首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rheumatoid arthritis (RA) is a chronic autoimmune disease of still unknown etiology that results in characteristic destructive changes of the joints. Research of the past years has demonstrated that synovial fibroblasts play a central role in the initiation and perpetuation of these destructive changes. Stimulation of the synovial fibroblasts through complex and interacting intracellular signaling pathways results in a stable activation that is maintain even without continuous stimulation by inflammatory cells and their mediators. The pathological attachment to articular cartilage, increased secretion of matrix degrading enzymes and alterations in programmed cell death are main characteristics of synovial fibroblasts from patients with RA and result in the progressive destruction of articular structures. The permanent activation of a number of intracellular signaling pathways constitutes the underlying responsible mechanism for the activation of synovial fibroblasts in RA. These signaling pathways do not only show a high degree of complexity, but are also interconnected in multiple ways. This article summarizes recent findings on the activation of intracellular signaling pathways in fibroblasts and points to potential targets for novel therapeutic strategies.  相似文献   

2.
Update on synovitis   总被引:2,自引:0,他引:2  
Rheumatoid arthritis (RA) is an inflammatory disorder associated with chronic synovitis, eventually leading to cartilage and bone destruction in the joints. Synovitis is associated with the activation of various cells in the synovium including synovial lining cells, interstitial macrophages, endothelial cells, lymphocytes, and fibroblasts. The key mechanisms underlying synovitis include inflammatory cell adhesion and activation, the production of mediators (such as cytokines, chemokines, and growth factors), angiogenesis, joint destruction, fibrosis, and bone resorption. These important events, as well as the role of inflammatory cells, cell surface molecules, and soluble mediators are updated and discussed in this review. Some aspects and strategies of current or future immunotherapy are also discussed because these animal and human trials provide information on the pathogenesis of inflammatory synovitis.  相似文献   

3.
Synovial fibroblasts (SF) or fibroblast-like synoviocytes are the major resident cellular component of joint synovial membrane. Numerous studies support the hypothesis that SF play an important role in the pathogenesis of rheumatoid arthritis (RA). In the RA synovial membrane, SF increase in number (hyperplasia) and exhibit an altered phenotype that persists in culture in the absence of external stimuli. These abnormalities are associated with the activation of specific signalling pathways that promote cell growth and the expression of multiple factors such as cytokines, chemokines, growth factors, adhesion molecules, and matrix degradation enzymes. The activation and expansion of SF appear to contribute to the recruitment, retention and activation of inflammatory cells, new blood vessel formation (angiogenesis), and bone and cartilage destruction. The relative contribution of SF to these processes is very important in animal models but has not been determined in human RA due to the lack of treatment interventions specifically targeting these cells. The identification of the molecular pathways involved in the altered phenotype of rheumatoid SF and their pathophysiological contribution are the basis for the development of new therapeutic alternatives for chronic inflammation and joint damage not targeting the immune system.  相似文献   

4.
Synovial fibroblasts: key players in rheumatoid arthritis   总被引:7,自引:0,他引:7  
Rheumatoid arthritis (RA) is a chronic autoimmune-disease of unknown origin that primarily affects the joints and ultimately leads to their destruction. The involvement of immune cells is a general hallmark of autoimmune-related disorders. In this regard, macrophages, T cells and their respective cytokines play a pivotal role in RA. However, the notion that RA is a primarily T-cell-dependent disease has been strongly challenged during recent years. Rather, it has been understood that resident, fibroblast-like cells contribute significantly to the perpetuation of disease, and that they may even play a role in its initiation. These rheumatoid arthritis synovial fibroblasts (RASFs) constitute a quite unique cell type that distinguishes RA from other inflammatory conditions of the joints. A number of studies have demonstrated that RASFs show alterations in morphology and behaviour, including molecular changes in signalling cascades, apoptosis responses and in the expression of adhesion molecules as well as matrix-degrading enzymes. These changes appear to reflect a stable activation of RASFs, which occurs independently of continuous exogenous stimulation. As a consequence, RASFs are no longer considered passive bystanders but active players in the complex intercellular network of RA.  相似文献   

5.
Summary Rheumatoid arthritis (RA) is an inflammatory disease of the synovial membrane, which results in the destruction of joints by inflammatory pannus. The synovial membrane shows proliferation and cellular infiltrates on microscopy with signs of chronic and acute inflammation. Macrophages are thought to play a central role in the pathogenesis of RA. We examined synovial membrane specimens of 21 RA patients using morphological, immunohistological and enzyme histochemical methods for number and distribution of macrophages. We were able to identify 41.5±8.8% of lining cells as macrophages, depending on the method used. In abundant diffuse lymphocellular infiltrates, 23.4±11.1% of mononuclear cells were macrophages. In addition, most cells in the region of tumorlike proliferation and a stromal population of fibroblastlike cells were detected by macrophage markers. Although cell number in synovial membrane increases drastically, we did not find correlations between the relative amount of macrophages in these regions and basic activity. Basic activity includes proliferative reaction as well as lymphoplasmacellular and mononuclear infiltration-both signs of an immunopathological process. In contrast, using enzymes or activation markers, there was a clear correlation. We consider that a constant high percentage of macrophages in RA synovial membrane is present regardless of any actual in flammatory process.  相似文献   

6.
7.
8.
9.
10.
OBJECTIVE: To investigate the potential role of IkappaB kinase 1 (IKK-1) and IKK-2 in the regulation of nuclear factor kappaB (NF-kappaB) activation and the expression of tumor necrosis factor alpha (TNFalpha), as well as interleukin-1beta (IL-1beta), IL-6, IL-8, vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs), in rheumatoid arthritis (RA). METHODS: Recombinant adenoviruses expressing beta-galactosidase, dominant-negative IKK-1 and IKK-2, or IkappaBalpha were used to infect ex vivo RA synovial membrane cultures and synovial fibroblasts obtained from patients with RA undergoing joint replacement surgery, or human dermal fibroblasts, human umbilical vein endothelial cells (HUVECs), and monocyte-derived macrophages from healthy volunteers. Then, their effect on the spontaneous or stimulus-induced release of inflammatory cytokines, VEGF, and MMPs from RA synovial membrane cells was examined. RESULTS: IKK-2 was not required for lipopolysaccharide (LPS)-induced NF-kappaB activation or TNFalpha, IL-6, or IL-8 production in macrophages, but was essential for this process in response to CD40 ligand, TNFalpha, and IL-1. In synovial fibroblasts, dermal fibroblasts, and HUVECs, IKK-2 was also required for LPS-induced NF-kappaB activation and IL-6 or IL-8 production. In RA synovial membrane cells, IKK-2 inhibition had no effect on spontaneous TNFalpha production but significantly reduced IL-1beta, IL-6, IL-8, VEGF, and MMPs 1, 2, 3, and 13. CONCLUSION: Our study demonstrates that IKK-2 is not essential for TNFalpha production in RA. However, because IKK-2 regulates the expression of other inflammatory cytokines (IL-1beta, IL-6, and IL-8), VEGF, and MMPs 1, 2, 3, and 13, which are involved in the inflammatory, angiogenic, and destructive processes in the RA joint, it may still be a good therapeutic target.  相似文献   

11.
Regulation of apoptosis in aggressive fibroblasts   总被引:1,自引:0,他引:1  
Apoptosis is a central physiological mechanism for maintaining cellular stability in tissue. Synovial fibroblasts, which play a central role in the pathogenesis of rheumatoid arthritis (RA), show a resistance to apoptosis. Several molecular mechanisms are involved in such resistance. Thus, soluble Fas can bind Fas ligands (Fas-L) and hinder Fas-L induced apoptosis in fibroblasts. SUMO-1 (a small ubiquitin-like modifier) attaches to proteins post-translationally. This appears to be significantly involved in apoptosis resistance in RA fibroblasts. SUMO-1 levels are substantially increased in synovial fibroblasts from RA patients. A change in the post-translational SUMOlation pattern could represent a new target for changing the stable activation of synovial fibroblasts in RA.  相似文献   

12.
Apoptosis is a central physiological mechanism for maintaining cellular stability in tissue. Synovial fibroblasts, which play a central role in the pathogenesis of rheumatoid arthritis (RA), show a resistance to apoptosis. Several molecular mechanisms are involved in such resistance. Thus, soluble Fas can bind Fas ligands (Fas-L) and hinder Fas-L induced apoptosis in fibroblasts. SUMO-1 (a small ubiquitin-like modifier) attaches to proteins post-translationally. This appears to be significantly involved in apoptosis resistance in RA fibroblasts. SUMO-1 levels are substantially increased in synovial fibroblasts from RA patients. A change in the post-translational SUMOlation pattern could represent a new target for changing the stable activation of synovial fibroblasts in RA.  相似文献   

13.
OBJECTIVE: Marrow-derived endothelial progenitor cells (EPCs) are important in the neovascularization that occurs in diverse conditions such as cardiovascular disorders, inflammatory diseases, and neoplasms. In rheumatoid arthritis (RA), synovial neovascularization propels disease by nourishing the inflamed and hyperproliferative synovium. This study was undertaken to investigate the hypothesis that EPCs selectively home to inflamed joint tissue and may perpetuate synovial neovascularization. METHODS: In a collagen-induced arthritis (CIA) model, neovascularization and EPC accumulation in mouse ankle synovium was measured. In an antibody-induced arthritis model, EPC recruitment to inflamed synovium was evaluated. In a chimeric SCID mouse/human synovial tissue (ST) model, mice were engrafted subcutaneously with human ST, and EPC homing to grafts was assessed 2 days later. EPC adhesion to RA fibroblasts and RA ST was evaluated in vitro. RESULTS: In mice with CIA, cells bearing EPC markers were significantly increased in peripheral blood and accumulated in inflamed synovial pannus. EPCs were 4-fold more numerous in inflamed synovium from mice with anti-type II collagen antibody-induced arthritis versus controls. In SCID mice, EPC homing to RA ST was 3-fold greater than to normal synovium. Antibody neutralization of vascular cell adhesion molecule 1 (VCAM-1) and its ligand component alpha4 integrin potently inhibited EPC adhesion to RA fibroblasts and RA ST cryosections. CONCLUSION: These data demonstrate the selective recruitment of EPCs to inflamed joint tissue. The VCAM-1/very late activation antigen 4 adhesive system critically mediates EPC adhesion to cultured RA fibroblasts and to RA ST cryosections. These findings provide evidence of a possible role of EPCs in the synovial neovascularization that is critical to RA pathogenesis.  相似文献   

14.
OBJECTIVES: The TNF superfamily member LIGHT has a T-cell co-stimulatory role and has previously been associated with inflammation and autoimmunity. To investigate its role in rheumatoid arthritis (RA), a disease where activated T cells contribute in a prominent way, we have analysed the expression of LIGHT and its receptors in RA and analysed its effects on synovial fibroblasts in vitro. METHODS: The expression of LIGHT was measured in synovial tissues and fluids and the receptors of LIGHT were detected on synovial fibroblasts derived from patients with RA and osteoarthritis (OA). The effects of recombinant LIGHT on the production of proinflammatory cytokines and proteases and on the apoptosis of synovial fibroblasts was assessed. RESULTS: LIGHT mRNA was present in synovial tissues of patients with RA but not with OA. Correspondingly, soluble LIGHT protein could be detected in RA synovial fluid samples at much higher levels than in synovial fluid from patients with OA. Immunohistochemical detection of LIGHT and analysis of synovial fluid cells by flow cytometry revealed CD4 T cells as the major source of LIGHT in the rheumatoid joint. Synovial fibroblasts from RA patients were found to express the LIGHT receptors HVEM and LTbetaR. Recombinant LIGHT induced RA synovial fibroblasts to upregulate MMP-9 mRNA, CD54 and IL-6 in an NF-kappaB-dependent fashion. In vitro, exposure of cultured synovial fibroblasts to LIGHT reduced FAS-mediated apoptosis significantly, without affecting the rate of spontaneous apoptosis. CONCLUSIONS: The results provide evidence for a novel T-cell-dependent activation of synovial fibroblasts by LIGHT in joints of patients with RA, contributing to an inflammatory and destructive phenotype.  相似文献   

15.
16.
OBJECTIVE: To characterize the morphologic and immunologic features of adherent synovial fluid cells derived from patients with rheumatoid arthritis (RA), and to explore their potential function in vitro and in vivo by focusing on cartilage destruction. METHODS: Synovial fluid adherent cells obtained from patients with RA and from control subjects were characterized by immunohistochemistry, flow cytometry, and electron microscopy. In vitro, these cells were cultured in the presence of cartilage particles. Cartilage destruction was monitored by the release of sulfated glycosaminoglycans (sGAG) into the medium, and the level of matrix metalloproteinase 1 (MMP-1) in the cell culture supernatant was measured by enzyme-linked immunosorbent assay. To inhibit cartilage destruction in vitro, the MMP inhibitor marimastat was tested in this system. In vivo, in the SCID mouse coimplantation model, RA synovial fluid adherent cells and RA synovial fibroblasts (as positive controls) were coimplanted with human cartilage under the kidney capsule and maintained there for 60 days. RESULTS: In vitro, the synovial fluid adherent cells consisted of 2 subpopulations, large round-shaped macrophage-like cells (CD68+) and spindle-shaped fibroblast-like cells (Thy-1+). When passaged, the latter cells proliferated and organized themselves into 3-dimensional formations. This allowed them to reach collagen particles fixed with agarose. Fibroblasts derived from synovial tissues could not be used in this assay because they grew only in monolayers and not on agarose. The majority (>90%) of passaged RA synovial fluid adherent cells expressed the Thy-1+,CD45-,CD68-,CD86- phenotype. Electron microscopy did not reveal important morphologic differences between the 2 types of fibroblasts, those from synovial tissue or those from synovial fluid. However, synovial fluid adherent cells expressed lower levels of adhesion molecules, including CD54 and galectin 3, as well as the complement-regulatory molecule CD55. The in vitro release of sGAG associated with cell activity was 2.5-fold higher from RA synovial fluid adherent cells in comparison with that from negative control cells. The release of sGAG correlated with the concentration of MMP-1 and was inhibited by the broad-range MMP inhibitor marimastat in a dose-dependent manner. RA synovial fluid adherent cells coimplanted with cartilage in SCID mice showed the same invasive behavior as that displayed by tissue-derived RA synovial fibroblasts. CONCLUSION: Similar to tissue-derived RA synovial fibroblasts, RA synovial fluid adherent cells, which contain "floating" anchorage-independent fibroblast-like cells, mediate cartilage destruction independent of the hyperplastic synovial tissue.  相似文献   

17.
Rheumatoid arthritis (RA) is a systemic inflammatory disease that mainly affects the articular synovial tissues. Although the etiology of RA has not yet been elucidated, physical and biochemical inhibition of synovial hyperplasia, which is the origin of articular destruction, may be an effective treatment for RA. Nonsteroidal anti-inflammatory drugs (NSAIDs) have long been used for the treatment of RA. The mechanism of action of NSAIDs generally involves the inhibition of cyclooxygenase (COX) at sites of inflammation. Thus, NSAIDs were not generally considered to have a so-called anti-rheumatic effect, including inhibition of progressive joint destruction and induction of remission. However, certain conventional NSAIDs and celecoxib, a selective COX-2 inhibitor, have been reported to inhibit synovial hyperplasia by inducing the apoptosis of human synovial fibroblasts. Therefore, it has been suggested that such NSAIDs may not only have an anti-inflammatory effect but also an anti-rheumatic effect. In this review, we summarize findings about the pro-apoptotic effect, in other words, anti-proliferative effect of NSAIDs on synovial fibroblasts from patients with RA.  相似文献   

18.
Pathogenesis of bone erosions in rheumatoid arthritis   总被引:2,自引:0,他引:2  
Focal marginal joint erosions represent the radiographic hallmark of rheumatoid arthritis (RA). These bone changes are characteristically localized to the joint margins, but in addition, regions of focal bone resorption can be detected in the subchondral bone adjacent to the bone marrow space into which the synovial inflammatory tissues have extended. Because progressive destruction of the periarticular bone contributes significantly to joint dysfunction and disability in patients with RA, there is considerable interest in developing a better understanding of the pathologic mechanisms involved in this process and in developing therapies that can arrest these events. Previous analysis of joint tissues from patients with RA have provided morphologic evidence that osteoclasts are the cell types that mediate the focal bone resorption associated with the rheumatoid synovial lesion. Additional recent data from animal models have helped to further implicate these cells in the pathogenesis of focal bone erosions. Furthermore, analysis of RA synovium and joint tissues from animal models of inflammatory arthritis, as well as cell and tissues culture studies, have helped to define the cytokines and inflammatory mediators that are involved in the recruitment and activation of bone resorbing cells associated with focal bone erosions. These findings provide a rational framework for developing targeted therapies that can specifically inhibit or slow the progressive focal bone destruction associated with the rheumatoid synovial lesion.  相似文献   

19.
Apoptosis in rheumatoid arthritis   总被引:14,自引:0,他引:14  
  相似文献   

20.
Metabolic activation stimulates acid production in synovial fibroblasts   总被引:3,自引:0,他引:3  
OBJECTIVE: In rheumatoid arthritis (RA), synovial fibroblasts express proteases such as collagenases or cathepsins and inflammatory cytokines at elevated levels and so contribute to the inflammatory degradation process. Extracellular matrix degradation and cathepsin activity is dependent upon the presence of an acidic milieu. We examined whether activated synovial fibroblasts secrete acidic components. METHODS: Synovial fibroblasts were isolated and immortalized to study the mechanisms of metabolic activation. Na?ve and immortalized fibroblasts were activated with different cytokines. The responses were investigated by immunoblot to detect Egr-1 and by a cytosensor microphysiometer analysis to evaluate acid secretion. Basic gene expression patterns were investigated in na?ve and immortalized cells by RT-PCR analysis. RESULTS: We found RA synovial fibroblasts respond to different cytokines associated with the pathomechanisms of RA including interleukin 1, basic fibroblast growth factor, platelet derived growth factor, and tumor necrosis factor-alpha, with metabolic activation and enhanced secretion of acidic components. In addition, naive and SV40 TAg immortalized fibroblasts rapidly release acidic components after stimulation with phorbol ester or ionomycin as well. CONCLUSION: Activated synovial fibroblasts not only express inflammatory cytokines and matrix degrading proteases that are associated with the pathomechanisms of RA, but upon stimulation may release acidic components that lower pH and consequently enhance cathepsin activity and collagen solubilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号