首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concept that hepatic cholesteryl ester (CE) mass and the rate of cholesterol esterification regulate hepatocyte assembly and secretion of apoB-containing lipoproteins remains controversial. The present study was carried out in HepG2 cells to correlate the rate of cholesterol esterification and CE mass with apoB secretion by CI-1011, an acyl CoA:cholesterol acyltransferase (ACAT) inhibitor that is known to decrease apoB secretion, in vivo, in miniature pigs. HepG2 cells were incubated with CI-1011 (10 nmol/L, 1 micromol/L, and 10 micromol/L) for 24 hours. ApoB secretion into media was decreased by 25%, 27%, and 43%, respectively (P<0.0012). CI-1011 (10 micromol/L) inhibited HepG2 cell ACAT activity by 79% (P<0.002) and cellular CE mass by 32% (P<0.05). In contrast, another ACAT inhibitor, DuP 128 (10 micromol/L), decreased cellular ACAT activity and CE mass by 85% (P<0.002) and 42% (P=0.01), respectively, but had no effect on apoB secretion into media. To characterize the reduction in apoB secretion by CI-1011, pulse-chase experiments were performed and analyzed by multicompartmental modelling using SAAM II. CI-1011 did not affect the synthesis of apoB or albumin. However, apoB secretion into the media was decreased by 42% (P=0.019). Intracellular apoB degradation increased proportionately (P=0.019). The secretion of albumin and cellular reuptake of labeled lipoproteins were unchanged. CI-1011 and DuP 128 did not affect apoB mRNA concentrations. These results show that CI-1011 decreases apoB secretion by a mechanism that involves an enhanced intracellular degradation of apoB. This study demonstrates that ACAT inhibitors can exert differential effects on apoB secretion from HepG2 cells that do not reflect their efficacy in inhibiting cholesterol esterification.  相似文献   

2.
The mechanism of action of a widely used drug gemfibrozil to reduce triglycerides (TG) and apolipoprotein B (apo B) is incompletely understood. Using human hepatoblastoma (HepG2) cells, we examined the effect of gemfibrozil on apo B secretion and TG synthesis catalyzed by diacylglycerol acyltransferase (DGAT), primary processes associated with the secretion of LDL. Gemfibrozil significantly decreased apo B secretion by HepG2 cells. It decreased oleate-induced stimulation of apo B secretion, suggesting that gemfibrozil-mediated inhibition of apo B secretion may be dependent on the synthesis of TG catalyzed by DGAT. Pre-incubation of HepG2 cells with gemfibrozil (200-400 micromol/l for 48 h) significantly inhibited microsomal DGAT activity. When added directly to the DGAT assay system containing control microsomes, gemfibrozil significantly inhibited the activity of DGAT by 14-25%. Gemfibrozil (200-400 micromol/l) inhibited TG synthesis by 47-50% as measured by the incorporation of 3H-oleic acid into TG. The data indicate that gemfibrozil inhibits DGAT activity resulting in decreased synthesis of TG and its availability for apo B lipidation rendering it susceptible to intracellular apo B degradation leading to the decreased secretion. These in-vitro data suggest a novel additional mechanism by which gemfibrozil lowers plasma TG and atherogenic apo B lipoproteins in dyslipidemic patients.  相似文献   

3.
Aim: Hepatic steatosis accompanied by impaired protein synthesis is often observed in hepatic dysfunction. To assess whether protein synthesis inhibition directly induces hepatic steatosis, we investigated the molecular mechanisms of cycloheximide (CHX)‐induced fatty liver mice. Methods: C57/BL6CR mice were i.p. administrated CHX (20 mg/kg) three times every 4 h to induce hepatic steatosis. Hepatic lipid secretion, fatty acid oxidation, hepatic lipogenesis and hepatic lipid uptake were evaluated. Results: Twenty‐four hours after the first CHX injection, hepatic lipid levels increased in CHX‐treated mice to 1.8‐fold of that in controls but returned to normal within 48 h. The hepatic triglyceride (TG) secretion rate decreased significantly to 22% of controls, and the apolipoprotein B (apoB) protein level, but not microsomal TG transfer protein, decreased in CHX‐treated mice. The apob gene expression was not significantly different between controls and CHX‐treated mice. On the other hand, plasma free fatty acid and lipogenic protein levels did not increase and plasma β‐hydroxybutyrate level remained stable, suggesting that the coordinated balance between fatty acid oxidation, hepatic lipid uptake and lipogenesis was not disrupted in this model. Cellular lipid accumulation and decreased cellular and secreted apoB were also observed in CHX‐treated HepG2 cells. Knockdown of apoB in HepG2 cells also resulted in the cellular TG accumulation. Conclusion: We demonstrated that decreased hepatic lipid secretion due to acute apoB reduction is involved in the pathogenesis of CHX‐induced liver steatosis.  相似文献   

4.
The microsomal triglyceride (TG) transfer protein (MTP) is a heterodimeric lipid transfer protein that catalyzes the transport of triglyceride, cholesteryl ester, and phosphatidylcholine between membranes. Previous studies showing that the proximal cause of abetalipoproteinemia is an absence of MTP indicate that MTP function is required for the assembly of the apolipoprotein B (apoB) containing plasma lipoproteins, i.e., very low density lipoproteins and chylomicrons. However, the precise role of MTP in lipoprotein assembly is not known. In this study, the role of MTP in lipoprotein assembly is investigated using an inhibitor of MTP-mediated lipid transport, 2-[1-(3, 3-diphenylpropyl)-4-piperidinyl]-2,3-dihydro-1H-isoindol-1-o ne (BMS-200150). The similarity of the IC50 for inhibition of bovine MTP-mediated TG transfer (0.6 microM) to the Kd for binding of BMS-200150 to bovine MTP (1.3 microM) strongly supports that the inhibition of TG transfer is the result of a direct effect of the compound on MTP. BMS-200150 also inhibits the transfer of phosphatidylcholine, however to a lesser extent (30% at a concentration that almost completely inhibits TG and cholesteryl ester transfer). When BMS-200150 is added to cultured HepG2 cells, a human liver-derived cell line that secretes apoB containing lipoproteins, it inhibits apoB secretion in a concentration dependent manner. These results support the hypothesis that transport of lipid, and in particular, the transport of neutral lipid by MTP, plays a critical role in the assembly of apoB containing lipoproteins.  相似文献   

5.
Leptin directly increases the rate of exogenous glucose and fatty acids oxidation in isolated adipocytes. However, the effects of leptin on fatty acid metabolism in white adipose tIssue have not been examined in detail. Here, we report that in adipocytes incubated for 6 h in the presence of leptin (10 ng/ml), the insulin-stimulated de novo fatty acid synthesis was inhibited by 36% (P<0.05), while the exogenous oxidation of acetic and oleic acids was increased by 50% and 76% respectively. Interestingly, leptin did not alter the oxidation of intracellular fatty acids. Leptin-incubated cells presented a 16-fold increase in the incorporation of oleic acid into triglyceride (TG) and a 123% increase in the intracellular TG hydrolysis (as measured by free fatty acids release). Fatty acid-TG cycling was not affected by leptin. By employing fatty acids radiolabeled with (3)H and (14)C, we could determine the concomitant influx of fatty acids (incorporation of fatty acids into TG) and efflux of fatty acids (intracellular fatty acids oxidation and free fatty acids release) in the incubated cells. Leptin increased by 30% the net efflux of fatty acids from adipocytes. We conclude that leptin directly inhibits de novo synthesis of fatty acids and increases the release and oxidation of fatty acids in isolated rat adipocytes. These direct energy-dissipating effects of leptin may play an important role in reducing accumulation of fatty acids into TG of rat adipose cells.  相似文献   

6.
7.
BACKGROUND: Fatty acid ethyl esters (FAEEs) are nonoxidative metabolites of ethanol produced by the esterification of fatty acids and ethanol. FAEEs have been implicated as mediators of ethanol-induced organ damage in vivo and in vitro. They are detectable in the blood and in many organs after ethanol ingestion, and on this basis they are useful markers of ethanol intake in living patients as well as subjects at autopsy. FAEEs found in human plasma after ethanol ingestion bind to lipoproteins and albumin. METHODS: In this study, we used a hepatoblastoma cell model (HepG2) to determine if lipoproteins or albumin stimulates the synthesis and/or secretion of FAEEs from HepG2 cells. Because FAEEs have been shown to decrease HepG2 cellular proliferation and protein synthesis, their removal from cells potentially could reestablish normal cell activity. HepG2 cells were incubated with 100 mM ethanol and 6 nM 3H oleic acid to generate 3H-FAEEs within the cells. Dose response and time course studies were performed by using low density lipoproteins, high density lipoproteins, and albumin as FAEE acceptors. RESULTS: The results indicate that FAEEs are extracted efficiently by each of these FAEE carriers and that FAEE synthesis also is stimulated by the addition of FAEE carriers to the extracellular medium. CONCLUSION: These observations indicate that lipoproteins and albumin can extract ethyl esters from HepG2 cells and thereby may limit alcohol-induced liver damage.  相似文献   

8.
The regulation of hepatic VLDL secretion mainly depends on apolipoprotein (apo) B synthesis, on microsomal triglyceride transfer protein, insulin and the availability of triglycerides, free fatty acids (FFA) and cholesteryl ester. Four sources of fatty acids are used for lipoprotein synthesis: de-novo lipogenesis, cytoplasmic triglyceride stores, fatty acids derived from lipoproteins taken up directly by the liver and plasma FFA. Quantitatively, de-novo lipogenesis plays a minor role in regulating VLDL synthesis, but evidently it is elevated under conditions of high carbohydrate feeding. Cytoplasmic triglyceride stores appear to essentially contribute to VLDL triglycerides. Plasma FFA enter the hepatocytes and are either oxidized or esterified. The relationship between oxidation and esterification appears to be important in regulating the VLDL synthesis. An enhanced esterification is accompanied by increased VLDL secretion. The addition of oleic acid to hepatocytes has been shown to stimulate production of VLDL triglyceride and apoB. In human beings, an acute experimental elevation of plasma FFA stimulates VLDL production. In healthy men strong positive relations were found between the late increases in large triglyceride-rich lipoproteins and plasma FFA concentrations after 6 h following a mixed meal. In contrast, n-3 fatty acids impair VLDL assembly and secretion. Chronic hyperinsulinemia seems to stimulate VLDL production. On the other hand, the short-term addition of insulin has been shown to inhibit VLDL-triglyceride and apoB production in vitro. There is in vivo evidence that acute hyperinsulinemia suppresses VLDL-apoB and VLDL-triglyceride production in insulin-sensitive humans. Part of this action is due to suppression of plasma FFA. In patients with impaired glucose tolerance (IGT), VLDL production was increased when compared with subjects with normal glucose (NGT). When infusing a lipid emulsion, VLDL production could not be further stimulated in IGT patients in contrast to NGT persons. Hypertriglyceridemia in type 2 diabetes mellitus is usually the consequence of a VLDL overproduction. In type 2 diabetic patients, in contrast to normal men, insulin failed to suppress VLDL1 particle release. In normal men, an elevation of blood glucose led to a decrease in fatty acid oxidation and an increase in hepatic triglyceride secretion. Under these conditions, approximately 30% of total VLDL triglycerides coming out of the liver did not originate from plasma FFA. In conclusion, plasma FFA seem to play an important role in stimulating hepatic VLDL production. Other factors such as chronic hyperinsulinemia or nutrition modify this effect.  相似文献   

9.
Although low-density lipoprotein cholesterol (LDL-C) is a well-established atherogenic factor for coronary heart disease, it does not completely represent the risk associated with atherogenic lipoproteins in the presence of high triglyceride (TG) levels. Constituent lipoproteins constituting non-high-density lipoprotein cholesterol (non-HDL-C) include atherogenic TG-rich lipoproteins, cholesteryl ester-enriched remnants of TG-rich lipoproteins, and lipoprotein(a). Recent observational and intervention studies suggest that the predictive value of non-HDL-C for cardiovascular risk and mortality is better than low-density lipoprotein cholesterol and that non-HDL-C correlates highly with plasma apolipoprotein B levels. Currently, the National Cholesterol Education Program Adult Treatment Panel III guidelines identify non-HDL-C as a secondary target of therapy in patients with TG elevation (> or =200 mg/dl) after the attainment of LDL-C target goals. In patients with coronary heart disease or coronary heart disease risk equivalents, an optional non-HDL-C goal is <100 mg/dl. To achieve the non-HDL-C goal, statin therapy may be intensified or combined with ezetimibe, niacin, a fibrate, or omega-3 fatty acids. In conclusion, non-HDL-C remains an important target of therapy for patients with elevated TGs, although its widespread adoption has yet to gain a foothold among health care professionals treating patients with dyslipidemia.  相似文献   

10.
The uptake and degradation of low-density lipoproteins and the esterification and synthesis of cholesterol were poorly down-regulated by low-density lipoproteins in HepG2 cells. Addition of low-density lipoproteins to the cells increased the free and esterified cholesterol in the cells. The heavier fraction of high-density lipoproteins enhanced the degradation of low-density lipoproteins and cholesterol synthesis and decreased acyl CoA:cholesterol acyltransferase activity. Addition of the heavier fraction of high-density lipoproteins also caused a net efflux of cholesterol from HepG2 cells. The lighter fraction did not have any significant effect on cholesterol metabolism or cellular cholesterol level. Neither the lighter nor the heavier fractions of high-density lipoproteins were found to have any specific binding properties to HepG2 cells.  相似文献   

11.
Previous studies showed that increased release of free fatty acids from adipocytes leads to insulin resistance and triglyceride (TG) accumulation in the liver, which may progress into hepatic steatohepatitis. We and other investigators have previously reported that palmitate induces endoplasmic reticulum stress-mediated toxicity in several tissues. This work investigated whether palmitate could induce insulin resistance and steatosis in HepG2 cells. We treated cells with either saturated fatty acid (palmitate) or unsaturated fatty acid (oleate), and observed that palmitate significantly activated c-jun N-terminal kinase and inactivated protein kinase B. Both 4-phenylbutyric acid and glycerol significantly activated protein kinase B, confirming the involvement of endoplasmic reticulum stress in palmitate-mediated insulin resistance. Oleate, but not palmitate, significantly induced intracellular TG deposition and activated sterol regulatory element binding protein-1. Instead, diacylglycerol level and protein kinase C ? activity were significantly increased by palmitate, suggesting the possible role of diacylglycerol in palmitate-mediated lipotoxicity. Therefore, the present study clearly showed that palmitate impairs insulin resistance, but does not induce significant TG accumulation in HepG2 cells.  相似文献   

12.
Results from several atherosclerosis studies using morphometric procedures have proven controversial with regard to whether over-expression of human LCAT in transgenic (Tg) mice is atherogenic. The purpose of the present study was to determine the effect of 10-fold over-expression of human LCAT on aortic free and esterified cholesterol (EC) deposition as well as plasma lipoprotein cholesteryl ester (CE) fatty acid composition in mice fed an atherogenic diet containing cholic acid. C57Bl/6 (control) and human LCAT-Tg mice were fed chow or an atherogenic diet (15% of calories from palm oil, 1.0% cholesterol and 0.5% cholic acid) for 24 weeks before measurement of aortic cholesterol content. Compared with the chow diet, control and LCAT-Tg mice fed the atherogenic diet had a 2-fold increase in plasma total, free and EC, a 7-fold increase in plasma apoB lipoprotein cholesterol, and a 40-50-fold increase in hepatic cholesterol content. The aortic EC content was increased in control (0.7 vs. 1.2 mg/g protein) and LCAT-Tg (0.3 vs. 1.5 mg/g protein) mice fed the atherogenic diet compared with those consuming the chow diet; however, there was no difference in aortic free (14.4+/-6.8 vs. 18.5+/-7.7 mg/g protein) or esterified (1.2+/-1.0 vs. 1.5+/-1.2 mg/g protein) cholesterol content between atherogenic diet-fed control and LCAT-Tg mice, respectively. LCAT-Tg mice fed the atherogenic diet had a 2-fold increase in the ratio of saturated+monounsaturated to polyunsaturated CE species in plasma apoB lipoproteins compared with control mice (9.4+/-2.4 vs. 4.9+/-0.7). We conclude that over-expression of human LCAT in Tg mice fed an atherogenic diet containing cholic acid does not result in increased aortic cholesterol deposition compared with control mice, even though the CE fatty acid saturation index of plasma apoB lipoproteins was doubled.  相似文献   

13.
Hepatic secretion of apolipoprotein-B (apoB), the major protein of atherogenic lipoproteins, is regulated through posttranslational degradation. We reported a degradation pathway, post-ER pre secretory proteolysis (PERPP), that is increased by reactive oxygen species (ROS) generated within hepatocytes from dietary polyunsaturated fatty acids (PUFA). We now report the molecular processes by which PUFA-derived ROS regulate PERPP of apoB. ApoB exits the ER; undergoes limited oxidant-dependent aggregation; and then, upon exit from the Golgi, becomes extensively oxidized and converted into large aggregates. The aggregates slowly degrade by an autophagic process. None of the oxidized, aggregated material leaves cells, thereby preventing export of apoB-lipoproteins containing potentially toxic lipid peroxides. In summary, apoB secretory control via PERPP/autophagosomes is likely a key component of normal and pathologic regulation of plasma apoB levels, as well as a means for remarkably late-stage quality control of a secreted protein.  相似文献   

14.
Niacin, or water-soluble vitamin B(3), when given at pharmacologic doses, is a powerful lipid-altering agent. This drug, which lowers the levels of atherogenic, apolipoprotein-B-containing lipoproteins, is one of few medications that can raise the levels of atheroprotective HDL cholesterol. Niacin also has beneficial effects on other cardiovascular risk factors, including lipoprotein(a), C-reactive protein, platelet-activating factor acetylhydrolase, plasminogen activator inhibitor 1 and fibrinogen. Many clinical trials have confirmed the lipid effects of niacin treatment; however, its effects on cardiovascular outcomes have been called into question owing to the AIM-HIGH trial, which showed no benefit of niacin therapy on cardiovascular endpoints. Furthermore, use of niacin has historically been limited by tolerability issues. In addition to flushing, worsened hyperglycaemia among patients with diabetes mellitus has also been a concern with niacin therapy. This article reviews the utility of niacin including its mechanism of action, clinical trial data regarding cardiovascular outcomes, adverse effect profile and strategies to address these effects and improve compliance.  相似文献   

15.
Background & aims: Bile acid (BA) pool size remains unchanged after cholecystectomy (XGB) but it circulates faster, exposing the enterohepatic system to an increased flux of BA. Triglyceride (TG) and BA metabolisms are functionally inter‐related. We investigated whether ablation of the gallbladder (GB) modifies hepatic TG metabolism. Methods: Male mice were subjected to XGB and fed a normal diet. In some experiments, mice received a 1% nicotinic acid diet to block lipolysis. Parameters of BA and TG metabolism, and microsomal triglyceride transfer protein (MTTP) activity were measured 1–2 months after XGB. Serum parameters, hepatic lipids and mRNA expression of genes of lipid metabolism were determined. Results: BA pool size and synthesis were normal, but biliary BA secretion doubled during the diurnal light phase in XGB mice. Serum and hepatic TG concentrations increased 25% (P<0.02), and hepatic very‐low‐density lipoproteins (VLDL)–TG and apoB‐48 productions increased 15% (P<0.03) and 50% (P<0.01), respectively, after XGB. Feeding a 1% nicotinic acid did normalize VLDL production. MTTP activity increased 15% (P<0.005) after XGB. Hepatic free fatty acid (FFA) synthesis and content, and mRNA levels of lipid metabolism‐related genes remained normal in XGD mice. Conclusions: XGB increased serum and hepatic TG levels, and VLDL production, which were restored to normal by nicotinic acid. The results suggest that FFA flux from adipose tissue to the liver is increased in XGB mice. They support the hypothesis that the GB has a role in the regulation of hepatic TG metabolism and that XGB may favour the accumulation of fat in the liver.  相似文献   

16.
Emerging evidence suggests that overproduction of intestinally derived apolipoprotein (apo) B48-containing lipoprotein particles may be an important contributor to both fasting and postprandial dyslipidemia in insulin-resistant states. Mechanisms regulating the assembly and secretion of apoB48-containing lipoproteins are not fully understood particularly in the diabetic/insulin-resistant intestine. In the present study, we have investigated the density profile of apoB48 lipoproteins assembled in primary hamster enterocytes. Both intracellular and secreted apoB48 particles were examined in intestinal enterocytes isolated from normal or insulin-resistant fructose-fed hamsters, as well as in enterocytes treated with exogenous oleic acid. Microsomal luminal contents and culture media were analyzed by discontinuous and sequential ultracentrifugation on sucrose and KBr gradients, respectively. ApoB48 was mostly secreted on VLDL-, LDL-, and denser HDL-sized particles in the fasting state. In pulse-chase labeling experiments, nascent apoB48-containing particles initially accumulated in the microsomal lumen as HDL-sized particles, with subsequent formation of apoB48-VLDL particles, with only a minute amount of chylomicrons observed. Treatment with 720 mu mol/L of oleic acid, increased microsomal apoB48 HDL synthesis, and induced a marked shift toward lighter more buoyant particles. A marked enhancement in assembly of apoB48-containing lipoproteins was also observed in the microsomal lumen of fructose-fed hamster enterocytes, suggesting facilitated assembly and secretion of dense intestinal lipoprotein particles in insulin-resistant states. Overall, these observations suggest that a major proportion of apoB48-containing lipoprotein particles is assembled and secreted as highly dense, HDL-sized particles. The production of these small, dense, and potentially atherogenic apoB48 particles can be stimulated by increased free fatty acid flux as well as in insulin-resistant diabetes.  相似文献   

17.
We have cloned a human macrophage receptor that binds to apolipoprotein (apo)B48 of dietary triglyceride (TG)-rich lipoproteins. TG-rich lipoprotein uptake by the apoB48R rapidly converts macrophages and apoB48R-transfected Chinese hamster ovary cells in vitro into lipid-filled foam cells, as seen in atherosclerotic lesions. The apoB48R cDNA (3,744 bp) encodes a protein with no known homologs. Its approximately 3.8-kb mRNA is expressed primarily by reticuloendothelial cells: monocytes, macrophages, and endothelial cells. Immunohistochemistry shows the apoB48R is in human atherosclerotic lesion foam cells. Normally, the apoB48R may provide essential lipids to reticuloendothelial cells. If overwhelmed, foam cell formation, endothelial dysfunction, and atherothrombogenesis may ensue, a mechanism for cardiovascular disease risk of elevated TG.  相似文献   

18.
目的:研究他莫昔芬(TAM)对体外培养的HepG2细胞脂肪变性以及脂类代谢调控关键因子表达的影响。方法应用油酸(50μmol/L)处理HepG2细胞,诱导细胞脂肪变性体外模型,同时给予不同浓度的TAM (5~20μmol/L)干预72 h;采用油红O染色和甘油三酯含量测定检测HepG2细胞内脂质聚集情况;应用蛋白印迹法检测固醇调节元件结合蛋白-1c(SREBP-1c)、脂肪酸合成酶(FAS)、硬脂酰辅酶A去饱和酶(SCD)、肉酯软脂酰基转移酶(CPT1)和微粒体甘油三酯转移蛋白(MTP)的表达;采用细胞活性检测试剂盒测定细胞活性。结果在干预72 h后,模型组细胞内甘油三酯含量为(16.53&#177;0.17) mg/100 mg蛋白质,在5μmol/L TAM处理细胞内甘油三酯含量为(17.77&#177;0.05) mg/100mg蛋白质,与模型组无显著性差异,但在10μmol/L和20μmol/L TAM处理组较模型组分别增加了31%[(21.57&#177;0.16) mg/100 mg蛋白质]和44%[(23.82&#177;0.44) mg/100 mg蛋白质],(P&lt;0.05);TAM上调细胞内SREBP-1c、FAS、SCD和MTP蛋白表达,但并不改变CPT1蛋白表达;TAM在5~20μmol/L范围内不影响HepG2细胞活性。结论 TAM可促进油酸诱导的HepG2细胞脂肪变性,其主要机制可能是通过上调SREBP-1c及其下游基因,如FAS和SCD的表达而增加了脂肪酸的合成。  相似文献   

19.
BACKGROUND/AIMS: Apolipoprotein E (apoE)-deficient mice develop hepatic steatosis and secrete reduced levels of VLDL-TG. METHODS AND RESULTS: We examined the effects of apoE-deficiency on intracellular lipid homeostasis and secretion of triglycerides (TG). We show that intracellular TG turnover and activities of diacylglycerol acyltransferase (DGAT) and microsomal triglyceride transfer protein (MTP) are similar in Apoe(-/-) and wild type mice. In addition, apoB synthesis was not decreased in Apoe(-/-) cells. Thus, the accumulation of lipid in these cells is not attributable to perturbed TG turnover, apoB synthesis, and the activities of DGAT and MTP. Inhibition of MTP had a more profound impact on the secretion of VLDL-TG from wild type hepatocytes than Apoe(-/-) hepatocytes, indicating that MTP was more limiting for the production of VLDL-TG from wild type cells. In marked contrast to the MTP-deficient model of fatty liver, electron microscopy of lipid-stained liver sections of Apoe(-/-) mice revealed an accumulation of lipid in numerous small, putative ER-derived vesicles and in the cytosol. No abnormalities were observed in the Golgi of Apoe(-/-) mice. CONCLUSIONS: These results suggest that the removal of lipids from the early or intermediary compartments of the secretory pathway of hepatocytes is impaired in Apoe(-/-) mice.  相似文献   

20.
Niacin has long been used in the treatment of dyslipidemia and cardiovascular disease. Recent research on niacin has been focused on understanding the mechanism of action of niacin and preparation of safer niacin formulations. New findings indicate that niacin does the following: 1) it inhibits hepatic diacylglycerol acyltransferase 2, resulting in inhibition of triglyceride synthesis and decreased apolipoprotein B-containing lipoproteins; 2) it decreases the surface expression of hepatic adenosine triphosphate synthase β-chain, leading to decreased holoparticle high-density lipoprotein catabolism and increased high-density lipoprotein levels; and 3) it increases redox potential in arterial endothelial cells, resulting in inhibition of redox-sensitive genes. Flushing, an adverse effect of niacin, results from niacin receptor GPR109A-mediated production of prostaglandin D2 and E2 via DP1 and EP2/4 receptors. DP1 receptor antagonist (laropiprant) attenuates the niacin flush. A reformulated preparation of extended-release niacin (Niaspan; Abbott, Abbott Park, IL) lowers flushing compared with an older Niaspan formulation. These advancements in niacin research have rejuvenated its use for the treatment of dyslipidemia and cardiovascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号