首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of quinolinecarboxylic acid amides and an ester with a quinuclidine moiety were synthesized and their in vitro affinities at 5-HT3, 5-HT4, and D2 receptors evaluated by radioligand binding assays. Highest affinity at 5-HT3 receptor corresponded to derivative 5 with Ki = 9.9 nM and with selectivity over 5-HT4 and D2 receptors. Compounds displayed moderate 5-HT3 antagonist activity (ED50 = 10.5-21.5 microg/kg i.v.). The obtained data suggest that the 5-HT3 receptor sites can accommodate the acyl group of the 2-quinoline derivatives. The results indicate the existence of an optimal distance between the lone electron pair of the quinoline nitrogen atom and the azabicyclic nitrogen atom, and a no-pharmacophoric pocket in the 5-HT3 receptor which would hold the fragment at the position 4 of the quinoline ring.  相似文献   

2.
Arylpiperazines, such as 1-(3-trifluoromethylphenyl)piperazine (TFMPP) and its chloro analogue mCPP, are 5-HT1 agonists, whereas quipazine, i.e., 2-(1-piperazino)quinoline, appears to be a 5-HT2 agonist. Radioligand binding studies using rat cortical membrane homogenates and drug discrimination studies using rats trained to discriminate a 5-HT1 agonist (i.e., TFMPP) or a 5-HT2 agonist (i.e., 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM)) from saline reveal that quipazine and its 1-deaza analogue 2-naphthylpiperazine (2-NP) bind at 5-HT1 and 5-HT2 sites but produce stimulus effects similar to those of DOM. A structurally related compound, 1-naphthylpiperazine (1-NP), possesses a high affinity for 5-HT1 (Ki = 5 nM) and 5-HT2 (Ki = 18 nM) sites. 1-NP produces stimulus effects similar to those of TFMPP and is able to antagonize the stimulus effects produced by DOM. The present results suggest that the unsubstituted benzene ring of quipazine, and of its 1-deaza analogue 2-naphthylpiperazine, makes a significant contribution to the binding of these agents to 5-HT2 sites and, more importantly, may account for their 5-HT2 agonist properties.  相似文献   

3.
8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) is a selective 5-HT1A serotonin agonist. Derivatives of 8-OH-DPAT with amine substituents larger or more bulky than n-propyl appear to be inactive in a presynaptic biochemical assay measuring agonist-induced feedback inhibition of 5-HT synthesis but have never been examined in brain binding assays. A series of N-phenylalkyl derivatives of 8-methoxy-2-aminotetralin was evaluated at [3H]-8-OH-DPAT-labeled 5-HT1A sites in rat brain hippocampal membranes. All of the phenylalkyl derivatives displayed significant affinity for these sites and, of the agents examined, the 3-phenylpropyl 8-hydroxy analogue appears to be optimal and had an affinity (Ki = 1.9 nM) comparable to that of 8-OH-DPAT (Ki = 1.2 nM). In addition, the presence of an oxygen-containing substituent at the 8-position of the tetralin ring is not necessary for good affinity, and secondary amines and tertiary amines displayed equal affinity at central 5-HT1A binding sites. 5-HT1A sites are found both pre- and postsynaptically; thus, differences observed in the biochemical assay as compared to the results of the present binding study could be due to different structural requirements of these two receptors. This seems unlikely, however, because there was little difference in the affinities of several selected analogues for striatal versus hippocampal binding sites. Because we have now demonstrated that amine substituents larger than propyl, and an unsubstituted 8-position, are well tolerated by central 5-HT1A sites, future studies aimed at the development of new serotonergic tetralin analogues need not be limited to N-propyl or 8-hydroxy derivatives of 2-aminotetralin.  相似文献   

4.
The pharmacological characteristics of the presynaptic 5-HT receptor associated with the modulation of 5-HT release were investigated in a preparation of rat spinal cord synaptosomes (nerve terminals) superfused with a Tris-buffered Krebs solution containing fluoxetine (1 microM). The 5-HT receptor agonists serotonin (1-100 nM), lysergic acid diethylamide (10 nM-1 microM) and the 5-HT1B receptor agonists 1-(m-trifluoromethylphenyl)piperazine (100 nM-1 microM) and 1-(m-chlorophenyl) piperazine (100 nM-3 microM) concentration dependently decreased [3H]5-HT release, while 8-hydroxy-2-(di-n-propylamino)tetralin, a selective 5-HT1A receptor agonist, was inactive. The actions of the effective agonists were reversed by quipazine, an antagonist with high affinity for 5-HT1B binding sites, but not by spiperone, a 5-HT1A receptor antagonist. Furthermore, mesulergine, a 5-HT1C receptor antagonist was ineffective in reversing the action of 5-HT on [3H]5-HT release. These data indicate that the rat spinal cord nerve terminal autoreceptor has characteristics similar to the 5-HT1B binding site.  相似文献   

5.
The binding of a series of phenylpiperazines (3) and benzoylpiperazines (4) to central serotonin (5-HT) sites was investigated. Several derivatives of 3 displayed nanomolar affinities for 5-HT1 sites, whereas derivatives of 4 were essentially inactive both at 5-HT1 and 5-HT2 sites. 1-(2-Methoxyphenyl)piperazine (2-MPP, 3a) was found to possess an affinity (Ki = 35 nM) for 5-HT1 sites comparable to that of the recognized 5-HT agonist 1-[3-(trifluoromethyl)phenyl]piperazine (TFMPP) (Ki = 20 nM); 3a also displayed a 100-fold selectivity for 5-HT1 sites (as compared to 8-fold for TFMPP). In tests of stimulus generalization using rats trained to discriminate TFMPP (ED50 = 0.17 mg/kg) from saline, 3a was found to be nearly equipotent (ED50 = 0.22 mg/kg) with the training drug. These results suggest that 3a may be a novel and more selective 5-HT1 agonist than TFMPP.  相似文献   

6.
Arylpiperazine derivatives as high-affinity 5-HT1A serotonin ligands   总被引:2,自引:0,他引:2  
Although simple arylpiperazines are commonly considered to be moderately selective for 5-HT1B serotonin binding sites, N4-substitution of such compounds can enhance their affinity for 5-HT1A sites and/or decrease their affinity for 5-HT1B sites. A small series of 4-substituted 1-arylpiperazines was prepared in an attempt to develop agents with high affinity for 5-HT1A sites. Derivatives where the aryl portion is phenyl, 2-methoxyphenyl, or 1-naphthyl, and the 4-substituent is either a phthalimido or benzamido group at a distance of four methylene units away from the piperazine 4-position, display high affinity for these sites. One of these compounds, 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl]piperazine (18), possesses a higher affinity than 5-HT and represents the highest affinity (Ki = 0.6 nM) agent yet reported for 5-HT1A sites.  相似文献   

7.
Design and synthesis of propranolol analogues as serotonergic agents   总被引:3,自引:0,他引:3  
Serotonin (5-HT) binds with nearly identical affinity at the various central 5-HT binding sites. Few agents bind with selectivity for 5-HT1A sites. The beta-adrenergic antagonist propranolol binds stereoselectively both at 5-HT1A and 5-HT1B sites (with a several-fold selectivity for the latter) and, whereas it is a 5-HT1A antagonist, it appears to be a 5-HT1B agonist. As such, it could serve as a lead compound for the development of new 5-HT1A and 5-HT1B agents. The purpose of the present study was to modify the structure of propranolol in such a manner so as to reduce its affinity for 5-HT1B and beta-adrenergic sites while, at the same time, retaining its affinity for 5-HT1A sites. Removal of the side-chain hydroxyl group of propranolol, and conversion of its secondary amine to a tertiary amine, reduced affinity for 5-HT1B and beta-adrenergic sites. In addition, shortening the side chain by one carbon atom resulted in compounds with affinity for hippocampal 5-HT1A sites comparable to that of racemic propranolol, but with a 30- to 500-fold lower affinity for 5-HT1B sites and a greater than 1000-fold lower affinity for beta-adrenergic sites. The results of these preliminary studies attest to the utility of this approach for the development of novel serotonergic agents.  相似文献   

8.
The putative central 5-HT receptor agonist, 5-methoxy-3(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole succinate (RU 24969), was found to be a potent inhibitor of the continuous K+ evoked efflux of [3H]5-HT from superfused rat frontal cortex slices (pD2 7.45). The effects of RU 24969 were attenuated by the putative 5-HT autoreceptor antagonists, methiothepin, quipazine and (-)-propranolol but not by the alpha 2-adrenoceptor antagonist, idazoxan. It is concluded that RU 24969 inhibits K+ evoked efflux of [3H]5-HT from rat frontal cortex slices by stimulation of the 5-HT autoreceptor. Moreover, since RU 24969 potently displaced ligand binding to the 5-HT1 and 5-HT1B recognition sites but was only weakly active at the 5-HT2 receptor, the results lend support to the claim for a pharmacological resemblance between the 5-HT autoreceptor and the 5-HT1 recognition site and in particular the low affinity 5-HT1B subtype.  相似文献   

9.
The affinities of 16 5-hydroxytryptamine (5-HT) receptor agonists (indole derivatives) and 7 5-HT receptor antagonists for [3H]5-hydroxytryptamine [( 3H]5-HT) binding sites in rat cerebral cortex membranes were determined. In addition, the potencies of the agonists for inhibiting the electrically induced tritium overflow from rat brain cortex slices preincubated with [3H]5-HT and from canine saphenous veins preincubated with [3H]noradrenaline were measured. Furthermore, the potencies of the indole derivatives for inducing contractile responses of canine saphenous veins were recorded. In addition, the interaction of the antagonists with unlabelled 5-HT at the 5-HT autoreceptor was studied in rat brain cortex slices. There was a good correlation between the binding affinities of the indole derivatives for the [3H]5-HT sites of rat brain cortex membranes and their potencies for inhibiting the evoked tritium overflow from both rat brain cortex slices and strips of canine saphenous vein. Comparison of the inhibition constants derived from the overflow experiments in both tissues again revealed a high correlation coefficient while there was only weak correlation between the binding affinities in rat brain cortex and the contractile potencies of the drugs in canine saphenous vein strips. When 5-HT receptor antagonists were investigated, metitepin and metergoline showed moderate affinities for the 5-HT autoreceptors in rat brain cortex slices, whereas quipazine had only weak affinity, and ketanserin, metoclopramide, cinanserin and cyproheptadine exhibited no antagonistic property. In binding experiments, the competition curves of most 5-HT receptor antagonists were biphasic, suggesting that the [3H]5-HT binding sites are heterogeneous.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The affinities of putative serotonin receptor agonists and antagonists for 5-HT1A, 5-HT1B, 5-HT1C, and 5-HT2 receptors were assayed using radioligand binding assays. The 5-HT1 sites were labeled with the agonist radioligands [3H]-8-hydroxy-2-(di-n-propylamino)-tetralin [3H]-8-OH-DPAT, [3H]-5-HT, and [3H]mesulergine. The 5-HT2 receptor was labeled with the antagonist radioligand [3H]ketanserin or the agonist radioligand [3H]-4-bromo-2,5-dimethoxyphenylisopropylamine ([3H]DOB). The apparent 5-HT1 receptor selectivity of agonist compounds was found to be 50- to 100-fold higher when the 5-HT2 receptor affinity was determined using the antagonist radioligand [3H]ketanserin than when the agonist radioligand [3H]DOB was used. Quipazine, a putative specific 5-HT2 agonist, appeared to be only 3-fold more potent at 5-HT2 than at 5-HT1A receptors when [3H]ketanserin was used as the 5-HT2 radioligand. When [3H]DOB was used as the 5-HT2 radioligand, quipazine was determined to be 100-fold more potent at 5-HT2 receptors than at 5-HT1A receptors. 1-(3-trifluoromethylphenyl)piperazine (TFMPP), a putative specific 5-HT1B receptor agonist was apparently 10-fold more potent at 5-HT1B receptors than at 5-HT2 receptors when [3H]ketanserin was used as the 5-HT2 radioligand. When [3H]DOB was used as the 5-HT2 radioligand, TFMPP was found to be equipotent at 5-HT1B and 5-HT2 receptors. Using the 5-HT2 antagonist radioligand [3H]ketanserin, a similar pattern of underestimating 5-HT2 receptor selectivity and/or overestimating 5-HT1A or 5-HT1B receptor selectivity was observed for a series of serotonin receptor agonists. Antagonist receptor selectivity was not affected significantly by the nature of the 5-HT2 receptor assay used. These data indicate that, by using an antagonist radioligand to label 5-HT2 receptors and agonist radioligands to label 5-HT1 receptors, the 5-HT1 receptor selectivity may be overestimated. This may be an especially severe problem in serotonin drug development as drugs that interact potently with 5-HT2 receptors have been reported to be psychoactive and/or hallucinogenic.  相似文献   

11.
In rat brain cortex slices preincubated with [3H]5-HT, the potencies of 17 5-HT receptor agonists to inhibit the electrically evoked 3H overflow and the affinities of 13 antagonists (including several beta-adrenoceptor blocking agents) to antagonize competitively the inhibitory effect of unlabelled 5-HT on evoked 3H overflow were determined. The affinities of the compounds for 5-HT1B and 5-HT2 binding sites in rat brain cortex membranes (labelled by [125I]cyanopindolol = [125I]-CYP in the presence of 30 mumol/l isoprenaline and [3H]ketanserin, respectively), for 5-HT1A binding sites in pig and rat brain cortex membranes (labelled by [3H]8-hydroxy-2-(di-n-propylamino)tetralin = [3H]8-OH-DPAT) and for 5-HT1C binding sites in pig choroid plexus membranes (labelled by [3H]mesulergine) were also determined. The affinities of the drugs for the various 5-HT recognition sites ranged over 4-5 log units (the functional experiments revealed the same range of differences between the drugs). There were no significant correlations between the affinities of the drugs at 5-HT1C and 5-HT2 binding sites and their potencies or affinities, determined for the 5-HT autoreceptors. In contrast, significant correlations were found between the potencies or affinities of the drugs for the autoreceptors and their affinities at 5-HT1A or 5-HT1B binding sites; the best correlations were obtained with the 5-HT1B binding site. Some of the drugs investigated were not included in the correlation since their agonistic or antagonistic effects on the autoreceptors were weak and pEC30 or apparent pA2 values could not be determined (less than 5.5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A series of 2,3-dihydro-2-oxo-1H-benzimidazole-1-carboxamide derivatives bearing a piperazine moiety was synthesized. Their in vitro 5-HT(4), 5-HT(3), and D(2) receptors affinities were evaluated by radioligand binding assay. For selected compounds functional studies at the 5-HT(4) receptor were made by using precontracted (by carbachol) preparations of rat esophageal tunica muscularis mucosae (TMM). The influence of the 3-substituent of the benzimidazole ring, the 4-substituent of the piperazine moiety, and the alkylene spacer was studied. Compounds with an ethyl or a cyclopropyl substituent in the 3-position of the benzimidazole ring showed moderate to high affinity (K(i) = 6.7-75.4 nM) for the 5-HT(4) receptor with selectivity over 5-HT(3) and D(2) receptors and moderate antagonist activity (pK(b) = 6.19-7.73). Compounds with an isopropyl substituent in the 3-benzimidazole position exhibited moderate and selective 5-HT(4) affinity (K(i) >/= 38.9 nM) and a partial agonist activity (5a, i.a. = 0.94) higher than that of the reference compound BIMU 8 (i.a. = 0.70). This reversal of the pharmacological activity due only to a small structural difference might confirm the existence of two binding sites on the 5-HT(4) receptor. In the alkylene spacer, a two-methylene chain is favorable to optimize the affinity and the antagonist or the partial agonist activity. In the ethyl and cyclopropyl series, 5-HT(4) antagonist activity seems to be unrelated to the size of the 4-substituent of the piperazine moiety, whereas a methyl group is optimal for high partial agonist activity in the isopropyl series; however, the presence of a butyl substituent is a favorable pattern for 5-HT(4) antagonism and even causes a reversal of the pharmacological profile in the isopropyl series (5h, pK(b) = 7.94). N-Butyl quaternization of 5a led to an improvement in affinity for the 5-HT(4) receptor and mantained the high partial agonist activity (5r, K(i) = 66.3 nM, i.a. = 0.93).  相似文献   

13.
The affinities of several ergot derivatives for 5-HT1 and 5-HT2 receptors were evaluated using [3H]5-HT and [3H]mianserin, and membranes prepared from rat frontal cortex. CQ 32-084, which had a Ki value against the 5-HT2 component of [3H]mianserin binding of 9 nM, had little effect on [3H]5-HT binding and was selective for the 5-HT2 receptor. Lisuride and LY-158A also displayed preferential affinity for the 5-HT2 receptor. Dihydroergocryptine, CM 29-712, lergotrile and LY-062 were more selective for the 5-HT1 receptor. Bromocriptine showed little selectivity for either subtype. Overall, the ergot derivatives displayed markedly different affinities and selectivities for central 5-HT receptors suggesting that their serotonergic actions should be considered when evaluating their pharmacological spectrum of activity.  相似文献   

14.
Affinities of drugs for 21 indolealkylamine derivatives, some with putative hallucinogenic activity, were determined at 5-HT1A, 5-HT2A and 5-HT2B recognition sites, using radioligand competition studies. Nearly all of the derivatives displayed greatest potency for the 5-HT2A receptor, labelled by [125I]R-(-)DOI in the cortex of the rat. Most derivatives displayed 2-10 times lower affinity at the HT2B receptor labelled by [3H]ketanserin in bovine cortex. Derivatives lacking ring substituents displayed lower affinities for all of the recognition sites, compared to derivatives substituted in the 4- or 5-position of the indole ring. The 4-hydroxylated derivatives displayed 25-380-fold selectivity for the 5-HT2A site, vs the 5-HT1A site, while the 5-substituted derivatives displayed approximately equal potency at the 5-HT1A and 5-HT2A sites. Affinity of all the compounds at the 5-HT2B site was greater than 300 nM. The 6-substituted derivatives displayed greater than micromolar affinities for all of the 5-HT recognition sites examined. The size of the N,N-dialkyl substituent was a secondary determinant of affinity, with groups larger than N,N-diisopropyl resulting in a marked reduction in affinity at both the 5-HT2A and 5-HT1A recognition sites. This study demonstrated that hallucinogenic 4-hydroxy-indolealkylamines, like psychotomimetic phenylisopropylamines, bind potently and selectively to the 5-HT2A recognition site, labelled by [125I]R-(-)DOI. This provides further evidence indicating that this recently described subtype of the 5-HT2 receptor may partially mediate the action of hallucinogenic agents.  相似文献   

15.
Novel 5-HT3 receptor ligands were designed and synthesized with the aim of obtaining deeper insight into the molecular basis of the intrinsic efficacy of arylpiperazines interacting with the central 5-HT3 receptor. The newly synthesized compounds and some previously published compounds belonging to the same class of heteroarylpiperazines were tested for their potential ability to displace [3H]granisetron from rat cortical membranes. These 5-HT3 receptor binding studies revealed subnanomolar affinity in several of the compounds under study. The most active ligands were quipazine derivatives bearing a phenyl group in the 4-position and various oxygenated alkyl side chains in the 3-position of the quinoline nucleus. Qualitative and theoretical quantitative structure-affinity relationship studies were carried out, and the interaction model for the 5-HT3 ligands related to quipazine with their receptor, proposed in part 1 of the present work, was updated to incorporate the latest data. The potential 5-HT3 agonist/antagonist activity of 12 selected compounds was assessed in vitro on the 5-HT3 receptor-dependent [14C]guanidinium uptake in NG 108-15 cells. Their intrinsic efficacy ranged from the 5-HT3 full agonist properties of compounds 7a and 8h, i to those of partial agonists 10a,d and antagonists 8b,d,e, and 9c, d,h,i. The comparison between these functional data and those relative to the previously described compounds suggested that in this class of 5-HT3 ligands the intrinsic efficacy is modulated in a rather subtle manner by the steric features of the heteroaryl moiety.  相似文献   

16.
alpha-Methyl-5-hydroxytryptamine (alpha-Me-5-HT; 2) and 2-methyl-5-hydroxytryptamine (2-Me-5-HT; 3) are considered to be 5-HT2-selective and 5-HT3-selective agents, respectively. These agents were synthesized and examined at serotonin (5-HT) binding sites because there is relatively little documentation as to their selectivity and because they have not been previously examined at the newly discovered 5-HT1D and 5-HT1E sites. As previously reported, 2-Me-5-HT possesses a low affinity (Ki greater than 500 nM) for 5-HT1A, 5-HT1B, 5-HT1C, and 5-HT2 sites; this agent also displays a low affinity for 5-HT1D (Ki = 1220 nM) and 5-HT1E (Ki greater than 10,000 nM) sites. However, alpha-Me-5-HT displays little selectivity for 5-HT1A, 5-HT1B, 5-HT1C, and 5-HT1D sites (Ki = 42, 85, 150, and 150 nM, respectively) and a very low affinity for 5-HT1E (Ki greater than 10,000 nM) sites. Depending upon the radioligand used to label the sites, alpha-Me-5-HT displays either a low affinity (Ki = 880 nM with [3H]ketanserin) or a high affinity (Ki = 3 nM with [3H]DOB) for 5-HT2 sites. These results suggest that alpha-Me-5-HT is not as selective as previously considered and that caution should be used when employing this agent in pharmacological studies because it may act as mixed 5-HT1/5-HT2 agonist.  相似文献   

17.
A series of new pyridobenzodiazepines with variation of the basic side chain were synthesized and evaluated for their binding to D(4.2), D(2L), and 5-HT(2A) receptors in comparison with clozapine, haloperidol, and two parent compounds previously described, 8-chloro-6-(4-methyl-1-piperazinyl)-11H-pyrido[2,3-b][1,4]benzodiazepine (8) and 8-methyl-6-(4-methyl-1-piperazinyl)-11H-pyrido[2,3-b][1,4]benzodiazepine (9). In the piperazine series, replacing the N-methyl group by a N-phenyl moiety (15-17, 30-32) provided a dramatic decrease of affinity for all receptors (K(i) > 1000 nM). A N-cyclohexyl group (20, 35) restored some affinity. Compounds with a N-benzyl (18, 33) or N-phenethyl side chain (19, 34) had significant affinities at D(4.2) and 5-HT(2A) receptors. Homologation of the piperazine nucleus (29, 44) led to a significant decrease of the affinity at all receptors investigated. In the 4-aminopiperidine series, N-methyl derivatives (21, 36) possessed less affinity in comparison with the N-methylpiperazine analogues (8, 9) while the N-benzyl congeners (22, 37) showed similar affinities. The rigidification of piperidine nucleus as obtained in azabicyclo[3.2.1]octane derivatives (23, 38) involved a slight reduction of the affinity at D(4.2) and 5-HT(2A) receptors while the affinity at D(2L) receptors was dramatically increased. The introduction of N-substituted aminoalkylamines to replace N-methylpiperazine generally led to a significant decrease in the affinity for D(4.2) receptors but some of these molecules (24, 25, 41) presented a significant 5-HT(2A) binding affinity. The presence of a more flexible side chain induced an increased conformational freedom. Consequently, the preferential position of the distal nitrogen or its basicity in piperazine derivatives was greatly modified. 19 with a high D(4.2) and 5-HT(2A) affinity (K(i) = 40 and 103 nM, respectively) did not induce cataleptic phenomenon in the paw test in rats but significantly reduced the immobility time in Porsolt's test in mice suggesting antidepressant properties.  相似文献   

18.
Hexahydro-sila-difenidol and eight analogues behaved as simple competitive inhibitors of [3H]N-methyl-scopolamine binding to homogenates from human neuroblastoma NB-OK 1 cells (M1 sites), rat heart (M2 sites), rat pancreas (M3 sites), and rat striatum 'B' sites (M4 sites). Pyrrolidino- and hexamethyleneimino analogues showed the same selectivity profile as the parent compound. Hexahydro-sila-difenidol methiodide and the methiodide of p-fluoro-hexahydro-sila-difenidol had a higher affinity but a lower selectivity than the tertiary amines. Compounds containing a p-methoxy, p-chloro or p-fluoro substituent in the phenyl ring of hexahydro-sila-difenidol showed a qualitatively similar selectivity profile as the parent compound (i.e., M1 = M3 = M4 greater than M2), but up to 16-fold lower affinities. o-Methoxy-hexahydro-sila-difenidol has a lower affinity than hexahydro-sila-difenidol at the four binding sites. Its selectivity profile (M4 greater than M1, M3 greater than M2) was different from hexahydro-sila-difenidol. Replacement of the central silicon atom of hexahydro-sila-difenidol, p-fluoro-hexahydro-sila-difenidol and their quaternary (N-methylated) analogues by a carbon atom did not change their binding affinities significantly. The four muscarinic receptors showed a higher affinity for the (R)- than for the (S)-enantiomers of hexahydro-difenidol, p-fluorohexahydro-difenidol and their methiodides. The stereoselectivity varied depending on the receptor subtype and drug considered.  相似文献   

19.
The 5-HT receptor linked to adenylate cyclase and the high affinity binding site for [3H]-5-HT were compared on the basis of their kinetic and pharmacological properties in the CNS of new born rats. Under normal assay conditions, the apparent affinity of 5-HT for its specific binding sites (Kd = 1?2 nM) was much higher than that for the receptor coupled to adenylate cyclase (KA app = 0.5?1.0 μM). When measured under the conditions of the cyclase assay, the apparent Kd for the binding was increased to 11.9 nM, a value which is still more than 40 times lower than the KA app characterizing the activation of adenylate cyclase by 5-HT. GTP affected both the binding of [3H]-5-HT and the 5-HT-sensitive adenylate cyclase. Guanyl nucleotides appeared to be essential for the activation of adenylate cyclase by 5-HT as 5-HT was inactive in a preparation of washed membranes unless added in the presence of GTP or GppNHp. In whole homogenates, GTP increased the affinity of 5-HT for the receptor-adenylate cyclase complex (KA app = 0.33μM in the presence of 10μM GTP). The specific binding of [3H]-5-HT was reduced by GTP and GppNHp but not GMP or ATP. However, the range of concentrations inducing a significant effect (?0.10mM GTP) was far higher than those which increased the 5-HT-induced activation of adenylate cyclase.There was little in common between the pharmacological profiles of the two systems. A group of 5-HT agonists containing a piperazine heterocycle [1- (m-trifluoromethylphenyl) piperazine, quipazine and MK-212] effectively displaced [3H]-5-HT from its binding sites but exerted no action on the 5-HT-sensitive cyclase, affecting neither the basal nor the 5-HT-stimulated cAMP production. Likewise, there was no correlation between the respective potencies of a series of 5-HT antagonists for inhibiting the binding of [3H]-5-HT and the 5-HT-induced cAMP production. These data suggest that the 5-HT receptor linked to adenylate cyclase is not identical with that which is measured by the binding of [3H]-5-HT and, thus, provide evidence for the possible existence of multiple receptors for 5-HT in the rat brain.  相似文献   

20.
A quantitative molecular model was derived to predict drug affinities for 5-hydroxytryptamine3 (5-HT3) receptors. The model was based on the molecular characteristics of a "learning set" of 40 pharmacological agents that had been analyzed previously in radioligand binding studies. Molecules were analyzed for various structural features, i.e., the presence of a benzenoid ring and nitrogen atom, substitutions on the benzenoid ring, the location of the substitutions on the nitrogen, and the molecular characteristics of the most direct pathway from the benzenoid ring to the nitrogen. Weighting factors, based on published 5-HT3 receptor affinity data, were then assigned to each of 10 molecular characteristics. The derived computational model predicts accurately the affinities of the learning set for the 5-HT3 receptor (r = 0.98; p less than 0.001). The computational model was then used to predict the receptor affinities of a "test set" of 40 pharmacological agents. The predicted values for these agents also correlate significantly (r = 0.83; p less than 0.001) with drug affinities for the 5-HT3 receptor, as determined by radioligand binding assays. This first line screening approach allows for the accurate prediction of drug affinities based on molecular characteristics with minimal dependence upon animal tissues or radioactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号