首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To estimate the sensitivity to hypoxic inhibition of various regulatory processes for respiration, changes in breathing pattern during hypoxic ventilatory depression (HVD) were analyzed in the halothane-anesthetized spontaneously breathing rat using a "progressive isocapnic hypoxia test." In the carotid sinus nerve (CSN) intact rats, ventilatory augmentation was followed by depression due to reduction in respiratory frequency (f) at end-tidal PO2 (PETO2) levels below 50-60 mmHg despite increased afferent activities from the carotid chemoreceptors. After CSN section, ventilation was progressively depressed at PETO2 lower than normoxic level with simultaneous decreases of f and tidal volume. An increase in CO2 stimulus or the prevention of arterial hypotension during hypoxia by infusing a vasoconstrictor agent (phenylephrine) inhibited the occurrence of ventilatory depression in both the CSN intact and denervated animals. In all cases studied, the reduction in f resulted mainly from the prolongation of expiratory time (TE). The results suggest that in the anesthetized rat the effect of respiratory stimulation from carotid chemoreceptor afferents becomes inadequate to offset the prolongation of TE due to the central hypoxia at lower PETO2, and that the neural process for regulating TE is the major site of deterioration during central hypoxic inhibition. Roles of CO2 stimulus and systemic circulatory conditions in the generation of HVD were also discussed.  相似文献   

2.
Developmental hyperoxia impairs carotid chemoreceptor development and induces long-lasting reduction in carotid sinus nerve (CSN) responses to hypoxia in adult rats. Studies were carried out to determine if CSN responses to acute hypoxia would exhibit hypoxia-induced plasticity in adult 3-5-months-old rats previously treated with postnatal hyperoxia (60% O2, PNH) of 1, 2, or 4 weeks duration. CSN responses to acute hypoxia were assessed in adult rats exposed to 1 week of sustained hypoxia (12% O2, SH). In normal adult rats and adult rats treated with 1 week of PNH, CSN responses to acute hypoxia were significantly increased in urethane-anesthetized rats when studied 3-5 h after SH. Apparent increases in CSN responses to hypoxia were not significant in rats treated with 2 weeks of PNH and were clearly absent after 4 weeks of PNH, but exponential analysis suggests a PNH duration-dependent plasticity of the CSN response to acute hypoxia after SH. In a second study rats exposed to 2 weeks of PNH were treated with SH for 1 week as adults and acute hypoxic responses were tested 4-5 months later. CSN responses in these rats were unaffected by SH suggesting a lack of persistent SH-induced functional plasticity. We conclude that rats treated with 1 week of PNH retain the capacity for hypoxia-induced plasticity of carotid chemoafferent function and some potential for plasticity may be present after 2 weeks of PNH, whereas 4 weeks of PNH impairs the capability of rats to exhibit plasticity following 1 week of SH.  相似文献   

3.
The changes in arterial blood pressure, heart period, and respiration evoked by carotid sinus nerve (CSN) stimulation were studied in closed-chest, anesthetized dogs. Multifactorial regression equations were derived to express the various steady-state responses as functions of the parameters of stimulation. With the CSN and vagi intact, the changes in arterial pressure produced by CSN stimulation were much less pronounced than after the CSN and vagi were interrupted. When the CSN and vagi were intact, changes in stimulus duration had relatively little influence on heart period at the lower voltage levels. However, at higher voltages, increases in pulse duration produced substantial increments in heart period. TheRR interval increased progressively as the frequency of CSN stimulation was varied from 15 to 45 Hz; the magnitude of this effect varied directly with the stimulus voltage. This work was supported by U.S. Public Health Service Grants HL 15758 and HL 10951 from the National Heart and Lung Institute.  相似文献   

4.
Graded hypoxia (FETO2 14-6%) and hypercapnia (FETCO2 6-10%), which were applied for 45s and 2 min, respectively, to urethane anesthetized and artificially ventilated rats produced an increase in adrenal sympathetic efferent nerve activity in parallel with increases in adrenaline and noradrenaline secretion measured in the adrenal venous effluent. Percentage increases in adrenaline and noradrenaline were almost equal. In rats whose carotid sinus nerves (CSN) were bilaterally cut, hypoxia did not produce any effect on adrenal sympathetic nerve activity or catecholamine secretion. In contrast, excitatory adrenal nerve and catecholamine secretory responses to hypercapnia remained unchanged in CSN denervated rats. After severing a splanchnic nerve whose branches innervated the adrenal gland, while maintaining the resting level of catecholamine secretion by low-frequency stimulation of the peripheral end of the splanchnic nerve, hypoxia did not produce any increase in catecholamine secretion. Hypercapnia (FETCO2 8 and 10%), however, induced catecholamine secretion from denervated adrenal medulla, although the magnitude of the response was significantly lower than that in animals with adrenal nerve intact. It is concluded that hypoxia stimulates the adrenal medulla via the carotid chemoreceptor reflex whereas hypercapnia acts mainly via mechanisms besides carotid chemoreceptors such as central chemoreceptors with some direct stimulatory effect on the adrenal medulla. The functional significance of these dual mechanisms of sympathoadrenal excitation during hypoxia and hypercapnia is discussed.  相似文献   

5.
Adult rats have decreased carotid body volume and reduced carotid sinus nerve, phrenic nerve, and ventilatory responses to acute hypoxic stimulation after exposure to postnatal hyperoxia (60% O2, PNH) during the first 4 weeks of life. Moreover, sustained hypoxic exposure (12%, 7 days) partially reverses functional impairment of the acute hypoxic phrenic nerve response in these rats. Similarly, 2 weeks of PNH results in the same phenomena as above except that ventilatory responses to acute hypoxia have not been measured in awake rats. Thus, we hypothesized that 2-week PNH-treated rats would also exhibit blunted chemoafferent responses to acute hypoxia, but would exhibit ventilatory acclimatization to sustained hypoxia. Rats were born into, and exposed to PNH for 2 weeks, followed by chronic room-air exposure. At 3-4 months of age, two studies were performed to assess: (1) carotid sinus nerve responses to asphyxia and sodium cyanide in anesthetized rats and (2) ventilatory and blood gas responses in awake rats before (d0), during (d1 and d7), and 1 day following (d8) sustained hypoxia. Carotid sinus nerve responses to i.v. NaCN and asphyxia (10 s) were significantly reduced in PNH-treated versus control rats; however, neither the acute hypoxic ventilatory response nor the time course or magnitude of ventilatory acclimatization differed between PNH and control rats despite similar levels of PaO2 . Although carotid body volume was reduced in PNH rats, carotid body volumes increased during sustained hypoxia in both PNH and control rats. We conclude that normal acute and chronic ventilatory responses are related to retained (though impaired) carotid body chemoafferent function combined with central neural mechanisms which may include brainstem hypoxia-sensitive neurons and/or brainstem integrative plasticity relating both central and peripheral inputs.  相似文献   

6.
To determine the neural mechanism of hypoxic respiratory inhibition, discharge patterns of efferent phrenic (Phr), vagal superior laryngeal (Xsl), and vagal pharyngeal (Xphar) nerves were analyzed during systemic hypoxia in the urethane-anesthetized, vagotomized and artificially ventilated rat. In the carotid sinus nerve (CSN) intact rat, moderate hypoxia (end-tidal Po2, 40-50 mmHg) caused an initial increase in respiratory activity which was followed by inhibition due to reduction in respiratory frequency (f). The decrease in f was associated with prolongation of decremental Xphar expiratory (E) activity and retardation of the onset of inspiratory (I) activity. Integrated peak Phr or Xs1 I and Xphar E activities remained augmented during respiratory inhibition. After bilateral CSN section, moderate hypoxia produced an extreme reduction in f due to delayed onset of I activity and a strong reduction in the Xphar E activity. Phr and Xs1 I activities were little affected, and changes in inspiratory time were small. These results suggest that hypoxia centrally inhibits the process of initiating the onset of rhythmic I activity and the activity of decremental Xphar E motoneurons. Carotid chemoreceptor stimulation was inadequate to offset the central inhibitory effect of hypoxia on the onset of I activity.  相似文献   

7.
Repeated intermittent hypoxia or other stimulation of carotid chemoreceptors produces a consistent long-term increase in respiratory nerve activity in vagotomized, artificially ventilated anesthetized or decerebrate animals, but variable results have been reported in more intact preparations. We sought additional variables that could be measured to help gain an understanding of persistent respiratory responses to intermittent hypoxia. The variance of respiratory phases decreased in 10 of 11 recordings from vagotomized anesthetized cats during long-term facilitation induced by carotid chemoreceptor stimulation. The variance of expiratory time was reduced in 10 awake human beings exposed to repetitive, brief episodes of isocapnic hypoxia (6% O(2) in N(2), 60s). Respiratory frequency was increased in humans and tidal volume decreased so that minute ventilation remained unchanged. The results suggest that there are persistent changes in the output of the respiratory central pattern generator following intermittent peripheral chemoreceptor stimulation or hypoxia.  相似文献   

8.
The reflex responses to steady and intermittent stimulation of the carotid sinus nerve (CSN) were compared in anesthetized dogs. Intermittent stimulation was less effective than steady stimulation in reducing the arterial blood pressure, and the disparity was exaggerated after acute sinoaortic denervation. With the sinoaortic nerves intact, at low mean stimulation frequencies the heart rate responses were greater during intermittent than during steady CSN stimulation. At higher mean stimulation frequencies, however, steady CSN stimuli were more effective than were the intermittent type. After sinoaortic denervation, steady stimuli evoked greater heart rate responses than did intermittent stimuli over the entire mean frequency range studied. Reflex changes in respiratory depth and frequency were also greater during steady than during intermittent CSN stimulation. The greater efficacy of steady than of intermittent stimulation in evoking.the observed reflex cardiovascular and respiratory changes is probably ascribable to the pronounced frequency limitation at the first synapse of the baroreceptor reflex in the brain.  相似文献   

9.
Hypoxia increases the release of neurotransmitters from chemoreceptor cells of the carotid body (CB) and the activity in the carotid sinus nerve (CSN) sensory fibers, elevating ventilatory drive. According to previous reports, perinatal hyperoxia causes CSN hypotrophy and varied diminishment of CB function and the hypoxic ventilatory response. The present study aimed to characterize the presumptive hyperoxic damage. Hyperoxic rats were born and reared for 28 days in 55%–60% O2; subsequent growth (to 3.5–4.5 months) was in a normal atmosphere. Hyperoxic and control rats (born and reared in a normal atmosphere) responded with a similar increase in ventilatory frequency to hypoxia and hypercapnia. In comparison with the controls, hyperoxic CBs showed (1) half the size, but comparable percentage area positive to tyrosine hydroxylase (chemoreceptor cells) in histological sections; (2) a twofold increase in dopamine (DA) concentration, but a 50% reduction in DA synthesis rate; (3) a 75% reduction in hypoxia-evoked DA release, but normal high [K+]0-evoked release; (4) a 75% reduction in the number of hypoxia-sensitive CSN fibers (although responding units displayed a nearly normal hypoxic response); and (5) a smaller percentage of chemoreceptor cells that increased [Ca2+]1 in hypoxia, although responses were within the normal range. We conclude that perinatal hyperoxia causes atrophy of the CB–CSN complex, resulting in a smaller number of chemoreceptor cells and fibers. Additionally, hyperoxia damages O2-sensing, but not exocytotic, machinery in most surviving chemoreceptor cells. Although hyperoxic CBs contain substantially smaller numbers of chemoreceptor cells/sensory fibers responsive to hypoxia they appear sufficient to evoke normal increases in ventilatory frequency.  相似文献   

10.
The response patterns of the electrical activity of the respiratory motor nerves and muscles to brief electrical stimulation of the arterial and the intracranial chemosensory afferents were studied in anesthetized cats. Stimulation during inspiration increased the activity of phrenic nerve and the inspiratory muscles (intercostal, diaphragm) with a latency of 15–25 ms, whereas expiratory muscle activity in the following expiration remained almost unaltered. Stimulation during expiration increased the activity of expiratory nerves and muscles (intercostal, abdominal) after a delay of 80–120 ms. The later the stimulation occurred in the insor expiratory period the larger the increase in amplitude and in steepness of rise of the respective integrated activity in respiratory nerves and muscles. Stimulation in early inspiration shortened the discharge period of inspiratory muscles, whereas excitation in early expiration caused an earlier onset and prolonged the activity in the expiratory muscles. Stimulation in the late phase of ins- or expiration prolonged the discharge of the respective nerves and muscles. Both the arterial (carotid sinus nerve, CSN, and aortic nerve, AN) and intracranial chemosensory (VM) afferents stimuli were able to affect both the inspiratory and the expiratory mechanisms. The restriction of the effects to the phase of the stimulus suggests a mechanism by which these afferents, when activated during inspiration, effectively project only to inspiratory neurones, and vice versa for expiration.Supported by the Deutsche Forschungsgemeinschaft, SFB 114 Bionach  相似文献   

11.
Previous studies performed in jaw muscles of rabbits and rats have demonstrated that sympathetic outflow may affect the activity of muscle spindle afferents (MSAs). The resulting impairment of MSA information has been suggested to be involved in the genesis and spread of chronic muscle pain. The present study was designed to investigate sympathetic influences on muscle spindles in feline trapezius and splenius muscles (TrSp), as these muscles are commonly affected by chronic pain in humans. Experiments were carried out in cats anesthetized with alpha-chloralose. The effect of electrical stimulation (10 Hz for 90 s or 3 Hz for 5 min) of the peripheral stump of the cervical sympathetic nerve (CSN) was investigated on the discharge of TrSp MSAs (units classified as Ia-like and II-like) and on their responses to sinusoidal stretching of these muscles. In some of the experiments, the local microcirculation of the muscles was monitored by laser Doppler flowmetry. In total, 46 MSAs were recorded. Stimulation of the CSN at 10 Hz powerfully depressed the mean discharge rate of the majority of the tested MSAs (73%) and also affected the sensitivity of MSAs to sinusoidal changes of muscle length, which were evaluated in terms of amplitude and phase of the sinusoidal fitting of unitary activity. The amplitude was significantly reduced in Ia-like units and variably affected in II-like units, while in general the phase was affected little and not changed significantly in either group. The discharge of a smaller percentage of tested units was also modulated by 3-Hz CSN stimulation. Blockade of the neuromuscular junctions by pancuronium did not induce any changes in MSA responses to CSN stimulation, showing that these responses were not secondary to changes in extrafusal or fusimotor activity. Further data showed that the sympathetically induced modulation of MSA discharge was not secondary to the concomitant reduction of muscle blood flow induced by the stimulation. Hence, changes in sympathetic outflow can modulate the afferent signals from muscle spindles through an action exerted directly on the spindles, independent of changes in blood flow. It is suggested that such an action may be one of the mechanisms mediating the onset of chronic muscle pain in these muscles in humans.F. Hellström and S. Roatta equally contributed to this work.  相似文献   

12.
目的:长时程易化(long-term facilitation,LTF)是反映呼吸可塑性的重要电生理指标,与睡眠呼吸紊乱疾病密切相关。3~5个低氧周期的急性间断性缺氧可以诱导膈神经LTF,而持续一周以上的慢性间断性缺氧(chronic intermittent hypoxia,CIH)可以诱导更大的增强的LTF(enhanced LTF)。以往制备CIH大鼠LTF模型多用氧(10%)+氮(90%)混合气(5 min)、常氧(5 min)交替通气,每天12 h,连续7 d以上,实验需要大量混合气,费用较高。我们模拟高原缺氧制备了低压氧舱大鼠CIH模型,表达增强的膈神经LTF。方法:成年SD大鼠置于密闭容器内进行5 min低压缺氧、5 min常氧交替通气,每天12 h,持续7 d。通过空气抽提进行低压缺氧,使舱内气压逐渐下降到210~220 mmHg,相当于海拔约9000 m。第8 d,动物进行急性间断性缺氧,诱导膈神经LTF表达。对照组大鼠只进行急性间断性缺氧,统计学分析两组动物膈神经LTF的表达变化。结果:低压氧舱CIH大鼠较正常对照组对缺氧反应更加敏感,表现为缺氧期膈神经放电的频率和幅度快速增加。在急性间断性缺氧结束后30 min和60 min,CIH组大鼠膈神经放电幅度较基础水平分别增加了(116.3±6.5)%和(106.1±19.2)%,而对照组分别增加(60.4±7.8)%和(48.2±11.0)%,两组之间有显著性差别(P(0.01),表明CIH诱导了比对照组更加强大的LTF,形成增强的LTF。结论:我们建立了低压氧舱CIH大鼠膈神经LTF模型,为进一步研究LTF的发生机理、揭示与睡眠呼吸紊乱疾病的相关性提供了实验平台。  相似文献   

13.
Histaminergic modulation of neuronal activity in the respiratory network was investigated under normoxic and hypoxic conditions in the working heart-brainstem preparation of adult mice. Systemic application of histamine, as well as the H-1 and H-3 receptor agonists 6-[2-(4-imidazolyl)ethylamino]- N-(4-trifluoromethylphenyl) heptanecarboxamide (HTMT) and imetit, 0.5-10 micro M, significantly increased the frequency of respiratory burst discharges. Dimaprit, an H-2 receptor agonist, had no effect on respiratory activity. To test for ongoing histaminergic modulation we applied the histamine receptor antagonists pyrilamine (H-1); cimetidine (H-2) and thioperamide (H-3), each 0.5-10 micro M. Only the H-1 receptor antagonist had significant effects, viz. reduction of respiratory frequency and depression of burst amplitude. Underlying effects of histamine receptor activation were identified at the cellular level. Intracellular recordings showed that histamine mediated an increase in synaptic drive potentials in inspiratory neurones while augmentation of inhibitory and excitatory synaptic activity was observed in expiratory neurones. The augmented synaptic depolarisation of inspiratory neurones was blocked by the H-1 receptor antagonist. Histaminergic modulation is also involved in the hypoxic response of the respiratory network. Blockade of H-1 receptors significantly attenuated secondary depression of the biphasic hypoxic responses, while hypoxic augmentation was not affected. We conclude that histamine is a functional neuromodulator, which is tonically active in the respiratory network and is activated further during hypoxia. The data indicate that histaminergic neuromodulation acts predominantly via H-1 receptors.  相似文献   

14.
Under hyperoxic conditions, both chemical stimulation of neurons and focal hypoxia in the pre-B?tzinger complex (pre-B?tC) in vivo modify the eupneic pattern of inspiratory motor output by eliciting changes in the patterning and timing of phrenic bursts, which includes both phasic and tonic excitation. The influence of this region on the gasping pattern of phrenic motor output produced during severe brain hypoxia is unknown. We therefore examined the effects of chemical stimulation of neurons (DL-homocysteic acid; DLH; 10 mM; < or =20 nl) and focal hypoxia (sodium cyanide; NaCN; 1 mM; < or =20 nl) in the pre-B?tC on hypoxia-induced gasping in chloralose-anesthetized, vagotomized, mechanically ventilated cats. Unilateral microinjection of DLH into the pre-B?tC during hypoxia-induced gasping increased phrenic burst frequency by approximately 630% (P < 0.01) over baseline frequency due predominantly to a reduction in T(E) (from 28.9 +/- 6.2 to 5.2 +/- 1.8 s; mean +/- SE; P < 0.01). No significant changes in T(I) or rate of rise between hypoxia-induced gasps and the DLH-induced bursts were observed; the effects on peak amplitude of integrated phrenic nerve discharge were variable. Similar responses were evoked by unilateral microinjection of NaCN into the pre-B?tC. These findings demonstrate that both activation of pre-B?tC neurons and focal hypoxia in the pre-B?tC not only influence the eupneic pattern of phrenic motor output but also modify the expression of hypoxia-induced gasping in vivo. These findings also provide additional support to the concept of intrinsic hypoxic chemosensitivity of the pre-B?tC.  相似文献   

15.
We studied the influence of hypercapnic acidosis and hypoxia on the neural drive to abdominal muscles in anesthetized and decerebrate rats; this information is unavailable despite widespread use of the rat as an experimental model in respiratory physiology and neurobiology. To minimize confounding influences from receptors in the lungs and chest wall, the animals were vagotomized, paralyzed and mechanically ventilated, and electrical activity was recorded from abdominal muscle nerves. In anesthetized and decerebrate rats, both stimuli evoked steady, low amplitude expiratory discharge that persisted throughout the expiratory phase (E-all activity), but was inhibited during inspiration. We also observed late expiratory, high-amplitude bursts (E2 activity) superimposed on this steady activity, but only at the highest levels of respiratory drive. Hypoxia enhanced abdominal motor activity transiently, whereas hypercapnic acidosis caused a sustained increase in activity. Thus, both hypercapnic acidosis and hypoxia activate abdominal muscle motoneurons in the absence of phasic afferent inputs.  相似文献   

16.
Li Y  Song G  Cao Y  Wang H  Wang G  Yu S  Zhang H 《Neuroscience letters》2006,397(3):259-262
Activation of the pulmonary stretch receptors by lung inflation or vagal stimulation evokes Hering-Breuer (HB) reflex, which is characterized by inspiratory inhibition and expiratory prolongation. In this work, whether the HB reflex could be modulated by the serotonergic raphe pallidus (RP) was studied by comparing the strength of this reflex before and after electrical or chemical stimulation of the RP. Experiments were performed on urethane anesthetized adult rabbits. The HB reflex was simulated with electrical stimulation of the central end of cervical vagus nerve. The RP was stimulated electrically or chemically by microinjection of glutamate. We found that after either electrical stimulation or chemical stimulation of the RP, the inspiratory inhibition and expiratory prolongation of the HB reflex were significantly attenuated. This attenuation showed post-stimulation time dependency or short-term memory, as well as RP stimulation intensity dependency. Results of the present study suggested that the serotonergic RP could exert its respiratory effects by modulating the strength of HB reflex.  相似文献   

17.
1. Pulse-synchronous multiunit muscle nerve sympathetic activity was recorded simultaneously from two nerves together with ECG in eleven healthy subjects; seven recordings were made from the two peroneal nerves during prolonged expiratory apnoeas and four from a radial and a peroneal nerve during lower body negative pressure of 10-40 mmHg. The neural records were displayed in mean voltage neurograms (time constant 0.1 s) and for each mean voltage burst the following measures were taken and related to each other: amplitude, duration, rise time, decay time and baroreflex latency (from the appropriate R-wave of the ECG to the peak of the burst). 2. Average baroreflex latencies were 1.3 s in the peroneal nerves and 0.9 s in the radial nerve. There were significant positive correlations between both the amplitudes and the baroreflex latencies of corresponding bursts in peroneal-peroneal recordings and in radial-peroneal recordings. 3. In all nerves baroreflex latency shortened significantly when burst amplitude increased. The correlation between burst amplitude and baroreflex latency was weaker in the radial than in the peroneal nerve. The average variation of baroreflex latency in peroneal-peroneal recordings was 0.20 +/- 0.02 s in both legs, and in radial-peroneal recordings the variation was 0.09 +/- 0.01 s in the radial nerve and 0.12 +/- 0.02 s in the peroneal nerve. 4. When peroneal burst amplitudes increased, burst duration increased. This was due to increases of both the rise time and the decay time of the burst, the latter being the greater.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Frequency-dependent selection of reflexes by pudendal afferents in the cat   总被引:1,自引:0,他引:1  
Activation of urethral or genital afferents of the pudendal nerve can elicit or inhibit micturition, and low frequency stimulation of the compound pudendal nerve (PN) is known to produce a continence response. The present study demonstrates that PN stimulation also can elicit a micturition-like response and that the response to PN stimulation is dependent on stimulation frequency. We measured the changes in bladder pressure and external urethral sphincter (EUS) electroneurogram (ENG) evoked by PN stimulation before and up to 16 h after spinal cord transection (SCT) in cats anaesthetized with α-chloralose. Low frequency (10 Hz) stimulation elicited a continence-like response, including inhibition of the bladder and activation of the EUS, but mid-frequency (33 Hz) stimulation produced a micturition-like response, including excitation of the bladder without activation of the EUS. The dependence of the response on stimulus frequency was linked to interpulse interval as the same number of pulses at 10, 33 and 100 Hz produced different responses. Stimulation of the PN at 33 Hz produced bladder contractions before and 8 h after SCT provided the bladder contained a minimum volume of fluid. Only mid-range frequency stimulation with sufficient stimulus train duration produced a reduction in EUS ENG activity before and after SCT. In addition to a continence-like response, PN stimulation can also elicit a micturition-like response, and this response is dependent on stimulation frequency, stimulus train duration, and bladder volume. The ability to control the two principal functions of the bladder by pudendal nerve stimulation is an exciting prospect for neurorehabilitation.  相似文献   

19.
The effect of clonidine on the reflex responses of the adrenal sympathetic nerve to mechanical stimulation of the lower chest skin was studied in anesthetized CNS intact and spinalized rats. Clonidine (3-120 micrograms/kg i.v.) administration resulted in a dose-related decrease in spontaneous adrenal efferent nerve activity in both CNS intact and spinalized rats. In CNS intact rats, noxious pinching caused a reflex increase in adrenal nerve activity while innocuous brushing caused a reflex decrease. In both cases, clonidine reduced the reflex response in a dose-dependent manner. In spinalized rats, both noxious and innocuous stimulation caused reflex increases in adrenal nerve activity, and clonidine produced a similar dose-dependent decrease in these responses as seen in CNS intact animals. The similar dose-response relationships for adrenal nerve tone or reflex response in CNS intact and spinalized animals suggest, although not conclusively, that at least some of clonidine's effect in CNS intact animals may be mediated at the spinal level.  相似文献   

20.
We have previously demonstrated that chemical stimulation of the pre-B?tzinger complex (pre-B?tC) in the anesthetized cat produces either phasic or tonic excitation of phrenic nerve discharge. This region is characterized by a mixture of inspiratory-modulated, expiratory-modulated, and phase-spanning (including pre-inspiratory (pre-I)) neurons; however, its influence on expiratory motor output is unknown. We, therefore, examined the effects of chemical stimulation of the pre-B?tC on expiratory motor output recorded from the caudal iliohypogastric (lumbar, L(2)) nerve. We found that unilateral microinjection of DL-homocysteic acid (DLH; 10 mM; 10-20 nl) into 16 sites in the pre-B?tC enhanced lumbar nerve discharge, including changes in timing and patterning similar to those previously reported for phrenic motor output. Both increased peak amplitude and frequency of phasic lumbar bursts as well as tonic excitation of lumbar motor activity were observed. In some cases, evoked phasic lumbar nerve activity was synchronized in phase with phrenic nerve discharge. These findings demonstrate that chemical stimulation of the pre-B?tC not only excites inspiratory motor activity but also excites expiratory motor output, suggesting a role for the pre-B?tC in generation and modulation of inspiratory and expiratory rhythm and pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号