首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Breast cancer is the leading cause of cancer death in women worldwide, and novel chemotherapeutic drugs with high activity and no drug resistance for treating breast cancer are needed urgently. In this study, we investigated the antitumor effect of 2-methoxy-5((3,4,5-trimethosyphenyl)seleninyl) phenol (SQ0814061), which has a strong inhibition of cell growth in MCF-7 and MDA-MB-231 cells. We demonstrated that SQ0814061 (SQ) time-dependently induced cell cycle arrest at G2/M phase and subsequently progressed into apoptosis, which is associated with microtubule depolymerization. Western blot analysis revealed that up-regulation of cyclin B1 and Aurora A was related with G2/M phase arrest in MCF-7 and MDA-MB-231 cells treatment with SQ. However, the formation of multinucleated cells after a long time exposed to SQ of MCF-7 cells delayed the cell death. In addition, apoptosis induced by SQ is correlated with the down-regulation of the PI3K-Akt-MDM2 pathway in MCF-7 and MDA-MB-231 cells. Treatment with the PI3K specific inhibitor, LY294002, increased SQ-induced cell growth inhibitory rate and apoptosis rate of MCF-7 and MDA-MB-231 cells. Moreover, SQ induced MCF-7 and MDA-MB-231 cells to generate reactive oxygen species (ROS), and the SQ-induced cell death was ROS dependent. In conclusion, all the data demonstrated that SQ exhibited its antitumor activity through disrupting the microtubule assembly, inducing cell cycle arrest and eventually apoptosis which is associated with PI3K-Akt-MDM2 pathway in MCF-7 and MDA-MB-231 cells. Therefore, the novel compound SQ is a promising microtubule inhibitor that has tremendous potentials for therapeutic treatment of human mastocarcinoma.  相似文献   

2.
Antimicrobial peptides (AMPs) are cytotoxic to cancer cells; however, mainly the effects of AMPs from animals have been evaluated. In this work, we assessed the cytotoxicity of PaDef defensin from avocado (Persea americana var. drymifolia) on the MCF-7 cancer cell line (a breast cancer cell line) and evaluated its mechanism of action. PaDef inhibited the viability of MCF-7 cells in a concentration-dependent manner, with an IC50 = 141.62 μg/ml. The viability of normal peripheral blood mononuclear cells was unaffected by this AMP. Additionally, PaDef induced apoptosis in MCF-7 cells in a time-dependent manner, but did not affect the membrane potential or calcium flow. In addition, PaDef IC50 induced the expression of cytochrome c, Apaf-1, and the caspase 7 and 9 genes. Likewise, this defensin induced the loss of mitochondrial Δψm and increased the phosphorylation of MAPK p38, which may lead to MCF-7 apoptosis by the intrinsic pathway. This is the first report of an avocado defensin inducing intrinsic apoptosis in cancer cells, which suggests that it could be a potential therapeutic molecule in the treatment of cancer.  相似文献   

3.
Tamoxifen (TAM) and fulvestrant (FUL) represent the major adjuvant therapy to estrogen receptor-alpha positive (ER+) breast cancer patients. However, endocrine resistance to TAM and FUL is a great impediment for successful treatment. We hypothesized that miR-21 might alter the sensitivity of breast cancer cells to TAM or FUL by regulating cell autophagy. Using the ER+ breast cancer cells, we knockdown miR-21.by transfection with miR-21 inhibitor, then the cells were exposed to TAM or FUL and the percentages of apoptosis and autophagy were determined. Knockdown of miR-21 significantly increased the TAM or FUL-induced apoptosis in ER+ breast cancer cells. Further, silencing of miR-21 in MCF-7 cells enhanced cell autophagy at both basal and TAM or FUL-induced level. The increase of autophagy in miR-21-knockdown MCF-7 cells was also indicated by increase of beclin-1, LC3-II and increased GFP-LC3 dots. Importantly, knockdown of miR-21 contributed to autophagic cell death, which is responsible for part of TAM induced cell death in miR-21 inhibitor-transfected cells. Further analysis suggested that miR-21 inhibitor enhance autophagic cell death through inhibition of PI3K-AKT-mTOR pathway. MiR-21 coordinated the function of autophagy and apoptosis by targeting Phosphatase and tensin homolog (PTEN) through inhibition of PI3K-AKT-mTOR pathway. In conclusion, silencing of miR-21 increased the sensitivity of ER+ breast cancer cells to TAM or FUL by increasing autophagic cell death. Targeting autophagy-related miRNAs is a potential strategy for overcoming endocrine resistance to TAM and FUL.  相似文献   

4.
Copper complexes have the potential to be developed as targeted therapy for cancer because cancer cells take up larger amounts of copper than normal cells. Copper complex Cu(SBCM)2 has been reported to induce cell cycle arrest and apoptosis towards triple-negative breast cancer cells. Nevertheless, its effect towards other breast cancer subtypes has not been explored. Therefore, the present study was conducted to investigate the effect of Cu(SBCM)2 towards oestrogen-receptor positive MCF-7 breast cancer cells. Growth inhibition of Cu(SBCM)2 towards MCF-7 and human non-cancerous MCF-10A breast cells was determined by MTT assay. Morphological changes of Cu(SBCM)2-treated-MCF-7 cells were observed under an inverted microscope. Annexin V/PI apoptosis assay and cell cycle analysis were evaluated by flow cytometry. The expression of wild-type p53 protein was evaluated by Western blot analysis. The intracellular ROS levels of MCF-7 treated with Cu(SBCM)2 were detected using DCFH-DA under a fluorescence microscope. The cells were then co-treated with Cu(SBCM)2 and antioxidants to evaluate the involvement of ROS in the cytotoxicity of Cu(SBCM)2. Docking studies of Cu(SBCM)2 with DNA, DNA topoisomerase I, and human ribonucleotide reductase were also performed. The growth of MCF-7 cells was inhibited by Cu(SBCM)2 in a dose-dependent manner with less toxicity towards MCF-10A cells. It was found that Cu(SBCM)2 induced G2/M cell cycle arrest and apoptosis in MCF-7 cells, possibly via a p53 pathway. Induction of intracellular ROS was not detected in MCF-7 cells. Interestingly, antioxidants enhance the cytotoxicity of Cu(SBCM)2 towards MCF-7 cells. DNA topoisomerase I may be the most likely target that accounts for the cytotoxicity of Cu(SBCM)2.

Cu(SBCM)2 binds to DNA topoisomerase I, which, in turn, induces cell cycle arrest and apoptosis in MCF-7 breast cancer cells, possibly via p53 signalling pathway.  相似文献   

5.
Phosphoethanolamine (Pho-s) is a compound involved in phospholipid turnover, acting as a substrate for many phospholipids of the cell membranes. In a recent study, we showed that Pho-s has antitumor effect in the several tumor cells. In this study we evaluated the antitumor activity of synthetic Pho-s on MCF-7 breast cancer cells. Here we demonstrate that Pho-s is cytotoxic to MCF-7 cells in a dose-dependent manner, while it is cytotoxic to MCF10 only at higher concentrations. In addition, Pho-s induces a disruption in mitochondrial membrane potential (Δψm). Furthermore, Pho-s induces mitochondria aggregates in the cytoplasm and DNA fragmentation of MCF-7 cells visualized by confocal microscopy. In agreement with the reduction on Δψm, we showed that Pho-s induces apoptosis followed by an increase in cytochrome c expression and capase-3-like activity in MCF-7 cells. Our results demonstrate that Pho-s induces a cell cycle arrest in the G1 phase through an inhibition of cyclin D1 and stimulates p53. An additional highlight of this study is the finding that Pho-s inhibits Bcl-2, inducing apoptosis through the mitochondrial pathway. Taken together, these results show that Pho-s is a promising compound in the fight against cancer.  相似文献   

6.
Curcumin is a natural anti-cancer agent derived from turmeric (Curcuma longa). Curcumin triggers intrinsic apoptotic cell death by activating mitochondrial permeabilization due to the altered expression of pro- and anti-apoptotic Bcl-2 family members. Phosphoinositol-3-kinase (PI3K) and Akt, key molecular players in the survival mechanism, have been shown to be associated with the Bcl-2 signaling cascade; therefore, evaluating the therapeutic efficiency of drugs that target both survival and the apoptosis mechanism has gained importance in cancer therapy. We found that Bcl-2 overexpression is a limiting factor for curcumin-induced apoptosis in highly metastatic MCF-7 breast cancer cells. Forced overexpression of Bcl-2 also blocked curcumin-induced autophagy in MCF-7 cells, through its inhibitory interactions with Beclin-1. Pre-treatment of PI3K inhibitor LY294002 enhanced curcumin-induced cell death, apoptosis, and autophagy via modulating the expression of Bcl-2 family members and autophagosome formation in MCF-7 breast cancer cells. Atg7 silencing further increased apoptotic potential of curcumin in the presence or absence of LY294002 in wt and Bcl-2+ MCF-7 cells. The findings of this study support the hypothesis that blocking the PI3K/Akt pathway may further increased curcumin-induced apoptosis and overcome forced Bcl-2 expression level mediated autophagic responses against curcumin treatment in MCF-7 cells.  相似文献   

7.
This study was designed to evaluate some parameters that may play a role in the prediction of cancer cells sensitivity to cisplatin (CIS). Sensitivity, induction and repair of DNA double-strand breaks (DSB), cell cycle regulation and induction of apoptosis were measured in four cancer cell lines with different sensitivities to CIS. Using a sulphorhodamine-B assay, the cervical carcinoma cells (HeLa) were found to be the most sensitive to CIS followed by breast carcinoma cells (MCF-7) and liver carcinoma cells (HepG2). Colon carcinoma HCT116 cells were the most resistant. As measured by constant-field gel electrophoresis (CFGE), DSB induction, but not residual DSB exhibited a significant correlation with the sensitivity of cells to CIS. Flow cytometric DNA ploidy analysis revealed that 67% of HeLa cells and 10% of MCF-7 cells shift to sub-G1 phase after incubation with CIS. Additionally, CIS induced the arrest of MCF-7 cells in S-phase and the arrest of HepG2 and HCT116 cells in both S phase and G2/M phase. Determination of the Fas-L level and Caspase-9 activity indicated that CIS-induced apoptosis results from the mitochondrial (intrinsic) pathway. These results, if confirmed using clinical samples, indicate that the induction of DNA DSB as measured by CFGE and the induction of apoptosis should be considered, along with other predictive markers, in future clinical trials to develop predictive assays for platinum -based therapy.  相似文献   

8.
In breast and certain other cancers, receptor tyrosine kinases, including the insulin-like growth factor I receptor (IGF-IR), play an important role in promoting the oncogenic process. The IGF-IR is therefore an important target for developing new anti-breast cancer therapies. An initial screening of a chemical library against the IGF-IR in breast cancer cells identified a diaryl urea compound as a potent inhibitor of IGF-IR signaling. This class of compounds has not been studied as inhibitors of the IGF-IR. We studied the effectiveness of one diaryl urea compound, PQ401, at antagonizing IGF-IR signaling and inhibiting breast cancer cell growth in culture and in vivo. PQ401 inhibited autophosphorylation of the IGF-IR in cultured human MCF-7 cells with an IC50 of 12 micromol/L and autophosphorylation of the isolated kinase domain of the IGF-IR with an IC50 <1 micromol/L. In addition, PQ401 inhibited the growth of cultured breast cancer cells in serum at 10 micromol/L. PQ401 was even more effective at inhibiting IGF-I-stimulated growth of MCF-7 cells (IC50, 6 micromol/L). Treatment of MCF-7 cells with PQ401 was associated with a decrease in IGF-I-mediated signaling through the Akt antiapoptotic pathway. Twenty-four hours of treatment with 15 micromol/L PQ401 induced caspase-mediated apoptosis. In vivo, treatment with PQ401 (i.p. injection thrice a week) reduced the growth rate of MCNeuA cells implanted into mice. These studies indicate that diaryl urea compounds are potential new agents to test in the treatment of breast and other IGF-I-sensitive cancers.  相似文献   

9.
Histone deacetylase (HDAC) inhibitors represent a novel class of drugs that selectively induce cell cycle arrest and apoptosis in transformed cells. This study examined, for the first time, the effects of the relatively new HDAC inhibitor, M344 [4-dimethylamino-N-(6-hydroxycarbamoylhexyl)-benzamide], on the proliferation of MCF-7 breast cancer cells. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays revealed significant concentration- and time-dependent decreases in MCF-7 cell proliferation following treatment with M344 (1-100 μM). In contrast to the significant induction of p21waf1/cip1 mRNA expression following treatment with M344 (10 μM) for 1 or 3 days, there was a significant decrease in p53 mRNA expression, although p53 protein levels were unchanged. Similar treatment with M344 also induced expression of the pro-apoptotic genes, Puma and Bax, together with the morphological features of apoptosis, in MCF-7 cells. The results of this study reinforce previous findings indicating that HDAC inhibitors are an important group of oncostatic drugs, and show that M344 is a potent suppressor of breast cancer cell proliferation.  相似文献   

10.
1,1-Bis(3'-indolyl)-1-(p-trifluoromethylphenyl)methane (DIM-C-pPhCF(3)) and several p-substituted phenyl analogues have been investigated as a new class of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists. Structure-activity studies in PPARgamma-dependent transactivation assays in MCF-7 breast cancer cells show that 5-20 micro M concentrations of compounds containing p-trifluoromethyl, t-butyl, cyano, dimethylamino, and phenyl groups were active, whereas p-methyl, hydrogen, methoxy, hydroxyl, or halogen groups were inactive as PPARgamma agonists. Induction of PPARgamma-dependent transactivation by 15-deoxy-Delta12,14-prostaglandin J2 (PGJ2) and DIM-C-pPhCF(3) was inhibited in MCF-7 cells cotreated with the PPARgamma-specific antagonist N-(4'-aminopyridyl)-2-chloro-5-nitrobenzamide. In mammalian two-hybrid assays, DIM-C-pPhCF(3) and PGJ2 (5-20 micro M) induced interactions of PPARgamma with steroid receptor coactivator (SRC) 1, SRC2 (TIFII), and thyroid hormone receptor-associated protein 220 but not with SRC3 (AIB1). In contrast, DIM-C-pPhCF(3), but not PGJ2, induced interactions of PPARgamma with PPARgamma coactivator-1. C-substituted diindolylmethanes inhibit carcinogen-induced rat mammary tumor growth, induce differentiation in 3T3-L1 preadipocytes, inhibit MCF-7 cell growth and G(0)/G(1)-S phase progression, induce apoptosis, and down-regulate cyclin D1 protein and estrogen receptor alpha in breast cancer cells. These compounds are a novel class of synthetic PPARgamma agonists that induce responses in MCF-7 cells similar to those observed for PGJ2.  相似文献   

11.
目的:研究组蛋白去乙酰化酶抑制剂曲古抑菌素A对乳腺癌MCF-7细胞的增殖抑制作用和诱导凋亡作用。方法:乳腺癌MCF-7细胞经不同剂量曲古抑菌素作用后,用二甲氧唑黄比色法(XTT)法测定曲古抑菌素A对乳腺癌MCF-7细胞的增殖抑制率;用免疫细胞化学染色法观察其对凋亡相关基因p21wafl表达的影响。结果:不同浓度的曲古抑菌素均可抑制MCF-7细胞的增殖,且抑制率具有剂量和时间依赖性;凋亡相关基因p21wafl在曲古押菌素A作用细胞中的表达明显高于未进行处理的细胞。结论:曲古押菌素可抑制体外培养的人乳腺癌(MCF-7)细胞生长,诱导癌细胞发生凋亡。  相似文献   

12.
Increased protein kinase C (PKC) activity in malignant breast tissue and positive correlations between PKC activity and expression of a more aggressive phenotype in breast cancer cell lines suggest a role for this signal transduction pathway in the pathogenesis and/or progression of breast cancer. To examine the role of PKC in the progression of breast cancer, human MCF-7 breast cancer cells were transfected with PKC-alpha, and a group of heterogenous cells stably overexpressing PKC-alpha were isolated (MCF-7-PKC-alpha). MCF-7-PKC-alpha cells expressed fivefold higher levels of PKC-alpha as compared to parental or vector-transfected MCF-7 cells. MCF-7-PKC-alpha cells also displayed a substantial increase in endogenous expression of PKC-beta and decreases in expression of the novel delta- and eta-PKC isoforms. MCF-7-PKC-alpha cells displayed an enhanced proliferative rate, anchorage-independent growth, dramatic morphologic alterations including loss of an epithelioid appearance, and increased tumorigenicity in nude mice. MCF-7-PKC-alpha cells exhibited a significant reduction in estrogen receptor expression and decreases in estrogen-dependent gene expression. These findings suggest that the PKC pathway may modulate progression of breast cancer to a more aggressive neoplastic process.  相似文献   

13.
14.
Targeting the ubiquitin-proteasome degradation pathway has become a promising approach for cancer therapy. Previous studies have shown that proteasome inhibition leads to apoptosis in various cancer cells. The mechanism by which apoptosis occurs are not fully understood and can be cell type and/or inhibitor specific. In this study, we investigated the mechanism of mitochondrial activation by proteasome inhibitors in colon cancer cells. We found that Bax activation and mitochondria translocation were required for apoptosis induced by multiple proteasome inhibitors. In contrast, reactive oxygen species did not seem to be induced by MG132 or bortezomib and antioxidants had no effects on MG132-induced apoptosis. In contrast, treatment with MG132 or bortezomib induced a significant accumulation of p53 and PUMA. Genetic deletion of either p53 or PUMA led to a marked suppression of apoptosis induced by these inhibitors, accompanied with reduced Bax activation and cytochrome c release. Consistently, inhibition of translation by cycloheximide could also effectively abolish the accumulation of p53 and PUMA and suppress MG132-induced Bax activation and apoptosis. These findings thus strongly indicate the critical involvement of p53-, PUMA-, and Bax-mediated mitochondrial activation in proteasome inhibitor-induced apoptosis in colon cancer cells.  相似文献   

15.
Epidemiologic studies have revealed an inverse correlation between dietary intake of cruciferous vegetables and the risk of breast cancer. We now show that cruciferous vegetable constituent benzyl isothiocyanate (BITC) effectively suppresses growth of cultured human breast cancer cells (MDA-MB-231 and MCF-7) by causing G(2)-M phase cell cycle arrest and apoptosis induction. On the other hand, a normal mammary epithelial cell line (MCF-10A) is significantly more resistant to growth arrest and apoptosis by BITC compared with breast cancer cells. The BITC-mediated cell cycle arrest was associated with a decrease in levels of proteins involved in regulation of G(2)-M transition, including cyclin B1, cyclin-dependent kinase 1, and cell division cycle 25C. The BITC-induced apoptosis correlated with induction of proapoptotic proteins Bax (MCF-7) and Bak (MDA-MB-231 and MCF-7) and down-regulation of antiapoptotic proteins Bcl-2 and Bcl-xL (MDA-MB-231). The SV40-immortalized mouse embryonic fibroblasts derived from Bax and Bak double knockout mice were significantly more resistant to BITC-induced DNA fragmentation compared with wild-type mouse embryonic fibroblasts. The BITC treatment caused rapid disruption of the mitochondrial membrane potential, leading to cytosolic release of apoptogenic molecules, which was accompanied by formation of autophagosome-like structures as revealed by transmission electron microscopy. The BITC-mediated apoptosis was associated with generation of reactive oxygen species and cleavage of caspase-9, caspase-8, and caspase-3. Apoptosis induction by BITC was significantly attenuated in the presence of a combined superoxide dismutase and catalase mimetic EUK134 as well as caspase inhibitors. In conclusion, the present study reveals a complex signaling leading to growth arrest and apoptosis induction by BITC.  相似文献   

16.
Homocysteine (Hcy) is a major risk factor for vascular disease and is closely associated with endothelial dysfunction. Melatonin is a neurohormone that is mostly produced by the pineal gland. Studies have reported that melatonin exhibits neuroprotective effects in several neurodegenerative disorders. The aim of the current study was to investigate the possible protective effect of melatonin against Hcy‐induced endothelial cell apoptosis in human umbilical vein endothelial cells (HUVECs) and to explore the underlying mechanisms. HUVECs were exposed to Hcy in the presence or absence of melatonin. The effect of melatonin on viability was examined by MTT assay. Intracellular reactive oxygen species (ROS) levels were determined by 2′,7′‐dichlorofluorescein diacetate (DCF‐DA). Further, expression of Bax, Bcl‐2, and caspase‐3 was analyzed by Western blot analysis. Lipid peroxidation (LPO) levels, total antioxidant power (TAP), and total thiol molecules were also evaluated. The results of this study revealed that melatonin significantly prevented Hcy‐induced loss in cell viability in HUVECs. It was found that ROS significantly increased in the presence of Hcy, whereas melatonin reduced ROS production. Melatonin also downregulated Bax, upregulated Bcl‐2, and decreased the expression and activity of caspase‐3. Hcy increased the levels of LPO, and this effect was significantly attenuated by melatonin. Melatonin also increased the levels of TAP and total thiol molecules. It was concluded that melatonin played a protective role against Hcy‐induced endothelium cell apoptosis through inhibition of ROS accumulation and the mitochondrial‐dependent apoptotic pathway.  相似文献   

17.
OBJECTIVES: Tamoxifen has been reported to show an efficacy in the treatment of breast cancer. Apoptosis could be a major mechanism of its antitumor effect. Therefore, this study has been designed to investigate the biochemical mechanisms of tamoxifen-induced apoptosis in both ER(+) MCF-7 and ER(-) MDA-MB468 breast cancer cell lines. METHODS: Trypan blue dye exclusion test, Annexin V-Fluorescein/PI flow cytometry, MTT assay and Hoechst 33258 staining were used to detect cytotoxicity and apoptosis. The activation of caspase-3 was assayed by colorimetric assay kit. Bcl-2 and Bax proteins were estimated by western immunoblotting method. RESULTS: Tamoxifen induced apoptosis in both cell lines (chi-square test, p < 0.05). Unlike the MCF-7 cells, which responded to the low concentration (1 microM), the treated MDA-MB468 cells have mainly been affected at a higher dose (20 microM) at which a significant increase was also obtained in the caspase-3 activity (chi-square test, p < 0.05). Interestingly, tamoxifen at doses higher than 2.5 microM increased cell proliferation in the MCF-7 cells. The levels of Bcl-2 and Bax remained unchanged. CONCLUSION: Since tamoxifen has induced apoptosis in both cell lines by different mechanisms, it might be concluded that there exists ER(+) and ER(-) pathways for the induction of apoptosis.  相似文献   

18.
We reported recently that roscovitine arrested human MCF-7 cancer cells at G2-M phase of the cell cycle and concomitantly induced apoptosis. After roscovitine treatment, the level of wild-type p53 protein strongly increased and p53 was accumulated in the nucleus. Here, we raised the question of which pathway would be involved in roscovitine-induced apoptosis in MCF-7 cells, which are known to be caspase-3-deficient, and whether roscovitine-mediated activation of p53 protein might positively affect the execution of cell death. Roscovitine induced a depolarization of mitochondrial potential beginning at 6 hours posttreatment as evidenced by changes in J-aggregate formation and release of the mitochondrial proteins cytochrome c and apoptosis-inducing factor. Interestingly, roscovitine stimulated a site-specific phosphorylation of wild-type p53 protein in a time-dependent manner. p53 protein was specifically phosphorylated at Ser46. P-Ser46-activated wild-type p53 tumor suppressor up-regulated p53AIP1 protein, its downstream target known to mediate the depolarization of mitochondria. The onset of phosphorylation of p53 at Ser46 preceded the up-regulation of p53AIP1 protein and the depolarization of mitochondrial potential. We compared the kinetics of roscovitine-mediated p53 activation between caspase-3-deficient parental MCF-7 cells and cells reconstituted with caspase-3. The kinetics and the extent of p53 protein activation in caspase-3-proficient cells differed from those observed in caspase-3-deficient parental cells. Remarkably, roscovitine failed to induce phosphorylation at Ser46 in caspase-3-reconstituted MCF-7 cells. Our results indicate that, depending on the status of caspase-3 in MCF-7 cells, different apoptotic pathways were initialized.  相似文献   

19.
mda-7/IL-24 (HGMW-approved symbol IL24) is a tumor suppressor gene whose expression is lost during tumor progression. Gene transfer using adenoviral mda-7/IL-24 (Ad-mda7) exhibits minimal toxicity on normal cells while inducing potent apoptosis in a variety of cancer cell lines. Ad-mda7-transduced cells express high levels of MDA-7 protein intracellularly and also secrete a soluble form of MDA-7 protein. In this study, we sought to determine whether the intracellular or secreted MDA-7 protein was responsible for anti-tumor activity in H1299 lung tumor cells. Ad-mda7 transduction of lung tumor cells increased expression of stress-related proteins, including BiP, GADD34, PP2A, caspases 7 and 12, and XBP-1, consistent with activation of the UPR pathway, a key sensor of endoplasmic reticulum (ER)-mediated stress. Blocking secretion of MDA-7 did not inhibit apoptosis, demonstrating that intracellular MDA-7 was responsible for cytotoxicity. Consistent with this result, when applied directly to lung cancer cells, soluble MDA-7 protein exhibited minimal cytotoxic effect. We then generated mda-7 expression constructs using vectors that target the expressed protein to various subcellular compartments, including cytoplasm, nucleus, and ER. Only full-length and ER-targeted MDA-7 elicited cell death in tumor cells. Thus in lung cancer cells, Ad-mda7 activates the UPR stress pathway and induces apoptosis via intracellular MDA-7 expression in the secretory pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号