首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Modulating cortical excitability in acute stroke: a repetitive TMS study.   总被引:1,自引:0,他引:1  
OBJECTIVE: Changes in cerebral cortex excitability have been demonstrated after a stroke and are considered relevant for recovery. Repetitive transcranial magnetic stimulation (rTMS) of the brain can modulate cerebral cortex excitability and, when rTMS is given as theta burst stimulation (TBS), LTP- or LTD-like changes can be induced. The aim of present study was to evaluate the effects of TBS on cortical excitability in acute stroke. METHODS: In 12 acute stroke patients, we explored the effects of facilitatory TBS of the affected hemisphere and of inhibitory TBS of the unaffected hemisphere on cortical excitability to single-pulse transcranial magnetic stimulation (TMS) on both sides. The effects produced by TBS in patients were compared with those observed in a control group of age-matched healthy individuals. RESULTS: In patients, both the facilitatory TBS of the affected motor cortex and the inhibitory TBS of the unaffected motor cortex produced a significant increase of the amplitude of MEPs evoked by stimulation of the affected hemisphere. The effects observed in patients were comparable to those observed in controls. CONCLUSIONS: Facilitatory TBS over the stroke hemisphere and inhibitory TBS over the intact hemisphere in acute phase enhance the excitability of the lesioned motor cortex. SIGNIFICANCE: TBS might be useful to promote cortical plasticity in stroke patients.  相似文献   

2.
The sensory and motor cortical representation corresponding to the affected limb is altered in patients with complex regional pain syndrome (CRPS). Transcranial magnetic stimulation (TMS) represents a useful non‐invasive approach for studying cortical physiology. If delivered repetitively, TMS can also modulate cortical excitability and induce long‐lasting neuroplastic changes. In this review, we performed a systematic search of all studies using TMS to explore cortical excitability/plasticity and repetitive TMS (rTMS) for the treatment of CRPS. Literature searches were conducted using PubMed and EMBASE. We identified 8 articles matching the inclusion criteria. One hundred fourteen patients (76 females and 38 males) were included in these studies. Most of them have applied TMS in order to physiologically characterize CRPS type I. Changes in motor cortex excitability and brain mapping have been reported in CRPS‐I patients. Sensory and motor hyperexcitability are in the most studies bilateral and likely involve corresponding regions within the central nervous system rather than the entire hemisphere. Conversely, sensorimotor integration and plasticity were found to be normal in CRPS‐I. TMS examinations also revealed that the nature of motor dysfunction in CRPS‐I patients differs from that observed in patients with functional movement disorders, limb immobilization, or idiopathic dystonia. TMS studies may thus lead to the implementation of correct rehabilitation strategies in CRPS‐I patients. Two studies have begun to therapeutically use rTMS. This non‐invasive brain stimulation technique could have therapeutic utility in CRPS, but further well‐designed studies are needed to corroborate initial findings.  相似文献   

3.
《Clinical neurophysiology》2010,121(4):464-473
Repetitive transcranial magnetic stimulation (rTMS) of the human motor cortex can produce long-lasting changes in the excitability of the motor cortex to single pulse transcranial magnetic stimulation (TMS). rTMS may increase or decrease motor cortical excitability depending critically on the characteristics of the stimulation protocol. However, it is still poorly defined which mechanisms and central motor circuits contribute to these rTMS induced long-lasting excitability changes. We have had the opportunity to perform a series of direct recordings of the corticospinal volley evoked by single pulse TMS from the epidural space of conscious patients with chronically implanted spinal electrodes before and after several protocols of rTMS that increase or decrease brain excitability. These recordings provided insight into the physiological basis of the effects of rTMS and the specific motor cortical circuits involved.  相似文献   

4.
Transcranial magnetic stimulation (TMS) transiently induces an electrical field in the tissues beneath the area of application, thereby perturbing local cortical activity if applied over the scalp. It can therefore be used to modulate cerebellar function in healthy humans. Even though the role of the cerebellum in eye movement control and adaptation is well known, few experiments have used eye movements to evaluate the effect of TMS over the cerebellum. Single-pulse TMS over the posterior vermis resulted in impaired accuracy of reflexive saccades, acceleration of smooth pursuit, and coordination of saccades and head movements. TMS over the cerebellar hemisphere decreased pursuit gain. Repetitive TMS (rTMS) over the posterior vermis impaired saccade adaptation in a double-step paradigm. Comparing the effects of TMS on different behavioural paradigms could be useful to test cerebellar control of reflexive and voluntary eye movements, and as a probe of cerebellar plasticity. rTMS appears to be especially interesting since its effects outlast the stimulation period and its behavioural consequences can therefore be measured without interfering with the execution of eye movements or with the experimental procedures.  相似文献   

5.
目的 探讨重复经颅磁刺激对急性脊髓损伤大鼠运动功能的影响. 方法 24只SD大鼠按照随机数字表法分为正常组、脊髓损伤对照组(对照组)、脊髓损伤高频磁刺激组(高频组)、脊髓损伤低频磁刺激组(低频组),每组6只.利用重物撞击法制作T10脊髓损伤模型.磁刺激组于手术后24 h开始给予刺激,高频组频率为10Hz,低频组频率为1 Hz,均为阈值刺激.500个脉冲,每天1次,连续4周,脊髓损伤对照组给予假刺激.各组大鼠分别于术后1 d、3d、7d、11 d、14d、21 d、28 d进行BBB行为学评分,于14、28 d时检测运动诱发电位(MEP),应用HE染色观察脊髓组织形态学变化,并应用免疫组织化学法检测神经丝蛋白(NF-200)表达变化. 结果 高频组、低频组大鼠BBB评分明显高于对照组,高频组BBB评分明显高于低频组,差异均有统计学意义(P<0.05).高频组、低频组运动诱发电位潜伏期较短,与对照组、正常组相比差异均有统计学意义(P<0.05);其中高频组较低频组短,差异有统计学意义(P<0.05).高频组、低频组NF-200表达较对照组明显升高,差异均有统计学意义(P<0.05);其中高频组较低频组高,差异有统计学意义(P<0.05).结论 重复经颅磁刺激可以促进脊髓损伤大鼠运动功能的恢复,其机制可能与促进轴突再生有关.高频组较低频组效果明显可能与调节大脑皮层兴奋性有关.  相似文献   

6.
Magnetic stimulation of the central and peripheral nervous systems   总被引:6,自引:0,他引:6  
Weber M  Eisen AA 《Muscle & nerve》2002,25(2):160-175
Since 1985, when the technique of transcranial magnetic stimulation (TMS) was first developed, a wide range of applications in healthy and diseased subjects has been described. Comprehension of the physiological basis of motor control and cortical function has been improved. Modifications of the basic technique of measuring central motor conduction time (CMCT) have included measurement of the cortical silent period, paired stimulation in a conditioning test paradigm, repetitive transcranial magnetic stimulation (rTMS), and peristimulus time histograms (PSTH). These methods allow dissection of central motor excitatory versus inhibitory interplay on the cortical motor neuron and its presynaptic connections at the spinal cord, and have proven to be powerful investigational techniques. TMS can be used to assess upper and lower motor neuron dysfunction, monitor the effects of many pharmacological agents, predict stroke outcome, document the plasticity of the motor system, and assess its maturation and the effects of aging, as well as perform intraoperative monitoring. The recent use of rTMS in the treatment of depression and movement disorders is novel, and opens the way for other potential therapeutic applications.  相似文献   

7.
Lately it has been indicated that the stimulation of both sides of the motor cortices with different frequencies of rTMS can improve the behaviour of a paretic arm. We studied the effect of rTMS in severe cases of post-stroke after nearly 10 years. They had wide hemispheric lesion and their paresis had not changed for more than 5 years. The majority of patients could not move their fingers on the affected side. In our study we examined whether the active movement could be induced by rTMS even several years after stroke and which hemisphere (affected or unaffected) stimulated by rTMS would be the best location for attenuating the spasticity and for developing movement in the paretic arm.Sixty-four patients (more than 5 years after stroke in a stable state) were followed for 3 months. They were treated with rTMS with 1 Hz at 30% of 2.3 T 100 stimuli per session twice a day for a week. The area to be stimulated was chosen according to the evoked movement by TMS in the paretic arm. That way, four groups were created and compared. In group A, where both hemispheres were stimulated (because of the single stimulation of TMS could induce movement from both sides of hemispheres) the spasticity decreased but the movement could not be influenced. A highly significant improvement in spasticity, in movement induction and in the behaviour of paresis was observed in group B, where before treatment, there was no evoked movement in the paretic arm from stimulating either hemispheres of the brain. For treatment we stimulated the unaffected hemisphere from where the intact arm is moved (ipsilateral to the paretic side). In both groups C (contralateral hemisphere to the paretic arm) and D (ipsilaterally evoked movement in the paretic arm), the spasticity decreased during the first week, but the movement of the paretic arm improved only in group C.It seems that spasticity can be modified by the stimulation either the affected or the unaffected hemisphere, but the induction of movement can be achieved only by the stimulation of an intact motor pathway and its surrounding area (groups B and C). The improvement in paretic extremities can be achieved with rTMS even after years of stroke when the traditional rehabilitation has failed.  相似文献   

8.
OBJECTIVES: To investigate the reorganization of somatosensory and motor cortex in congenital brain injury. METHODS: We recorded motor evoked potentials (MEPs) following transcranial magnetic stimulation (TMS) and somatosensory evoked potentials (SEPs) in a 41 year old man with severe congenital right hemiparesis but only mild proprioceptive impairment. Brain magnetic resonance imaging showed a large porencephalic cavitation in the left hemisphere mainly involving the frontal and parietal lobes. RESULTS: TMS showed fast-conducting projections from the undamaged primary motor cortex to both hands, whereas MEPs were not elicited from the damaged hemisphere. Left median nerve stimulation evoked normal short-latency SEPs in the contralateral undamaged somatosensory cortex. Right median nerve stimulation did not evoke any SEP in the contralateral damaged hemisphere, but a middle-latency SEP (positive-negative-positive, 39-44-48 ms) in the ipsilateral undamaged hemisphere, with a fronto-central scalp distribution. CONCLUSIONS: Our data show that somatosensory function of the affected arm is preserved, most likely through slow-conducting non-lemniscal connections between the affected arm and ipsilateral non-primary somatosensory cortex. In contrast, motor function was poor despite fast-conducting ipsilateral cortico-motoneuronal output from the primary motor cortex of the undamaged hemisphere to the affected arm. This suggests that different forms of reorganization operate in congenital brain injury and that fast-conducting connections between primary cortex areas and ipsilateral spinal cord are not sufficient for preservation or recovery of function.  相似文献   

9.
Transcranial magnetic stimulation (TMS) is a new investigational technique used to explore various neural processes and treat a variety of neuropsychiatric illnesses. The most notable advantage of TMS is its ability to directly stimulate the cortex with little effect on intervening tissue. Single-pulse stimulation techniques can measure cortical inhibition, facilitation, connectivity, reactivity, and cortical plasticity, providing valuable insights into the cortical physiology. Repetitive TMS (rTMS) is currently being used to investigate cognitive processes and as a treatment tool in disorders such as depression and schizophrenia. Both TMS and rTMS are safe and well tolerated. The most serious side effect of high-frequency rTMS is seizures. TMS represents an exciting new frontier in neuroscience research, providing insights into the pathophysiology and treatment of various neuropsychiatric disorders.  相似文献   

10.
Transcranial magnetic stimulation (TMS) may offer a reliable means to characterize significant pathophysiologic and neurochemical aspects of restless legs syndrome (RLS). Namely, TMS has revealed specific patterns of changes in cortical excitability and plasticity, in particular dysfunctional inhibitory mechanisms and sensorimotor integration, which are thought to be part of the pathophysiological mechanisms of RLS rather than reflect a non-specific consequence of sleep architecture alteration.If delivered repetitively, TMS is able to transiently modulate the neural activity of the stimulated and connected areas. Some studies have begun to therapeutically use repetitive TMS (rTMS) to improve sensory and motor disturbances in RLS. High-frequency rTMS applied over the primary motor cortex or the supplementary motor cortex, as well as low-frequency rTMS over the primary somatosensory cortex, seem to have transient beneficial effects. However, further studies with larger patient samples, repeated sessions, an optimized rTMS setup, and clinical follow-up are needed in order to corroborate preliminary results.Thus, we performed a systematic search of all the studies that have used TMS and rTMS techniques in patients with RLS.  相似文献   

11.
OBJECTIVE: To compare motor evoked potentials (MEPs) elicited by short train, monophasic, repetitive transcranial magnetic stimulations (rTMS) with those by short train, biphasic rTMS. METHODS: Subjects were 13 healthy volunteers. Surface electromyographic (EMG) responses were recorded from the right first dorsal interosseous muscle (FDI) in several different stimulation conditions. We gave both monophasic and biphasic rTMS over the motor cortex at a frequency of 0.5, 1, 2 or 3Hz. To study excitability changes of the spinal cord, we also performed 3Hz rTMS at the foramen magnum level [Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation of corticospinal pathways at the foramen magnum level in humans. Ann Neurol 1994;36:618-24]. We measured the size and latency of each of 20 MEPs recorded in the different stimulation conditions. RESULTS: 2 or 3Hz stimulation with either monophasic or biphasic pulses evoked MEPs that gradually increased in amplitude with the later MEPs being significantly larger than the earlier ones. Monophasic rTMS showed much more facilitation than biphasic stimulation, particularly at 3Hz. Stimulation at the foramen magnum level at 3Hz elicited fairly constant MEPs. CONCLUSIONS: The enhancement of cortical MEPs with no changes of responses to foramen magnum level stimulation suggests that the facilitation occurred at the motor cortex. We hypothesize that monophasic TMS has a stronger short-term effect during repetitive stimulation than biphasic TMS because monophasic pulses preferentially activate one population of neurons oriented in the same direction so that their effects readily summate. Biphasic pulses in contrast may activate several different populations of neurons (both facilitatory and inhibitory) so that summation of the effects is not so clear as with monophasic pulses. When single stimuli are applied, however, biphasic TMS is thought to be more powerful than monophasic TMS because the peak-to-peak amplitude of stimulus pulse is higher and its duration is longer when the same intensity of stimulation (the same amount of current is stored by the stimulator) is used. SIGNIFICANCE: This means that when using rTMS as a therapeutic tool or in research fields, the difference in waveforms of magnetic pulses (monophasic or biphasic) may affect the results.  相似文献   

12.
Purposeful manipulation of cortical plasticity and excitability within somatosensory regions may have therapeutic potential. Non-invasive brain stimulation (NBS) techniques such as transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) have shown promise towards this end with certain NBS protocols augmenting somatosensory processing and others down-regulating it. Here, we review NBS protocols which, when applied to primary somatosensory cortex, facilitate cortical excitability and tactile acuity (i.e., high-frequency repetitive TMS (rTMS), intermittent theta burst stimulation (TBS), paired associative stimulation (PAS) N20-5 to 0, anodal tDCS), and protocols that inhibit the same (i.e., low-frequency rTMS, continuous TBS, PAS N20-20, cathodal tDCS). Other studies have targeted multisensory regions of the brain to modulate somatosensory processing. These studies in full present a wide array of strategies in which NBS can be utilized to influence somatosensory processing in a behaviorally and clinically relevant capacity.  相似文献   

13.
The aim of this review was to summarize the evidence for the effectiveness of low‐frequency (LF) repetitive transcranial magnetic stimulation (rTMS) over the unaffected hemisphere in promoting functional recovery after stroke. We performed a systematic search of the studies using LF‐rTMS over the contralesional hemisphere in stroke patients and reviewed the 67 identified articles. The studies have been gathered together according to the time interval that had elapsed between the stroke onset and the beginning of the rTMS treatment. Inhibitory rTMS of the contralesional hemisphere can induce beneficial effects on stroke patients with motor impairment, spasticity, aphasia, hemispatial neglect and dysphagia, but the therapeutic clinical significance is unclear. We observed considerable heterogeneity across studies in the stimulation protocols. The use of different patient populations, regardless of lesion site and stroke aetiology, different stimulation parameters and outcome measures means that the studies are not readily comparable, and estimating real effectiveness or reproducibility is very difficult. It seems that careful experimental design is needed and it should consider patient selection aspects, rTMS parameters and clinical assessment tools. Consecutive sessions of rTMS, as well as the combination with conventional rehabilitation therapy, may increase the magnitude and duration of the beneficial effects. In an increasing number of studies, the patients have been enrolled early after stroke. The prolonged follow‐up in these patients suggests that the effects of contralesional LF‐rTMS can be long‐lasting. However, physiological evidence indicating increased synaptic plasticity, and thus, a more favourable outcome, in the early enrolled patients, is still lacking. Carefully designed clinical trials designed are required to address this question. LF rTMS over unaffected hemisphere may have therapeutic utility, but the evidence is still preliminary and the findings need to be confirmed in further randomized controlled trials.  相似文献   

14.
《Clinical neurophysiology》2019,130(11):2032-2037
ObjectiveWe aimed at assessing the usefulness of motor evoked potentials (MEPs) for exploring the integrity of striated sphincters and pelvic floor motor innervation in normal subjects and of repetitive transcranial magnetic stimulation TMS (rTMS) in patients with neurogenic bladder dysfunction.MethodsA systematic literature search was conducted using PubMed and Embase.ResultsWe identified, reviewed and discussed 11 articles matching the inclusion criteria.ConclusionsThe assessment of MEPs could represent a useful tool in the investigation of patients with urologic disorders. High frequency rTMS can improve detrusor contraction and/or urethral sphincter relaxation in patients with multiple sclerosis and bladder dysfunction. Low frequency (LF) rTMS seems to be an effective treatment of neurogenic lower urinary tract dysfunctions in subjects with Parkinson’s disease and possibly other neurodegenerative disorders. Furthermore, rTMS might have the potential to restore bladder and bowel sphincter function after incomplete spinal cord injury. LF rTMS could also relieve some symptoms of bladder pain syndrome and chronic pelvic pain.SignificanceThe clinical applicability of MEPs appears to be questionable, since a poor reproducibility was detected for all pelvic floor muscles. The use of rTMS in this field is emerging and the results of a few preliminary studies should be replicated in controlled, randomized studies with larger sample sizes.  相似文献   

15.
Chondroitin sulphate proteoglycans (CSPGs) are a family of inhibitory extracellular matrix molecules that are highly expressed during development, where they are involved in processes of pathfinding and guidance. CSPGs are present at lower levels in the mature CNS, but are highly concentrated in perineuronal nets where they play an important role in maintaining stability and restricting plasticity. Whilst important for maintaining stable connections, this can have an adverse effect following insult to the CNS, restricting the capacity for repair, where enhanced synapse formation leading to new connections could be functionally beneficial. CSPGs are also highly expressed at CNS injury sites, where they can restrict anatomical plasticity by inhibiting sprouting and reorganisation, curbing the extent to which spared systems may compensate for the loss function of injured pathways. Modification of CSPGs, usually involving enzymatic degradation of glycosaminoglycan chains from the CSPG molecule, has received much attention as a potential strategy for promoting repair following spinal cord and brain injury. Pre-clinical studies in animal models have demonstrated a number of reparative effects of CSPG modification, which are often associated with functional recovery. Here we discuss the potential of CSPG modification to stimulate restorative plasticity after injury, reviewing evidence from studies in the brain, the spinal cord and the periphery.  相似文献   

16.
The adult mammalian CNS undergoes plastic changes in response to injury. To investigate such changes in spinal cord, functional magnetic resonance imaging (fMRI) was applied in rats subjected to complete transection of the mid-thoracic spinal cord. Blood oxygenation level-dependent (BOLD) contrasts were recorded in the distal spinal cord different times after injury (3, 7, and 14 days, and 1, 3, and 6 months) in response to electrical hind limb stimulation. Functional MRI demonstrated a substantial increase of neuronal activation in the ipsilateral dorsal horn after injury. Notably, 0.5 mA, which did not evoke activation in the normal spinal cord and was considered a non-painful stimulus, induced significant BOLD responses in the dorsal horn after injury. Increased sensitivity was also seen in response to 1.0 mA stimulation. Our results suggest exaggerated responsiveness of spinal neurons after spinal cord injury. Reorganization in the injured spinal cord has been shown to involve the amplification of peripheral inputs and implicated as one underlying mechanism causing neuropathic pain and autonomic dysreflexia. Since BOLD signals can demonstrate such plastic changes in spinal cord parenchyma, we propose fMRI as a method to monitor functional reorganization in the spinal cord after injury. Combining brain and spinal cord fMRI allows the visualization of neuronal activities along the entire neuroaxis and thereby an evaluation of the different plastic responses to CNS injuries that occur in the brain and the spinal cord.  相似文献   

17.
In the late 1980s, it was clearly demonstrated that adult spinal cats can be re-trained to walk after a complete spinal cord transection, using treadmill training. This has led to profound changes in the rehabilitation of persons with spinal cord injury. The use of animal models to study training-induced locomotor plasticity after spinal cord injury has expanded since this original demonstration. The goal of the present review is to summarize findings obtained with these animal models that may be of relevance to the re-training of humans with spinal cord injury. From the complete spinal cord transection models, adaptive capacity, retention of training, task-specificity, role of cutaneous inputs, effect of training with robotic devices, and spinal cord stimulation will be discussed. From the partial spinal lesion models, the effect of ventral or dorsal lesions of the cord will be presented. Finally, the effects of drugs on training will be compared between the complete and partial spinal lesions models.  相似文献   

18.
Epidural spinal cord stimulation has a long history of application for improving motor control in spinal cord injury. This review focuses on its resurgence following the progress made in understanding the underlying neurophysiological mechanisms and on recent reports of its augmentative effects upon otherwise subfunctional volitional motor control. Early work revealed that the spinal circuitry involved in lower-limb motor control can be accessed by stimulating through electrodes placed epidurally over the posterior aspect of the lumbar spinal cord below a paralyzing injury. Current understanding is that such stimulation activates large-to-medium-diameter sensory fibers within the posterior roots. Those fibers then trans-synaptically activate various spinal reflex circuits and plurisegmentally organized interneuronal networks that control more complex contraction and relaxation patterns involving multiple muscles. The induced change in responsiveness of this spinal motor circuitry to any residual supraspinal input via clinically silent translesional neural connections that have survived the injury may be a likely explanation for rudimentary volitional control enabled by epidural stimulation in otherwise paralyzed muscles. Technological developments that allow dynamic control of stimulation parameters and the potential for activity-dependent beneficial plasticity may further unveil the remarkable capacity of spinal motor processing that remains even after severe spinal cord injuries.  相似文献   

19.
To investigate the molecular basis for the poor regenerative capacity of the mammalian central nervous system (CNS) after injury, we searched for genes whose expression was affected by an adult rat spinal cord hemi-section. Differential screening of a rat spinal cord expression library was performed using polyclonal antibodies raised against lesioned spinal cord tissue. A striking overexpression was found for ahnak, encoding a 700-kDa protein, in normal CNS present only in the blood-brain barrier (BBB) forming vascular endothelial cells. Indeed, very early after spinal cord injury (SCI), high levels of membrane-associated AHNAK are observed on non-neuronal cells invading the lesion site. With time, AHNAK distribution spreads rostrally and caudally concomitant with the process of tissue inflammation and axon degeneration, delineating the interior surface of cystic cavities, mainly in front of barrier-forming astrocytes. Strong overexpression is also observed on vascular endothelial cells reacting to BBB breakdown. Based on our detailed analysis of its spatiotemporal and cellular expression, and its previously described function in BBB, we suggest that AHNAK expression is associated with cell types displaying tissue-protective barrier properties. Our study may thus contribute to the elucidation of the precise molecular and cellular events that eventually render traumatic spinal cord tissue non-permissive for regeneration.  相似文献   

20.
BACKGROUND: Rapid-rate repetitive transcranial magnetic stimulation (rTMS) can produce a lasting increase in cortical excitability in healthy subjects or induce beneficial effects in patients with neuropsychiatric disorders; however, the conditioning effects of rTMS are often subtle and variable, limiting therapeutic applications. Here we show that magnitude and direction of after-effects induced by rapid-rate rTMS depend on the state of cortical excitability before stimulation and can be tuned by preconditioning with transcranial direct current stimulation (tDCS). METHODS: Ten healthy volunteers received a 20-sec train of 5-Hz rTMS given at an intensity of individual active motor threshold to the left primary motor hand area. This interventional protocol was preconditioned by 10 min of anodal, cathodal, or sham tDCS. We used single-pulse TMS to assess corticospinal excitability at rest before, between, and after the two interventions. RESULTS: The 5-Hz rTMS given after sham tDCS failed to produce any after-effect, whereas 5-Hz rTMS led to a marked shift in corticospinal excitability when given after effective tDCS. The direction of rTMS-induced plasticity critically depended on the polarity of tDCS conditioning. CONCLUSIONS: Preconditioning with tDCS enhances cortical plasticity induced by rapid-rate rTMS and can shape the direction of rTMS-induced after-effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号