首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effect of prenatal exposure to lambda-cyhalothrin (LCT) has been assessed on the integrity of NMDA receptors and associated post-synaptic signalling in hippocampus of developing rats. Decrease in the binding of [3H]-MK 801, known to label NMDA receptors was observed in hippocampus of rats prenatally exposed to LCT (1 and 3 mg/kg body weight) on PD22, compared to controls. Consistent with this, decrease in the mRNA and protein expression of NR1 and NR2B subunits of NMDA receptors was evident in rats prenatally exposed to LCT (1 and 3 mg/kg body weight) on PD22. There was no change in mRNA and protein expression of NR2A subunit of NMDA receptors. Prenatal exposure to LCT (1 and 3 mg/kg body weight) decreased the expression of positive regulators (PSD95, pERK1/2, CaMKIIα & pCREB) and increased the expression of negative regulators (Cdk5 & SynGAP) associated with NMDA receptor dependent synaptic plasticity in hippocampus and impaired learning and memory of rats on PD22. The neurobehavioral changes continued to persist in rats exposed to LCT at high dose (3 mg/kg body weight) while exhibited trend of recovery in those exposed at moderate dose (1 mg/kg body weight) on PD45, compared to controls. No change in any of the neurobehavioral endpoint was observed in developing rats prenatally exposed to LCT at low dose (0.5 mg/kg body weight) on PD22 and PD45. The results exhibit that alterations in NMDA receptors on prenatal exposure to LCT may affect postsynaptic signalling associated with impaired learning and memory in developing rats.  相似文献   

2.
Pyrrolizidine alkaloids (PAs) are toxins that are exclusively biosynthesized by plants and are commonly present in foods and herbs. PAs are usually associated with poisoning events in livestock and human beings. The aim of the present study was to evaluate the behavioral and neurochemical effects of prenatal exposure to PA integerrimine N-oxide of rats in adulthood. Pregnant Wistar rats received integerrimine N-oxide from the butanolic residue of Senecio brasiliensis by gavage on gestational days 6–20 at doses of 3, 6 and 9 mg/kg. During adulthood of the offspring, the following behavioral tests were performed: open-field, plus-maze, forced swimming, catalepsy and stereotypy. Histological analyses and monoamine levels were measured. Male offspring from dams that were exposed to 9 mg/kg showed an increase in locomotion in the open-field test, an increased frequency of entries and time spent in open arms in elevated plus-maze test, as well as decreased swimming time. In the female offspring from dams that were exposed to 9 mg/kg, there was an increased time of climbing in forced swimming and intensity of stereotyped behavior. The histological study indicates an increase in the number of multinucleated cells in the liver (6 and 9 mg/kg). In neurotransmitter analysis, specifically in the striatum, we observed change in dopamine and serotonin levels in the middle dose. Thus, our results indicate that prenatal exposure to integerrimine N-oxide changed behavior in adulthood and neurotransmitter levels in the striatum. Our results agree with previous studies, which showed that integerrimine N-oxide impaired physical and neurobehavioral development in childhood that can persist until adulthood.  相似文献   

3.
In adult rats, intraperitoneal injection of kainate (KA) results in sustained status epilepticus and persistent behavioral comorbidities such as hyperexcitability, anxiety, and altered response to environmental cues. Intrahippocampal KA also results in sustained status epilepticus and continuous high frequency oscillations in the electroencephalograph (EEG), although subsequent behavioral side effects are unknown. We hypothesized that retigabine, a recently discovered anticonvulsant and potent positive modulator of Kv7 channels, may attenuate seizure-induced behavioral abnormalities. Status epilepticus was induced by administration of KA either intraperitoneally (15 mg/kg) or by single intrahippocampal injection (1.0 μg/0.5 μL). After 24 h, half of systemically KA-treated animals that reached stage 6 seizures were injected once daily with retigabine (5 mg/kg) for 14 continuous days. All groups underwent three behavioral tests — capture and handling, open field, and elevated plus maze — 24 h following the last retigabine treatment and were sacrificed at 25–28 days. In the capture and handling test, systemic KA treatment resulted in frisky behavior and resistance to capture with wild attempts to escape during the 1st, 2nd, and 3rd weeks of the observation period. In contrast, these behaviors were attenuated in KA + retigabine-treated animals. In the open-field test, KA-treated animals spent more time in the center zone, but KA + retigabine-treated rats had greater overall activity compared with those having vehicle, KA, or retigabine-only treatment. In the elevated plus maze, KA + retigabine-treated animals traveled greater distances in open and closed arms (proximal and distal) compared with controls, also signifying anxiety reduction. Retigabine-only-treated rats traveled more in the open proximal arms compared with controls, indicating increased hyperlocomotion in normotensive rats. Although treatment with KA + retigabine resulted in anxiolytic-like effects in all three behavioral tasks compared with vehicle, this group did not significantly differ from systemically KA-treated rats in most measurements in open-field and elevated plus maze tasks, suggesting that retigabine may also cause hyperlocomotion unrelated to anxiety level. Despite that intrahippocampal KA-treated rats displayed comparable seizure behavior, epileptiform activity, and hippocampal injury, their behavior resembled the controls, suggesting that molecular and subsequent cellular changes are also partially responsible for anxiolytic-like effects and that these results are likely independent of the hippocampus.  相似文献   

4.
《Epilepsy research》2007,73(2-3):171-177
The present study was performed to evaluate convulsions after food intake in fasted rats pretreated with scopolamine or atropine and to determine whether these convulsions respond to drugs found effective in fasted mice. Scopolamine (2.4 mg/kg) and atropine (2.4 mg/kg) were given intraperitoneally (i.p.) to rats fasted for 52 h. Both drugs induced convulsions after animals were allowed to eat ad lib. Another group of fasted rats pretreated with saline, MK-801 (0.1 mg/kg), clonidine (0.1 mg/kg), chlorpromazine (2 and 4 mg/kg), valproate (200 mg/kg), diazepam (1.5 and 2 mg/kg) or gabapentin (50 mg/kg) were treated i.p. with saline or scopolamine (2.4 mg/kg) and were allowed to eat ad lib. Clonidine, MK-801, chlorpromazine (4 mg/kg) and diazepam (2 mg/kg) reduced the incidence of scopolamine-induced convulsions in fasted rats. Gabapentin could only prolong the onset of convulsions. Neither treatment was effective against myoclonus of hindlimbs. Present results showed that fasted rats also develop antimuscarinic-induced convulsions which do not completely respond to treatments found effective in convulsions of fasted mice.  相似文献   

5.
Dextrometrophan (DM), widely used as an antitussive, has recently generated interest as an anticonvulsant drug. Some effects of dextrometrophan are associated with alterations in several pathways, such as inhibition of nitric oxide synthase (NOS) enzyme and N-methyl d-aspartate (NMDA) receptors. In this study, we aimed to investigate the anticonvulsant effect of acute administration of dextrometrophan on pentylenetetrazole (PTZ)-induced seizures and the probable involvement of the nitric oxide (NO) pathway and NMDA receptors in this effect. For this purpose, seizures were induced by intravenous PTZ infusion. All drugs were administrated by intraperitoneal (i.p.) route before PTZ injection. Our results demonstrate that acute DM treatment (10–100 mg/kg) increased the seizure threshold. In addition, the nonselective NOS inhibitor L-NAME (10 mg/kg) and the neural NOS inhibitor, 7-nitroindazole (40 mg/kg), at doses that had no effect on seizure threshold, augmented the anticonvulsant effect of DM (3 mg/kg), while the inducible NOS inhibitor, aminoguanidine (100 mg/kg), did not affect the anticonvulsant effect of DM. Moreover, the NOS substrate l-arginine (60 mg/kg) blunted the anticonvulsant effect of DM (100 mg/kg). Also, NMDA antagonists, ketamine (0.5 mg/kg) and MK-801 (0.05 mg/kg), augmented the anticonvulsant effect of DM (3 mg/kg). In conclusion, we demonstrated that the anticonvulsant effect of DM is mediated by a decline in neural nitric oxide activity and inhibition of NMDA receptors.  相似文献   

6.
Trace amine-associated receptor 1 (TAAR1) is activated by methamphetamine (MA) and modulates dopaminergic (DA) function. Although DA dysregulation is the hallmark of MA-induced neurotoxicity leading to behavioral and cognitive deficits, the intermediary role of TAAR1 has yet to be characterized. To investigate TAAR1 regulation of MA-induced neurotoxicity, Taar1 transgenic knock-out (KO) and wildtype (WT) mice were administered saline or a neurotoxic regimen of 4 i.p. injections, 2 h apart, of MA (2.5, 5, or 10 mg/kg). Temperature data were recorded during the treatment day. Additionally, striatal tissue was collected 2 or 7 days following MA administration for analysis of DA, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and tyrosine hydroxylase (TH) levels, as well as glial fibrillary acidic protein (GFAP) expression. MA elicited an acute hypothermic drop in body temperature in Taar1-WT mice, but not in Taar1-KO mice. Two days following treatment, DA and TH levels were lower in Taar1-KO mice compared to Taar1-WT mice, regardless of treatment, and were dose-dependently decreased by MA. GFAP expression was significantly increased by all doses of MA at both time points and greater in Taar1-KO compared to Taar1-WT mice receiving MA 2.5 or 5 mg/kg. Seven days later, DA levels were decreased in a similar pattern: DA was significantly lower in Taar1-KO compared to Taar1-WT mice receiving MA 2.5 or 5 mg/kg. TH levels were uniformly decreased by MA, regardless of genotype. These results indicate that activation of TAAR1 potentiates MA-induced hypothermia and TAAR1 confers sustained neuroprotection dependent on its thermoregulatory effects.  相似文献   

7.
Stress during pregnancy may cause neurodevelopmental and psychiatric disorders. However, the mechanisms are largely unknown. Currently, pro-inflammatory cytokines have been identified as a risk factor for depression and anxiety disorder. Unfortunately, there is very little research on the long-term effects of prenatal stress on the neuroinflammatory system of offspring. Moreover, the relationship between antidepressant treatment and cytokines in the central nervous system, especially in the hippocampus, an important emotion modulation center, is unclear. Therefore, the aim of this study was to determine the effects of prenatal chronic mild stress during development on affective-like behaviors and hippocampal cytokines in adult offspring, and to verify whether antidepressant (duloxetine) administration from early adulthood could prevent the harmful consequences. To do so, prenatally stressed and non-stressed Sprague-Dawley rats were treated with either duloxetine (10 mg/kg/day) or vehicle from postnatal day 60 for 21 days. Adult offspring were divided into four groups: 1) prenatal stress + duloxetine treatment, 2) prenatal stress + vehicle, 3) duloxetine treatment alone, and 4) vehicle alone. Adult offspring were assessed for anxiety-like behavior using the open field test and depression-like behavior using the forced swim test. Brains were analyzed for pro-inflammatory cytokine markers in the hippocampus via real-time PCR. Results demonstrate that prenatal stress-induced anxiety- and depression-like behaviors are associated with an increase in hippocampal inflammatory mediators, and duloxetine administration prevents the increased hippocampal pro-inflammatory cytokine interleukin-6 and anxiety- and depression-like behavior in prenatally stressed adult offspring. This research provides important evidence on the long-term effect of PNS exposure during development in a model of maternal adversity to study the pathogenesis of depression and its therapeutic interventions.  相似文献   

8.
Peripheral inflammation, both during the prenatal period and in adulthood, impairs adult neurogenesis. We hypothesized that, similar to other programming effects of prenatal treatments, only prenatal inflammation causes long-term consequences in adult neurogenesis and its neurogenic niche. To test this, pregnant Wistar rats were subcutaneously injected with lipopolysaccharide (LPS; 0.5 mg/kg) or saline solution every other day from gestational/embryonic day (GD) 14–20. In addition adult animals were injected with a single intraperitoneal saline or LPS injection (1 mg/kg) and the effects on neurogenesis were assessed 7 days later. Alternatively, to evaluate long-term consequences of adult LPS injections, LPS (1 mg/kg) was administered peripherally to adult rats four times every other day, and the effects on neurogenesis were assessed 60 days later.Prenatal and adult LPS treatments reduced adult neurogenesis and provoked specific microglial (but not astroglial) activation in the dentate gyrus (DG). However, only prenatal inflammation-mediated effects were long-lasting (at least 60 days). Moreover, these effects were specific to the DG since the Subventricular Zone (SVZ) and the Rostral Migratory Stream (RMS) were not affected. In addition, these stimuli caused differential effects on the molecular components of the neurogenic niche; only prenatal LPS treatment reduced the local levels of TGF-β1 mRNA in the DG. Finally, TGF-β1 exerted its pro-neurogenic effects via the Smad2/3 pathway in a neural stem cell culture.Taken together, these data add evidence to the duration, regional specificity and dramatic consequences of prenatal immune programming on CNS physiology, compared with the limited response observed in the adult brain.  相似文献   

9.
Organophosphate compounds, such as soman and sarin, are highly toxic chemical warfare nerve agents that cause a build-up of acetylcholine in synapses and neuromuscular junctions. Current therapies aim to prevent seizures and protect against brain injury following exposure. The present study was designed to evaluate the effectiveness of the antihistamine cyproheptadine in improving survival and controlling seizures in rats exposed to soman. Rats were pretreated with the oxime reactivator HI-6 (125 mg/kg, ip) 30 min prior to soman exposure (225 μg/kg, sc) and then treated with atropine methylnitrate (AMN, 2.0 mg/kg, im) 1 min after soman. Cyproheptadine (10, 13, 16 or 20 mg/kg, ip) was given at one of three time points: 1 min after soman intoxication, at the onset of soman-induced seizures or 5 min after seizure onset. Control animals were exposed to soman and given an equivalent volume of sterile water instead of cyproheptadine. The incidence of seizures, mortality, neuron counts, neuropathology and apoptosis in specific regions of the brain were evaluated. In animals given HI-6 and AMN the incidence of soman-induced seizure and mortality rate within the first 24 h were 100%. When cyproheptadine was given at a dose of 13 or 20 mg/kg 1 min after soman exposure, the incidence of seizures was reduced from 100% to 13% and 30%, respectively. In addition, cyproheptadine given at 1 min after soman exposure increased the survival rate to 100% regardless of dose. When cyproheptadine was administered at seizure onset, seizures were terminated in 100% of the animals at doses above 10 mg/kg. The survival rate with cyproheptadine treatment at the onset of seizure was ≥83%. Seizures terminated in ≥75% of the animals that received cyproheptadine 5 min after soman-induced seizure onset. When given at 5 min after seizure onset the survival rate was 100% at all tested doses of cyproheptadine. The neuropathology scores and the number of TUNEL positive cells in the brain regions examined decreased at all time points and cyproheptadine doses tested. These observations indicate that cyproheptadine treatment can effectively control seizures, improve survival, reduce seizure duration and reduce the number of dying cells in the brain following soman exposure.  相似文献   

10.
Duchenne muscular dystrophy (DMD) is a progressive, lethal neuromuscular disorder caused by the absence of dystrophin protein due to mutations of the dystrophin gene. Drisapersen is a 2′-O-methyl-phosphorothioate oligonucleotide designed to skip exon 51 in dystrophin pre-mRNA to restore the reading frame of the mRNA. This study assessed safety, tolerability, and pharmacokinetics of drisapersen after a single subcutaneous administration in non-ambulatory subjects. Eligible subjects were non-ambulant boys aged ⩾9 years, in wheelchairs for ⩾1 to ⩽4 years, with a diagnosis of DMD resulting from a mutation correctable by drisapersen treatment. Four dose cohorts were planned (3, 6, 9 and 12 mg/kg), but study objectives were met with the 9 mg/kg dose. Less than proportional increase in exposure was demonstrated over the 3–9 mg/kg dose range, though post hoc analysis showed dose proportionality was more feasible over the 3–6 mg/kg range. Single doses of drisapersen at 3 and 6 mg/kg did not result in significant safety or tolerability concerns; however, at the 9 mg/kg dose, pyrexia and transient elevations in inflammatory parameters were seen. The maximum tolerated dose of 6 mg/kg drisapersen was identified for further characterization in multiple dose studies in the non-ambulant DMD population.  相似文献   

11.
Creatine was previously shown to produce an antidepressant-like effect in the tail suspension test through a modulation of the dopaminergic system. In this study, the mechanisms underlying its antidepressant-like effect were further evaluated by investigating the involvement of the serotonergic system in its effect. The anti-immobility effect of creatine (1 mg/kg) was prevented by the pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA; 100 mg/kg, i.p., for 4 consecutive days, an inhibitor of serotonin (5-HT) synthesis). Creatine (0.01 mg/kg, sub-effective dose) in combination with sub-effective doses of WAY100635 (0.1 mg/kg, s.c., a 5-HT1A receptor antagonist), 8-OH-DPAT (0.1 mg/kg, i.p., a 5-HT1A receptor agonist) or selective serotonin reuptake inhibitors fluoxetine (5 mg/kg, p.o.), paroxetine (0.1 mg/kg, p.o.), citalopram (0.1 mg/kg, p.o.) and sertraline (3 mg/kg, p.o.) reduced the immobility time in the tail suspension test as compared with either drug alone. These results indicate that the antidepressant-like effect of creatine is likely mediated by an interaction with 5-HT1A receptors. Of note, the present results also indicate that creatine improves the effectiveness of the selective serotonin reuptake inhibitors, a finding that may have therapeutic implications for the treatment of depressive disorders.  相似文献   

12.
PurposeLevetiracetam has been reported to be well tolerated and effective in status epilepticus (SE) refractory to benzodiazepine. Because of little preclinical or clinical data concerning the outcomes of LEV in SE-induced neuronal death and vasogenic edema, we investigated the effect of LEV on SE-induced injury in comparison to diazepam (DZP), and valproate (VPA).MethodsTwo hours after pilocarpine-induced SE, rats were given one of the following drugs; (1) DZP, (2) LEV, (3) VPA, (4) DZP + LEV, (5) DZP + VPA, and (6) DZP + oxiracetam. Three–four days after SE, neuronal damage and vasogenic edema were evaluated by Fluoro-Jade B (FJB) staining and serum-protein extravasation, respectively.ResultsLEV (≥50 mg/kg) was effective to protect neuronal damage from SE in comparison to DZP and VPA. LEV as an add-on drug with DZP could not alleviate neuronal damage as compared to LEV alone. VPA (≥100 mg/kg) was effective to protect neuronal damage from SE, as compared to DZP. VPA as an add-on drug with DZP reduced neuronal damage, as compared to DZP alone.ConclusionThese findings suggest that LEV may negatively interact with DZP, and be more effective to prevent SE-induced neuronal death as a first line drug than as a second line therapy after BDZ treatment.  相似文献   

13.
Patients exposed to organophosphate (OP) compounds demonstrate a central apnea. The Kölliker-fuse nuclei (KF) are cholinergic nuclei in the brainstem involved in central respiratory control. We hypothesize that exposure of the KF is both necessary and sufficient for OP induced central apnea. We performed an animal study of acute OP exposure. Anesthetized and spontaneously breathing Wistar rats (n = 24) were exposed to a lethal dose of dichlorvos using three experimental models. Experiment 1 (n = 8) involved systemic OP poisoning using subcutaneous (SQ) 2,2-dichlorovinyl dimethyl phosphate (dichlorvos) at 100 mg/kg or 3× LD50. Experiment 2 (n = 8) involved isolated poisoning of the KF using stereotactic microinjections of dichlorvos (625 μg in 50μl) into the KF. Experiment 3 (n = 8) involved systemic OP poisoning with isolated protection of the KF using SQ dichlorvos (100 mg/kg) and stereotactic microinjections of organophosphatase A (OpdA), an enzyme that degrades dichlorvos. Respiratory and cardiovascular parameters were recorded continuously. Animals were followed post exposure for 1 h or until death. There was no difference in respiratory depression between animals with SQ dichlorvos and those with dichlorvos microinjected into the KF. Despite differences in amount of dichlorvos (100 mg/kg vs. 1.8 mg/kg) and method of exposure (SQ vs. CNS microinjection), 10 min following dichlorvos both groups (SQ vs. microinjection respectively) demonstrated a similar percent decrease in respiratory rate (51.5 vs. 72.2), minute ventilation (49.2 vs. 68.8) and volume of expired gas (17.5 vs. 0.0). Animals with OpdA exposure to the KF during systemic OP exposure demonstrated less respiratory depression, compared to SQ dichlorvos alone (p < 0.04). No animals with SQ dichlorvos survived past 25 min post exposure, compared to 50% of animals with OpdA exposure to the KF. In conclusion, exposure of the KF is sufficient but not necessary for OP induced apnea. Protection of the KF during systemic OP exposure mitigates OP induced apnea.  相似文献   

14.
Nonylphenols (NP) are endocrine-disruptors known to be widely present in our environment. This study evaluated the effects of 4-n-NP on neurobehavioral development and memory capacity after perinatal exposure on the offspring rats. Dams were gavaged with 4-n-NP (0, 50 and 200 mg/kg/day) from gestational day 5 to postnatal day (PND) 21. Dams exposed to the higher dose lost weight during gestation and had a longer gestational duration. Juvenile female pups of the 200 mg 4-n-NP/kg/day group were lighter. Their thyroid somatic index (TSI) was also affected. For male pups, a decrease of TSI at weaning for the 200 mg 4-n-NP/kg/day group and an increase of GSI for the 50 mg 4-n-NP/kg/day group were observed. Physical maturation (incisives and eyes) were likewise affected. In open field (OF) tests, females were more active than males. In the first OF (PND 36), a treatment effect was observed only for males, particularly for the high dose group, which became as active as females. The second OF (PND 71) showed few differences between groups (treated vs control), the gender difference whatever the dose was not abolished. In the Morris Water Maze test, the study of the first 30 s showed that females (200 mg/kg/day) were mainly affected. Their performances were improved by 4-n-NP. These effects were particularly important for the first short-term memory test and observed to a lesser extent in the second evaluation of the long-term memory (PND 69). These data showed that perinatal 4-n-NP exposure induced behavioral and neuro-developmental impairments from 50 mg/kg/day.  相似文献   

15.
l-Dopa, the precursor to dopamine, is currently the gold standard treatment for Parkinson's disease (PD). However, chronic exposure is associated with l-dopa-induced dyskinesias (LIDs), a serious side effect characterized by involuntary movements. Adenosine A2A receptor antagonists have been studied as a novel non-dopaminergic PD treatment. Because A2A receptor antagonists do not act on dopamine receptors, it has been hypothesized that they will not induce dyskinesias characteristic of l-dopa. To test this hypothesis in a rodent model, the A2A receptor antagonists SCH 412348 (3 mg/kg), vipadenant (10 mg/kg), caffeine (30 mg/kg), or istradefylline (3 mg/kg) were chronically (19–22 days) administered to Sprague Dawley rats, and dyskinetic behaviors were scored across this chronic dosing paradigm. Unlike l-dopa, there was no evidence of dyskinetic activity resulting from any of the four A2A receptor antagonists tested. When delivered to animals previously sensitized with l-dopa (6 mg/kg), SCH 412348, vipadenant, caffeine or istradefylline treatment produced no dyskinesias. When administered in combination with l-dopa (6 mg/kg), SCH 412348 (3 mg/kg) neither exacerbated nor prevented the induction of LIDs over the course of 19 days of treatment. Collectively, our data indicate that A2A receptor antagonists are likely to have a reduced dyskinetic liability relative to l-dopa but do not block dyskinesias when coadministered with l-dopa. Clinical studies are required to fully understand the dyskinesia profiles of A2A receptor antagonists.  相似文献   

16.
Epidemiological studies have suggested a link between prenatal exposure to bacterial or viral infections and subsequent development of mental disorders such as schizophrenia and autism. Animal models to study the prenatal origin of such outcomes of pregnancy have largely used conventional rodents which are immature at birth compared to the human neonate, and doses of the infective agent (i.e., lipopolysaccharide, Poly I:C) have been large enough to cause sickness behaviour in the mother. In this study we have used the spiny mouse (Acomys cahirinus) whose offspring have completed organogenesis at birth, and a single subcutaneous injection of a low (0.5 mg/kg) dose of polyriboinosinic–polyribocytidilic acid (Poly I:C) at mid gestation (20 days, term is 39 days). The treatment had no effect on maternal, fetal or neonatal survival, or postnatal growth of the offspring. However, offspring showed significant impairments in non-spatial memory and learning tasks, and motor activity. Brain histology examined at 1 and 100 days of age revealed significant decreases in reelin, increased GFAP expression, and increased numbers of activated microglia, specifically in the hippocampus. This study provides evidence that a prenatal subclinical infection can have profound effects on brain development that are long-lasting.  相似文献   

17.
Sarin poisoned rats display a hyper-cholinergic activity including hypersalivation, tremors, seizures and death. Here we studied the time and dose effects of midazolam treatment following nerve agent exposure. Rats were exposed to sarin (1.2 LD50, 108 μg/kg, im), and treated 1 min later with TMB4 and atropine (TA 7.5 and 5 mg/kg, im, respectively). Midazolam was injected either at 1 min (1 mg/kg, im), or 1 h later (1 or 5 mg/kg i.m.). Cortical seizures were monitored by electrocorticogram (ECoG). At 5 weeks, rats were assessed in a water maze task, and then their brains were extracted for biochemical analysis and histological evaluation. Results revealed a time and dose dependent effects of midazolam treatment. Rats treated with TA only displayed acute signs of sarin intoxication, 29% died within 24 h and the ECoG showed seizures for several hours. Animals that received midazolam within 1 min survived with only minor clinical signs but with no biochemical, behavioral, or histological sequel. Animals that lived to receive midazolam at 1 h (87%) survived and the effects of the delayed administration were dose dependent. Midazolam 5 mg/kg significantly counteracted the acute signs of intoxication and the impaired behavioral performance, attenuated some of the inflammatory response with no effect on morphological damage. Midazolam 1 mg/kg showed only a slight tendency to modulate the cognitive function. In addition, the delayed administration of both midazolam doses significantly attenuated ECoG compared to TA treatment only. These results suggest that following prolonged seizure, high dose midazolam is beneficial in counteracting adverse effects of sarin poisoning.  相似文献   

18.
The elevated T-maze (ETM) is an animal model of anxiety-like behavior that assesses two different defensive behavioral tasks in the same animal—acquisition of inhibitory avoidance and latency to escape from an open and elevated arm. In rats, cute and chronic treatments with anxiolytic-like drugs impair avoidance acquisition while only chronic administration of panicolytic-like drugs impairs open arm withdrawal. To date, only the acute effects of anxiolytic/anxiogenic or panicolytic/panicogenic drugs have been tested in the mouse ETM and the results have partially corroborated those found in the rat ETM. This study investigated the effects of acute (a single intraperitoneal injection 30 min before testing) and chronic (daily i.p. injections for 15 consecutive days) treatment with imipramine or fluoxetine, non-selective and selective serotonin reuptake inhibitors, respectively, on inhibitory avoidance and escape tasks in the mouse ETM. Neither acute nor chronic treatment with imipramine (0, 1, 5 or 10 mg/kg, i.p.) significantly changed the behavioral profile of mice in the two ETM tasks. Interestingly, while acute fluoxetine (0, 5, 10, 20 or 40 mg/kg, i.p.) facilitated inhibitory avoidance and impaired escape latency, chronic treatment (0, 5, 20 or 40 mg/kg, i.p.) with this selective serotonin reuptake inhibitor (SSRI) produced an opposite effect, i.e., it impaired inhibitory avoidance acquisition and facilitated open arm withdrawal. Importantly, acute or chronic treatment with imipramine (except at the highest dose that increased locomotion when given acutely) or fluoxetine failed to alter general locomotor activity in mice as assessed in an ETM in which all arms were enclosed by lateral walls (eETM). These results suggest that inhibitory avoidance acquisition is a useful task for the evaluation of acute and chronic effects of SSRI treatment on anxiety in mice. However, as open arm latency was actually increased and reduced by acute and chronic fluoxetine, respectively, this does not seem to be a useful measure of escape from a proximal threat in this species.  相似文献   

19.
Methamphetamine (MA) use is associated with activation of microglia and, at high doses, can induce neurotoxicity. Given the changes in the neuroinflammatory environment associated with MA, we investigated whether MA sensitization, a model of stimulant psychosis and an indicator of drug addiction, would interfere with the thermoregulatory and neuroinflammatory response to a subsequent peripheral immune stimulus. C57BL6/J mice were given either 1 mg/kg MA or saline i.p. once a day for 5 days to produce behavioral sensitization. Seventy-two hours following the last MA injection, 100 μg/kg LPS or saline was co-administered with 1 mg/kg MA or saline and blood and brains were collected. Here we report that while co-administration of LPS and MA did not affect the LPS-induced increase in central cytokine mRNA, mice sensitized to MA showed an attenuated central response to LPS. Interestingly, the peripheral response to LPS was not affected by MA sensitization. Plasma cytokines increased similarly in all groups after LPS. Further, c-Fos expression in the nucleus of the solitary tract did not differ between groups, suggesting that the periphery-to-brain immune signal is intact in MA-sensitized mice and that the deficit lies in the central cytokine compartment. We also show that MA sensitization decreased LPS- or acute MA-induced microglial Iba1 expression compared to non-sensitized mice. Taken together, these data show that MA sensitization interferes with the normal central immune response, preventing the CNS from efficiently responding to signals from the peripheral immune system.  相似文献   

20.
The present study has examined the influence of the prenatal and early life administration of paracetamol on the level of neurotransmitters in the spinal cord of rat pups. The effect of the drug was evaluated in 2-month old Wistar male rats exposed to paracetamol in doses of 5 (P5, n = 9) or 15 mg/kg (P15, n = 9) p.o. during the prenatal period and after birth until the completion of the second month of life. A parallel control group received tap water (Con, n = 9). In this study we have determined the level of monoamines, their metabolites and amino acids in the spinal cord of rats using high performance liquid chromatography (HPLC) in the second month of life.The present experiment demonstrates the action of paracetamol at the molecular level associated with significant modulation of neurotransmission in the spinal cord related to dopaminergic and noradrenergic systems. Simultaneously, paracetamol administration increases the content of an aspartic and glutamic acids in the spinal cord at a critical time during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号