainstem, the red nucleus, substantia nigra, interpeduncular nucleus, cranial motor nuclei (trigeminal motor, abducent, facial, and hypoglossal), sensory cranial nerve nuclei (spinal trigeminal, vestibular, and cochlear), as well as nuclei of the reticular formation, all showed intense immunoreactivity. Purkinje cells and deep cerebellar nuclei of the cerebellum were also labeled intensely. However, no significant labeling was found in the thalamus, epithalamus, and basal ganglia. Although many of the PLD1 immunoreactive cells were neurons, PLD1 was also expressed in glial cells such as presumed astrocytes and tanycytes. These findings suggest that PLD1 may play an important role in the central nervous system of the adult rat.  相似文献   

17.
The distribution of mRNAs for metabotropic glutamate receptors, mGluR4 and mGluR7, which are highly sensitive for L-2-amino-4-phosphonobutyrate (L-AP4), was examined in the central nervous system of the rat by in situ hybridization. In general, the hybridization signals of mGluR7 mRNA were more widely distributed than those of mGluR4 inRNA, and differential expression of mGluR4 mRNA and mGluR7 mRNA was clearly indicated in some brain regions. Intense or moderate expression of mGluR4 mRNA was detected in the granule cells of the olfactory bulb and cerebellum, whereas no significant expression of mGluR7 mRNA was found in these cells. In other neurons or regions where mGluR7 mRNA was intensely or moderately expressed, no significant expression of mGluR4 mRNA was observed. Such were the mitral and tufted cells of the olfactory bulb; anterior olfactory nucleus; neocortical regions; cingulate cortex; retrosplenial cortex; piriform cortex; perirhinal cortex; CAl; CA3; granule cells of the dentate gyrus; superficial layers of the subicular cortex; deep layers of the entorhinal, parasubicular, and presubicular cortices; ventral part of the lateral septal nucleus; septohippo campal nucleus; triangular septal nucleus; nuclei of the diagonal band; bed nucleus of the stria terminalis; ventral pallidum; claustrum; amygdaloid nuclei other than the intercalated nuclei; preoptic region; hypothalamic nuclei other than the medial mammillary nucleus; ventral lateral geniculate nucleus; locus coeruleus; Purkinje cells; many nuclei of the lower brainstem other than the superior coUiculus, periaqueductal gray, interpeduncular nucleus, pontine nuclei, and dorsal cochlear nucleus; and dorsal horn of the spinal cord. Both mGluR4 mRNA and mGluR7 mRNA were moderately or intensely expressed in the olfactory tubercie, superficial layers of the entorhinal cortex, CA4, septofimbrial nucleus, intercalated nuclei of the amygdala, medial mammillary nucleus, many thalamic nuclei, and pontine nuclei. Intense expression of both mGluR4 mRNA and mGluR7 mRNA was further detected in the trigeminal ganglion and dorsal root ganglia, whereas no significant expression of them was found in the pterygopalatine ganglion and superior cervical ganglion. The results indicate differential roles of the L-AP4-sensitive metabotropic glutamate receptors in the glutarnatergic nervous system. © 1995 Wiley-Liss, Inc.  相似文献   

18.
19.
The neuroanatomical distribution of androgen receptor (AR) mRNA-containing cells in the brain of a vocal lizard, Gekko gecko, was mapped using in situ hybridization. Particular attention was given to auditory and vocal nuclei. Within the auditory system, the cochlear nuclei, the central nucleus of the torus semicircularis, the nucleus medialis, and the medial region of the dorsal ventricular ridge contained moderate numbers of labeled neurons. Neurons labeled with the AR probe were located in many nuclei related to vocalization. Within the hindbrain, the mesencephalic nucleus of the trigeminal nerve, the vagal part of the nucleus ambiguus, and the dosal motor nucleus of the vagus nerve contained many neurons that exhibited strong expression of AR mRNA. Neurons located in the peripheral nucleus of the torus in the mesencephalon exhibited moderate levels of hybridization. Intense AR mRNA expression was also observed in neurons within two other areas that may be involved in vocalization, the medial preoptic area and the hypoglossal nucleus. The strongest mRNA signals identified in this study were found in cells of the pallium, hypothalamus, and inferior nucleus of the raphe. The expression patterns of AR mRNA in the auditory and vocal control nuclei of G. gecko suggest that neurons involved in acoustic communication in this species, and perhaps related species, are susceptible to regulation by androgens during the breeding season. The significance of these results for understanding the evolution of reptilian vocal communication is discussed.  相似文献   

20.
The distribution of acidic fibroblast growth factor (aFGF) mRNA-expressing neurons was studied throughout the adult mouse central nervous system (CNS) with in situ hybridization histochemistry using a radiolabelled synthetic oligodeoxynucleotide probe complementary to the mRNA of human aFGF. We report here a widespread distribution of aFGF mRNA in several defined functional systems of the adult mouse brain, whereby the highest levels of aFGF mRNA were found in large somatomotor neurons in the nuclei of the oculomotor, trochlear, abducens, and hypoglossal nerves; in the motoneurons of the ventral spinal cord and the special visceromotor neurons in the motor nucleus of the trigeminal nerve; and in the facial and ambigaus nuclei. Labelled perikarya were also detected in all central structures of the auditory pathway including the level of the inferior colliculus, i.e., the lateral and medial superior nuclei; the trapezoid, cochlear, and lateral lemniscal nuclei; and parts of the anterior colliculus. Furthermore, many aFGF-positive cell bodies were found in the vestibular system and other structures projecting to the cerebellum, in the deep cerebellar nuclei, in somatosensory structures of the medulla (i.e., in the gracile, cuneate, and external cuneate nuclei), as well as in the spinal nucleus of the trigeminal nerve. The findings that aFGF mRNA is expressed in all components of several well-defined systems (i.e., in sensory structures) as Well as in central neurons that process sensory information and, finally, in some efferent projections point towards a concept of aFGF expression primarily within certain neuronal circuitries. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号