首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tryptophan (TRP) metabolism via the kynurenine pathway leads to formations of neuroactive substances like kynurenine (KYN) and 3-hydroxykynurenine (3-HK), which may be involved in the pathogenesis of several human brain diseases. 3-Hydroxykynurenine especially is known to have strong neurotoxic properties. The generation of reactive oxygen species (ROS) leads to neuronal cell death with apoptotic features. Because the chronic renal insufficiency (CRI) results in disturbances in the functioning of the central nervous system (CNS), it is conceivable that the metabolism of some kynurenines may be altered and could play an important role in uremic encephalopathy. The levels of TRP, KYN and 3-HK were measured in the plasma and in different brain regions of uremic rats. The total plasma concentration of TRP as well as in all the studied brain samples was significantly diminished during uremia. Surprisingly, the level of KYN and 3-HK were elevated both in the plasma and different brain regions of CRI animals. KYN concentrations were approximately two times higher in the cerebellum, midbrain and cortex compared to the control group. The changes of 3-HK levels were more pronounced in the striatum and medulla than in other structures. This data suggests that CRI results in deep disturbances on the kynurenine pathway in CNS, which could be responsible for neurological abnormalities seen in uremia.  相似文献   

2.
Increased degradation of tryptophan (TRP) through the kynurenine (KYN) pathway (KP) is known to be involved in the molecular mechanisms resulting in the neuropathogenesis of Alzheimer’s disease (AD). Activation of the KP leads to the production of neurotoxic metabolites 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN) by immune cells and neuroprotective derivates kynurenic acid (KYNA) and picolinic acid (PIC) by astrocytes and neurons. We therefore investigated whether an imbalance between neurotoxic and neuroprotective kynurenine metabolites could be detected in patients with AD. We measured serum levels of TRP, KYNA, 3-HK, PIC and QUIN in 20 patients with AD and for comparison in 20 patients with major depression, and 19 subjectively cognitive impaired subjects. Serum levels of 3-HK were markedly increased in AD patients compared to the comparison groups (p < .0001). Serum levels of the other KP metabolites were not significantly different between groups. Our data indicate an increased production of the neurotoxic KP metabolite 3-HK in AD. In contrast to its downstream metabolites QUIN and PIC, 3-HK can cross the blood–brain barrier via an active transport process. Our data therefore indicate an enhanced availability of 3-HK in the brain of AD patients, which may be related to the previously reported higher production of QUIN in AD brains.  相似文献   

3.
Pneumococcal meningitis causes neurological sequelae, including learning and memory deficits in up to half of the survivors. In both humans and in animal models of the disease, there is apoptotic cell death in the hippocampus, a brain region involved in learning and memory function. We previously demonstrated that in an infant rat model of pneumococcal meningitis, there is activation of the kynurenine (KYN) pathway in the hippocampus, and that there was a positive correlation between the concentration of 3-hydroxykynurenine and the extent of hippocampal apoptosis. To clarify the role of the KYN pathway in the pathogenesis of hippocampal apoptosis in pneumococcal meningitis, we specifically inhibited 2 key enzymes of the KYN pathway and assessed hippocampal apoptosis, KYN pathway metabolites, and nicotinamide adenine dinucleotide (NAD) concentrations by high-performance liquid chromatography. Pharmacological inhibition of kynurenine 3-hydroxylase and kynureninase led to decreased cellular NAD levels and increased apoptosis in the hippocampus. The cerebrospinal fluid levels of tumor necrosis factor and interleukin-1α and -β were not affected. Our data suggest that activation of the KYN pathway in pneumococcal meningitis is neuroprotective by compensating for an increased NAD demand caused by infection and inflammation;this mechanism may prevent energy failure and apoptosis in the hippocampus.  相似文献   

4.
Aims: Immunotherapy with interferon‐α (IFN‐α) is associated with psychiatric side‐effects, including depression. One of the putative pathways underlying these psychiatric side‐effects involves tryptophan (TRP) metabolism. Cytokines including IFN‐α induce the enzyme indoleamine 2,3‐dioxygenase (IDO), which converts TRP to kynurenine (KYN), leading to a shortage of serotonin (5‐HT). In addition, the production of neurotoxic metabolites of KYN such as 3‐hydroxykynurenine and quinolinic acid (QA) might increase and contribute to IFN‐α‐induced psychopathology. In contrast, other catabolites of KYN, such as kynurenic acid (KA), are thought to have neuroprotective properties. Methods: In a group of 24 patients treated with standard IFN‐α for metastatic renal cell carcinoma (RCC), combined psychiatric and laboratory assessments were performed at baseline, 4 and 8 weeks, and at 6 months. Results: No psychopathology was observed, despite an increase in neurotoxic challenge as reflected in indices for the balance between neurotoxic and neuroprotective metabolites of KYN. Conclusions: The present hypothesis that a shift in the balance between neurotoxic and neuroprotective metabolites of KYN underlies the neuropsychiatric side‐effects of IFN‐α‐based immunotherapy, is neither supported nor rejected.  相似文献   

5.
This review of literature and our data suggests that up-regulated production of interferon-gamma (IFNG) in periphery and brain triggers a merger of tryptophan (TRY)–kynurenine (KYN) and guanine–tetrahydrobiopterin (BH4) metabolic pathways into inflammation cascade involved in aging and aging-associated medical and psychiatric disorders (AAMPD) (metabolic syndrome, depression, vascular cognitive impairment). IFNG-inducible KYN/pteridines inflammation cascade is characterized by up-regulation of nitric oxide synthase (NOS) activity (induced by KYN) and decreased formation of NOS cofactor, BH4, that results in uncoupling of NOS that shifting arginine from NO to superoxide anion production. Superoxide anion and free radicals among KYN derivatives trigger phospholipase A2-arachidonic acid cascade associated with AAMPD. IFNG-induced up-regulation of indoleamine 2,3-dioxygenase (IDO), rate-limiting enzyme of TRY–KYN pathway, decreases TRY conversion into serotonin (substrate of antidepressant effect) and increases production of KYN associated with diabetes [xanthurenic acid (XA)], anxiety (KYN), psychoses and cognitive impairment (kynurenic acid). IFNG-inducible KYN/pteridines inflammation cascade is impacted by IFNG (+874) T/A genotypes, encoding cytokine production. In addition to literature data on KYN/TRY ratio (IDO activity index), we observe neopterin levels (index of activity of rate-limiting enzyme of guanine–BH4 pathway) to be higher in carriers of high (T) than of low (A) producers alleles; and to correlate with AAMPD markers (e.g., insulin resistance, body mass index, mortality risk), and with IFN-alpha-induced depression in hepatitis C patients. IFNG-inducible cascade is influenced by environmental factors (e.g., vitamin B6 deficiency increases XA formation) and by pharmacological agents; and might offer new approaches for anti-aging and anti-AAMPD interventions.  相似文献   

6.
Studies show that administration of interferon (IFN)-alpha causes a significant increase in depressive symptoms. The enzyme indoleamine 2,3-dioxygenase (IDO), which converts tryptophan (TRP) into kynurenine (KYN) and which is stimulated by proinflammatory cytokines, may be implicated in the development of IFN-alpha-induced depressive symptoms, first by decreasing the TRP availability to the brain and second by the induction of the KYN pathway resulting in the production of neurotoxic metabolites. Sixteen patients with chronic hepatitis C, free of psychiatric disorders and eligible for IFN-alpha treatment, were recruited. Depressive symptoms were measured using the Montgomery Asberg Depression Rating Scale (MADRS). Measurements of TRP, amino acids competing with TRP for entrance through the blood-brain barrier, KYN and kynurenic acid (KA), a neuroprotective metabolite, were performed using high-performance liquid chromatography. All assessments were carried out at baseline and 1, 2, 4, 8, 12 and 24 weeks after treatment was initiated. The MADRS score significantly increased during IFN-alpha treatment as did the KYN/TRP ratio, reflecting IDO activity, and the KYN/KA ratio, reflecting the neurotoxic challenge. The TRP/CAA (competing amino acids) ratio, reflecting TRP availability to the brain, did not significantly change during treatment. Total MADRS score was significantly associated over time with the KYN/KA ratio, but not with the TRP/CAA ratio. Although no support was found that IDO decreases TRP availability to the brain, this study does support a role for IDO activity in the pathophysiology of IFN-alpha-induced depressive symptoms, through its induction of neurotoxic KYN metabolites.  相似文献   

7.
Human immunodeficiency virus type 1 (HIV-1) is commonly associated with immune dysfunctions and the suppression of antigen-presenting cells. This results in immune alterations, which could lead to impaired neuronal functions, such as neuroAIDS. The neurotoxic factor kynurenine (KYN), the rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO), serotonin (5-HT), and serotonin transporter (5-HTT) may play a role in tryptophan deficiency and serotogenic dysfunction in neuroAIDS. HIV-1 transactivator regulatory protein (Tat) is known to play a major role in immune dysfunction. Previous studies suggest that HIV-1 B and C clades differentially manifest neuronal dysfunctions in the infected host. In the present study we examine the effect of HIV-1 B and C clade—derived Tat on IDO and 5-HTT gene and protein expressions by dendritic cells as studied by quantitative polymerase chain reaction (qPCR) and Western blot. In addition, the intracellular IDO expression, IDO enzyme activity, and the levels of 5-HT and KYN were also measured. Results indicate that HIV-1 clade B Tat up-regulates IDO and down-regulates 5-HTT gene and protein expressions. Further, HIV-1 clade B Tat caused a reduction of 5-HT with simultaneous increase in KYN levels as compared to HIV-1 clade C Tat. These studies suggest that HIV-1 clade B and C Tat proteins may play a differential role in the neuropathogenesis of HIV-associated dementia (HAD) or HIV-associated neurocognitive disorder (HAND).  相似文献   

8.
We investigated the activation and pathophysiological roles of indoleamine 2,3-dioxygenase (IDO) and kynurenine aminotransferase (KAT) in patients with ischemic stroke. Patients were recruited from the acute stroke unit of a general hospital within 24 hours post-stroke. The immune transmission turbidity method was used to determine the concentration of serum high-sensitivity C-reactive protein (hsCRP), apolipoprotein A-1 and apolipoprotein B. The concentrations of triglyceride, cholesterol, high density lipoprotein (HDL), low density lipoprotein and non-esterified fatty acids were determined using an enzymatic method. Tryptophan (TRP), kynurenine (KYN) and kynurenine acid (KYNA) concentrations were determined by high performance liquid chromatography. The National Institutes of Health Stroke Scale (NIHSS) was used to assess the neurological deficits at admission and 3 weeks post-stroke. The IDO and KAT activity ratio were calculated by KYN/TRP and KYNA/KYN, respectively. The correlation between hsCRP and IDO, KAT and NIHSS score was also analyzed. A total of 81 patients with ischemic stroke and 35 normal controls were recruited. Lower TRP, KYNA, HDL and KAT activity ratio were found in the stroke group compared to the control group (p < 0.05). The levels of hsCRP and IDO activity ratio were much higher in the stroke group than the control group (p < 0.01). The IDO activity in patients with ischemic stroke showed a positive correlation with hsCRP (r = 0.425, p = 0.027). In addition, hsCRP and IDO levels were positively associated with the NIHSS score both at admission and 3 weeks post-stroke. These data suggest an inflammatory response characterized by up-regulated IDO activation in ischemic stroke, which might be closely relevant to its pathophysiology.  相似文献   

9.
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease of unknown pathogenesis. The kynurenine pathway (KP), activated during neuroinflammation, is emerging as a possible contributory factor in ALS. The KP is the major route for tryptophan (TRP) catabolism. The intermediates generated can be either neurotoxic, such as quinolinic acid (QUIN), or neuroprotective, such as picolinic acid (PIC), an important endogenous chelator. The first and inducible enzyme of the pathway is indoleamine 2,3-dioxygenase (IDO). The present study aimed to characterize the expression of the KP in cerebrospinal fluid (CSF), serum and central nervous system (CNS) tissue of ALS patients. Using high performance liquid chromatography, we analysed the levels of TRP and kynurenine (KYN), and, with gas chromatography/mass spectrometry, the levels of PIC and QUIN, in the CSF and serum of ALS patients and control subjects. Immunohistochemistry was employed to determine the expression of QUIN, IDO and human leukocyte antigen-DR (HLA-DR) in sections of brain and spinal cord from ALS patients. There were significantly increased levels of CSF and serum TRP (P < 0.0001), KYN (P < 0.0001) and QUIN (P < 0.05) and decreased levels of serum PIC (P < 0.05) in ALS samples. There was a significant increase in activated microglia expressing HLA-DR (P < 0.0001) and increased neuronal and microglial expression of IDO and QUIN in ALS motor cortex and spinal cord. We show the presence of neuroinflammation in ALS and provide the first strong evidence for the involvement of the KP in ALS. These data point to an inflammation-driven excitotoxic-chelation defective mechanism in ALS, which may be amenable to inhibitors of the KP.  相似文献   

10.
The kynurenine pathway (KP) of tryptophan degradation contains three neuroactive metabolites: the neuroinhibitory agent kynurenic acid (KYNA) and, in a competing branch, the free radical generator 3-hydroxykynurenine (3-HK) and the excitotoxin quinolinic acid (QUIN). These three "kynurenines" derive from a common precursor, L-kynurenine, and are recognized for their role in brain physiology and pathophysiology. Inhibition of kynurenine 3-hydroxylase, the enzyme responsible for 3-HK formation, shifts KP metabolism in the mature brain toward enhanced KYNA formation. We now tested the cerebral effects of kynurenine 3-hydroxylase inhibition in immature rodents. Rat pups treated with the kynurenine 3-hydroxylase inhibitor UPF 648 (30 mg/kg, i.p.) 10 min after birth showed substantial increases in cerebral and liver kynurenine and KYNA levels up to 24 hr later, whereas 3-HK and QUIN levels were simultaneously decreased. Administered to pregnant rats or mice on the last day of gestation, UPF 648 (50 mg/kg, i.p.) produced qualitatively similar changes (i.e., large increases in kynurenine and KYNA and reductions in 3-HK and QUIN) in the brain and liver of the offspring. Rat pups delivered by UPF 648-treated mothers and immediately exposed to neonatal asphyxia showed further enhanced brain KYNA levels. These studies demonstrate that acute kynurenine 3-hydroxylase inhibition effectively shifts cerebral KP metabolism in neonatal rodents toward increased KYNA formation. Selective inhibitors of this enzyme may therefore provide neuroprotection in newborns and will also be useful for the experimental evaluation of the long-term effects of perinatal KP impairment.  相似文献   

11.
Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders.  相似文献   

12.
Huntington's disease (HD), an inherited neurodegenerative disorder, is caused by an abnormal polyglutamine expansion in the huntingtin protein. This genetic defect may result in heightened neuronal susceptibility to excitotoxic injury, a mechanism that has been postulated to play a critical role in HD. Quinolinate (QUIN) and kynurenate (KYNA), two endogenous neuroactive metabolites of the kynurenine pathway of tryptophan degradation, have been proposed to modulate excitotoxic neuronal death in HD. A third kynurenine pathway metabolite, the free radical generator 3-hydroxykynurenine (3-HK), has also been hypothesized to play a causal role in the pathogenesis of HD. We show here that the brain levels of both 3-HK and QUIN are increased three to four-fold in low-grade (grade 0/1) HD brain. These changes were seen in the neocortex and in the neostriatum, but not in the cerebellum. In contrast, brain 3-HK and QUIN levels were either unchanged or tended to decrease in grade 2 and advanced grade (grades 3-4) HD brain. Brain kynurenine and KYNA levels fluctuated only modestly as the illness progressed. These results support a possible involvement of 3-HK and QUIN in the early phases of HD pathophysiology and indicate novel therapeutic strategies against the disease.  相似文献   

13.
L-3-Hydroxykynurenine (L-3-HK) and quinolinate (QUIN) are two metabolites of the kynurenine pathway, the major route of tryptophan degradation in mammals. L-3-HK is a known generator of highly reactive free radicals, whereas QUIN is an endogenous excitotoxin acting specifically at N-methyl-D-aspartate (NMDA) receptors. This study was designed to examine possible synergistic interactions between L-3-HK and QUIN in the rat brain in vivo. Intrastriatal coinjection of 5 nmol L-3-HK and 15 nmol QUIN, i.e. doses which caused no or minimal neurodegeneration on their own, resulted in substantial neuronal loss, determined both behaviourally (apomorphine-induced rotations) and histologically (quantitative assessment of lesion size). The excitotoxic nature of the lesion was verified by tyrosine hydroxylase immunohistochemistry, showing the survival of dopaminergic striatal afferents. There was also a relative sparing of large striatal neurons, and neurodegeneration was prevented both by NMDA receptor blockade (using CGP 40116) and free radical scavenging [using N-tert-butyl-alpha-(2-sulphophenyl)-nitrone, S-PBN]. The pro-excitotoxic features of L-3-HK were especially pronounced at low QUIN doses and were not observed when QUIN was substituted by NMDA. Notably, the effect of L-3-HK was not due to its intracerebral conversion to QUIN and was duplicated by equimolar D,L-3-HK. These data indicate that an elevation of L-3-HK levels constitutes a significant hazard in situations of excitotoxic injury. Pharmacological interventions aimed at decreasing L-3-HK formation may therefore be particularly useful for the treatment of neurological diseases which are associated with an abnormally enhanced flux through the kynurenine pathway.  相似文献   

14.
Several lines of evidence suggest that up-regulation of immune response and alterations of kynurenine pathway function are involved in pathogenesis of schizophrenia. Correlations among clinical status (using PANNS, SANS and SAPS scales) and blood levels of kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK) and levels of selected immunoactive molecules, soluble interleukin-2 receptor (sIL-2R), interferon-α (IFN-α) and IL-4 were analyzed in 51 chronic schizophrenia patients during acute relapse, after four weeks of therapy and at remission. KYNA levels were significantly lower in comparison with controls (N=45) throughout the study, whereas 3-HK did not differ from controls at admission and during therapy, but increased at remission. The KYNA/3-HK ratio and IL-4 levels, but not sIL-2R and IFN-α levels, were consistently decreased in schizophrenia patients at all analyzed time points. KYNA level and KYNA/3-HK ratio measured at admission correlated negatively with the duration of illness, whereas 3-HK level correlated negatively with the improvement of SANS score at discharge. sIL-2R level before treatment was positively linked with number of relapses. In the subgroup of patients with poor response to pharmacotherapy, treated with clozapine later on, initial KYNA level and the ratio KYNA/3-HK correlated negatively with number of relapses. Positive association of sIL-2R level with number of relapses was also evident in this subgroup. Furthermore, among these patients, starting IFN-α level was negatively linked with the improvement of total PANSS score at discharge. Presented here data support the concept of disturbed kynurenine pathway function in schizophrenia and suggest that assessment of KYNA and 3-HK levels during acute relapse might be useful in prediction of response to antipsychotic therapy. Deficit of peripheral KYNA and higher 3-HK levels could be associated with more severe symptoms of schizophrenia. Further studies with larger samples size are needed to validate our results.  相似文献   

15.
Huntington's disease (HD) is an adult onset neurodegenerative disease caused by a polyglutamine expansion in the huntingtin protein. Recent work has shown that perturbation of kynurenine pathway (KP) metabolism is a hallmark of HD pathology, and that changes in brain levels of KP metabolites may play a causative role in this disease. The KP contains three neuroactive metabolites, the neurotoxins 3-hydroxykynurenine (3-HK) and quinolinic acid (QUIN), and the neuroprotectant kynurenic acid (KYNA). In model systems in vitro and in vivo, 3-HK and QUIN have been shown to cause neurodegeneration via a combination of excitotoxic mechanisms and oxidative stress. Recent studies with HD patient samples and in HD model systems have supported the idea that a shift away from the synthesis of KYNA and towards the formation of 3-HK and QUIN may trigger the neuropathological features observed in HD. The enzyme kynurenine 3-monooxygenase (KMO) is located at a critical branching point in the KP such that inhibition of this enzyme by either pharmacological or genetic means shifts the flux in the pathway towards the formation of KYNA. This intervention ameliorates disease-relevant phenotypes in HD models. Here we review the work implicating the KP in HD pathology and discuss the potential of KMO as a therapeutic target for this disorder. As several neurodegenerative diseases exhibit alterations in KP metabolism, this concept has broader implications for the treatment of brain diseases.  相似文献   

16.
Tryptophan and kynurenine pathway (KP) metabolites are implicated in the pathophysiology of depression. We aimed to investigate their plasma concentrations in medicated patients with depression (n = 94) compared to age- and sex-matched healthy controls (n = 57), and in patients with depression after electroconvulsive therapy (ECT) in a real-world clinical setting, taking account of co-variables including ECT modality and heterogenous psychopathology. Depression severity was assessed using the Hamilton Depression Rating Scale (HAM-D24). Tryptophan (TRP) and kynurenine (KYN) metabolite concentrations [anthranilic acid (AA), 3-hydroxyanthranilic acid (3HAA), picolinic acid (PA), kynurenic acid (KYNA), and xanthurenic acid (XA)] and KYNA/KYN and KYNA/quinolinic acid (QUIN) ratios were lower in patients compared to controls. For the total group there was no significant change in KP metabolites post-ECT or correlations with mood ratings. However, improvements in mood score were correlated with increased KYN, 3-hydroxykynurenine (3HK), 3HAA, QUIN, and KYN/TRP in a subgroup of unipolar depressed patients. Additionally, in remitters baseline KYN, 3HK, and QUIN were associated with baseline HAM-D24 scores, and changes in 3HK and 3HAA concentrations post-ECT correlated with improvement in mood. KYN, KYNA, AA, 3HK, XA, PA, and QUIN were increased in a smaller 3-month follow-up group (n = 19) compared to pre-ECT concentrations. Overall, the results indicate that ECT mobilizes the KP, where a moderate association between selected metabolites and treatment response in unipolar depressed patients is evident.  相似文献   

17.
18.
To address the heterogeneous nature of adolescent major depression (MDD), we investigated anhedonia, a core symptom of MDD. We recently reported activation of the kynurenine pathway (KP), a central neuroimmunological pathway which metabolizes tryptophan (TRP) into kynurenine (KYN) en route to several neurotoxins, in a group of highly anhedonic MDD adolescents. In this study, we aimed to extend our prior work and examine the relationship between KP activity and anhedonia, measured quantitatively, in a group of MDD adolescents and in a combined group of MDD and healthy control adolescents. Thirty-six adolescents with MDD (22 medication-free) and 20 controls were included in the analysis. Anhedonia scores were generated based on clinician- and subject-rated assessments and a semi-structured clinician interview. Blood KP metabolites, collected in the AM after an overnight fast, were measured using high-performance liquid chromatography. The rate-limiting enzyme of the KP, indoleamine 2,3-dioxygenase (IDO), was estimated by the ratio of KYN/TRP. Pearson correlation tests were used to assess correlations between anhedonia scores and KP measures while controlling for MDD severity. IDO activity and anhedonia scores were positively correlated in the group psychotropic medication-free adolescents with MDD (r = 0.42, P = 0.05) and in a combined group of MDD subjects and healthy controls (including medicated patients: r = 0.30, P = 0.02; excluding medicated patients: r = 0.44, P = 0.004). In conclusions, our findings provide further support for the role for the KP, particularly IDO, in anhedonia in adolescent MDD. These results emphasize the importance of dimensional approaches in the investigation of psychiatric disorders.  相似文献   

19.
20.
This paper reviews the body of evidence that not only tryptophan and consequent 5-HT depletion, but also induction of indoleamine 2,3-dioxygenase (IDO) and the detrimental effects of tryptophan catabolites (TRYCATs) play a role in the pathophysiology of depression. IDO is induced by interferon (IFN)γ, interleukin-6 and tumor necrosis factor-α, lipopolysaccharides and oxidative stress, factors that play a role in the pathophysiology of depression. TRYCATs, like kynurenine and quinolinic acid, are depressogenic and anxiogenic; activate oxidative pathways; cause mitochondrial dysfunctions; and have neuroexcitatory and neurotoxic effects that may lead to neurodegeneration. The TRYCAT pathway is also activated following induction of tryptophan 2,3-dioxygenase (TDO) by glucocorticoids, which are elevated in depression. There is evidence that activation of IDO reduces plasma tryptophan and increases TRYCAT synthesis in depressive states and that TDO activation may play a role as well. The development of depressive symptoms during IFNα-based immunotherapy is strongly associated with IDO activation, increased production of detrimental TRYCATs and lowered levels of tryptophan. Women show greater IDO activation and TRYCAT production following immune challenge than men. In the early puerperium, IDO activation and TRYCAT production are associated with the development of affective symptoms. Clinical depression is accompanied by lowered levels of neuroprotective TRYCATs or increased levels or neurotoxic TRYCATs, and lowered plasma tryptophan, which is associated with indices of immune activation and glucocorticoid hypersecretion. Lowered tryptophan and increased TRYCATs induce T cell unresponsiveness and therefore may exert a negative feedback on the primary inflammatory response in depression. It is concluded that activation of the TRYCAT pathway by IDO and TDO may be associated with the development of depressive symptoms through tryptophan depletion and the detrimental effects of TRYCATs. Therefore, the TRYCAT pathway should be a new drug target in depression. Direct inhibitors of IDO are less likely to be useful drugs than agents, such as kynurenine hydroxylase inhibitors; drugs which block the primary immune response; compounds that increase the protective effects of kynurenic acid; and specific antioxidants that target IDO activation, the immune and oxidative pathways, and 5-HT as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号