首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Although the association between the Ser9Gly polymorphism of the dopamine D3 receptor gene (DRD3) and schizophrenia has been investigated by many research groups, it is not known whether the Ser9Gly polymorphism alone or a variation in linkage disequilibrium may effect susceptibility to schizophrenia. We searched the 5' region of the DRD3 gene and found three novel polymorphisms: -712G/C, -205A/G, and Ala38Thr. The Ala38Thr polymorphism is located in the first transmembrane region and is conserved in the monkey, mouse, and rat. Case-control comparisons in 153 Japanese schizophrenia patients and 122 Japanese controls did not suggest an association between Ala38Thr and schizophrenia. However, there was a marginally significant association between the Ser9 allele of the Ser9Gly polymorphisms and schizophrenia (P = 0.02). Furthermore, there was a highly significant association between haplotypes of the -712G/C, -205A/G, and Ser9Gly polymorphisms and schizophrenia (P = 0.0007, corrected P = 0.007). These positive findings were replicated in an additional 99 Japanese schizophrenia patients and 132 controls (P = 0.04 and 0.0004, respectively). The most allelic differences of the Ser9Gly polymorphism between patient and control groups arose from the chromosome carrying specific alleles of the other three polymorphisms. This study indicates unknown variant(s) in linkage disequilibrium with the DRD3 haplotypes associated with schizophrenia.  相似文献   

2.
CONTEXT: Variation at the DAOA/G30 locus has been described to be associated with both schizophrenia and bipolar disorder, but there is little consistency between studies of the tested polymorphisms or variants showing association. OBJECTIVES: To obtain a stringent replication of association in large samples of both disorders using consistent clinical and laboratory methods, and to test the hypothesis that association at DAOA/G30 identifies an underlying domain of psychopathological abnormalities that cuts across traditional diagnostic categories. DESIGN: A systematic study of polymorphisms at DAOA/G30 using genetic case-control association analysis. SETTING: Subjects were unrelated and ascertained from general psychiatric inpatient and outpatient services. PARTICIPANTS: White persons from the United Kingdom meeting criteria for DSM-IV schizophrenia (n = 709) or bipolar I disorder (n = 706) and 1416 ethnically matched controls. METHODS: Nine polymorphisms that tag common genetic variations at DAOA/G30 were genotyped in all of the individuals, and comparisons were made between affected and unaffected individuals. RESULTS: We identified significant association (P = .01-.047) between 3 single-nucleotide polymorphisms and bipolar disorder but failed to find association with schizophrenia. Analyses across the traditional diagnostic categories revealed significant evidence (P = .002-.02) for association with 4 single-nucleotide polymorphisms in the subset of cases (n = 818) in which episodes of major mood disorder had occurred (gene-wide P = .009). We found a similar pattern of association in bipolar cases and in schizophrenia cases in which individuals had experienced major mood disorder. In contrast, we found no evidence for association in the subset of cases (n = 1153) in which psychotic features occurred (all P>.08). CONCLUSIONS: Despite being originally described as a schizophrenia susceptibility locus, our data suggest that variation at the DAOA/G30 locus does not primarily increase susceptibility for prototypical schizophrenia or psychosis. Instead, our results imply that variation at the DAOA/G30 locus influences susceptibility to episodes of mood disorder across the traditional bipolar and schizophrenia categories.  相似文献   

3.
目的 在中国汉族人群精神分裂症和心境障碍混合家系中探讨五羟色胺6受体(5-HTR6)基因267C/T多态性与精神分裂症、心境障碍的关联性。方法 采用聚合酶链反应一限制性片断长度多态(PCR—RFLP)技术对67例精神病混合家系患者及其父母进行5-HTR6基因267C/T多态性检测,并予以传递不平衡检验(TDT)。结果 患者组与父母组之间,5-HTR6基因267C/T多态性等位基因分布(χ^2=2.70,v=1,P〉0.05)和基因型分布(χ^2=2.97,v=2,P〉0.05)无明显差异,5-HTR6基因267C/T多态性与精神分裂症(χ^2=5.16,P〈0.05)存在关联,但与心境障碍(χ^2=2.17,P〉0.05)无关联。结论 在中国汉族人群中5-HTR6基因或邻近基因可能是精神分裂症易患基因之一,但可能不是心境障碍的易患基因。  相似文献   

4.
GPR50 is an orphan G protein-coupled receptor (GPCR) located on Xq28, a region previously implicated in multiple genetic studies of bipolar affective disorder (BPAD). Allele frequencies of three polymorphisms in GPR50 were compared in case-control studies between subjects with BPAD (264), major depressive disorder (MDD) (226), or schizophrenia (SCZ) (263) and ethnically matched controls (562). Significant associations were found between an insertion/deletion polymorphism in exon 2 and both BPAD (P=0.0070), and MDD (P=0.011) with increased risk associated with the deletion variant (GPR50(Delta502-505)). When the analysis was restricted to female subjects, the associations with BPAD and MDD increased in significance (P=0.00023 and P=0.0064, respectively). Two other single-nucleotide polymorphisms (SNPs) tested within this gene showed associations between: the female MDD group and an SNP in exon 2 (P=0.0096); and female SCZ and an intronic SNP (P=0.0014). No association was detected in males with either MDD, BPAD or SCZ. These results suggest that GPR50(Delta502-505), or a variant in tight linkage disequilibrium with this polymorphism, is a sex-specific risk factor for susceptibility to bipolar disorder, and that other variants in the gene may be sex-specific risk factors in the development of schizophrenia.  相似文献   

5.
BACKGROUND: Genetic variations in the serotonin receptor 3A (HTR3A) and 3B (HTR3B) genes, positioned in tandem on chromosome 11q23.2, have been shown to be associated with psychiatric disorders in samples of European ancestry. But the polymorphisms highlighted in these reports map to different locations in the two genes, therefore it is unclear which gene exerts a stronger effect on susceptibility. METHODS: To determine the haplotype block structure in the genomic regions of HTR3A and HTR3B, and to examine whether genetic variations in the region show evidence of association with schizophrenia and affective disorder in the Japanese, we performed haplotype-based case-control analysis using 29 polymorphisms. RESULTS: Two haplotype blocks each were revealed for HTR3A and HTR3B in Japanese samples. In HTR3B, haplotype block 2 that included a nonsynonymous single nucleotide polymorphism (SNP), yielded evidence of association with major depression in females (global p = .0023). Analysis employing genome-wide SNPs using the STRUCTURE program did not detect population stratification in the samples. CONCLUSIONS: Our results suggest an important role for HTR3B in major depression in women and also raise the possibility that previously proposed disease-associated SNPs in the HTR3A/B region in Caucasians are in linkage disequilibrium with haplotype block 2 of HTR3B in the Japanese.  相似文献   

6.
The Translin-associated factor X/Disrupted in Schizophrenia 1 (TRAX/DISC) region was first implicated as a susceptibility locus for schizophrenia by analysis of a large Scottish family in which a t(1;11) translocation cosegregates with schizophrenia, bipolar disorder and recurrent major depression. We now report evidence for association between bipolar disorder and schizophrenia and this locus in the general Scottish population. A systematic study of linkage disequilibrium in a representative sample of the Scottish population was undertaken across the 510 kb of TRAX and DISC1. SNPs representing each haplotype block were selected for case-control association studies of both schizophrenia and bipolar disorder. Significant association with bipolar disorder in women P=0.00026 (P=0.0016 in men and women combined) was detected in a region of DISC1. This same region also showed nominally significant association with schizophrenia in both men and women combined, P=0.0056. Two further regions, one in TRAX and the second in DISC1, showed weaker evidence for sex-specific associations of individual haplotypes with bipolar disorder in men and women respectively, P<0.01. Only the association between bipolar women and DISC1 remained significant after correction for multiple testing. This result provides further supporting evidence for DISC1 as a susceptibility factor for both bipolar disorder and schizophrenia, consistent with the diagnoses in the original Scottish translocation family.  相似文献   

7.
The dopaminergic system has been implicated in the aetiology of mood disorders. We conducted family-based association studies for polymorphisms at three genes involved in the metabolism of dopamine: dopamine transporter (DAT1), dopamine-beta-hydroxylase (DBH) and catechol-O-methyl transferase (COMT); and three dopamine receptors: DRD2, DRD3 and DRD5. We used a sample of 122 parent-offspring trios of British Caucasian origin where the proband had bipolar disorder I (BPI), and analysed the results with the transmission/disequilibrium test (TDT) which is robust to hidden population stratification. No statistically significant differences were found between transmitted and not transmitted alleles for any of the polymorphisms studied.  相似文献   

8.
In this study, we investigated whether polymorphisms of the dopamine D4 receptor (DRD4) gene were associated with psychotic symptomatology rather than with a unique diagnosis such as schizophrenia. A number of association studies between the DRD4 gene 48 bp-VNTR polymorphism at exon 3 and psychotic disorders have been reported, but the results have been controversial. Both 48 bp-VNTR and the 12 bp-VNTR (at exon 1) polymorphisms of this gene were analyzed in a group of 149 unrelated Mexican subjects with a diagnosis of schizophrenia, schizoaffective disorder, schizophreniform disorder, major depression and bipolar disorder, both with psychotic symptoms, brief psychotic disorder, delusional disorder and non-specific psychotic disorder, and in 169 individuals free of psychiatric illnesses. There were no differences in allele or genotype frequencies between groups for the 12 bp-VNTR polymorphisms. However, a significant excess of "rare" alleles (3-, 5-, 6- and 8-48 bp repeats alleles) was found in the group of psychotics. Moreover, haplotypes 3-A1, 5-A1, 6-A1 and 8-A1 were significantly more frequently associated with cases. This positive association supports a role of this molecule as a genetic risk factor in psychotic disorders.  相似文献   

9.
Several investigations have reported associations between serotonin 1A (5-HT1A) receptor and major psychiatric disorders, such as schizophrenia and bipolar disorder (BP), making the 5-HT1A receptor gene (HTR1A) a good candidate gene for the pathophysiology of schizophrenia and BP. To evaluate the association between HTR1A and schizophrenia and BP, we conducted a case-control study of Japanese population samples with two single- nucleotide polymorphisms (SNPs), including rs6295 (C-1019G) in HTR1A. In addition, we conducted a meta-analysis of rs6295, which has been examined in other studies. Using one functional single- nucleotide polymorphism (SNP; rs6295) and one tagging SNP (rs878567), we conducted a genetic association analysis of case-control samples (857 schizophrenic patients, 1028 BP patients and 1810 controls) in the Japanese population. Two association studies for schizophrenia and three association studies for BP, including this study, met our criteria for the meta-analysis of rs6295. We found an association between HTR1A and Japanese BP in a haplotype-wise analysis, the significance of which remained after Bonferroni correction. In addition, we detected an association between rs6295 and BP in the meta-analysis (fixed model: P(Z) = 0.000400). However, we did not detect an association between HTR1A and schizophrenia in the allele/genotype-wise, haplotype-wise or meta-analysis. HTR1A may play an important role in the pathophysiology of BP, but not schizophrenia in the Japanese population. In the meta-analysis, rs6295 in HTR1A was associated with BP patients.  相似文献   

10.
Several lines of evidence, including genome-wide linkage scans and postmortem brain studies of patients with schizophrenia or bipolar disorder, have suggested that DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, 32 kDa), a key regulatory molecule in the dopaminergic signaling pathway, is involved in these disorders. After evaluating the linkage disequilibrium pattern of the gene encoding DARPP-32 (PPP1R1B; located on 17q12), we conducted association analyses of this gene with schizophrenia and bipolar disorder. Single-marker and haplotypic analyses of four single nucleotide polymorphisms (SNPs; rs879606, rs12601930, rs907094, and rs3764352) in a sample set (subjects with schizophrenia = 384, subjects with bipolar disorder = 318, control subjects = 384) showed that PPP1R1B polymorphisms were not significantly associated with schizophrenia, whereas, even after Bonferroni corrections, significant associations with bipolar disorder were observed for rs12601930 (corrected genotypic p = 0.00059) and rs907094 (corrected allelic p = 0.040). We, however, could not confirm these results in a second independent sample set (subjects with bipolar disorder = 366, control subjects = 370). We now believe that the significant association observed with the first sample set was a result of copy number aberrations in the region surrounding these SNPs. Our findings suggest that PPP1R1B SNPs are unlikely to be related to the development of schizophrenia and bipolar disorder in the Japanese population.  相似文献   

11.
Molecular genetics of bipolar disorder and depression   总被引:4,自引:0,他引:4  
In this review, all papers relevant to the molecular genetics of bipolar disorder published from 2004 to the present (mid 2006) are reviewed, and major results on depression are summarized. Several candidate genes for schizophrenia may also be associated with bipolar disorder: G72, DISC1, NRG1, RGS4, NCAM1, DAO, GRM3, GRM4, GRIN2B, MLC1, SYNGR1, and SLC12A6. Of these, association with G72 may be most robust. However, G72 haplotypes and polymorphisms associated with bipolar disorder are not consistent with each other. The positional candidate approach showed an association between bipolar disorder and TRPM2 (21q22.3), GPR50 (Xq28), Citron (12q24), CHMP1.5 (18p11.2), GCHI (14q22-24), MLC1 (22q13), GABRA5 (15q11-q13), BCR (22q11), CUX2, FLJ32356 (12q23-q24), and NAPG (18p11). Studies that focused on mood disorder comorbid with somatic symptoms, suggested roles for the mitochondrial DNA (mtDNA) 3644 mutation and the POLG mutation. From gene expression analysis, PDLIM5, somatostatin, and the mtDNA 3243 mutation were found to be related to bipolar disorder. Whereas most previous positive findings were not supported by subsequent studies, DRD1 and IMPA2 have been implicated in follow-up studies. Several candidate genes in the circadian rhythm pathway, BmaL1, TIMELESS, and PERIOD3, are reported to be associated with bipolar disorder. Linkage studies show many new linkage loci. In depression, the previously reported positive finding of a gene-environmental interaction between HTTLPR (insertion/deletion polymorphism in the promoter of a serotonin transporter) and stress was not replicated. Although the role of the TPH2 mutation in depression had drawn attention previously, this has not been replicated either. Pharmacogenetic studies show a relationship between antidepressant response and HTR2A or FKBP5. New technologies for comprehensive genomic analysis have already been applied. HTTLPR and BDNF promoter polymorphisms are now found to be more complex than previously thought, and previous papers on these polymorphisms should be treated with caution. Finally, this report addresses some possible causes for the lack of replication in this field.  相似文献   

12.
Neuregulin 1 (NRG1) is a strong candidate for involvement in the aetiology of schizophrenia. A haplotype, initially identified as showing association in the Icelandic and Scottish populations, has shown a consistent effect size in multiple European populations. Additionally, NRG1 has been implicated in susceptibility to bipolar disorder. In this first study to select markers systematically on the basis of linkage disequilibrium across the entire NRG1 gene, we used haplotype-tagging single-nucleotide polymorphisms to identify single markers and haplotypes associated with schizophrenia and bipolar disorder in an independently ascertained Scottish population. Haplotypes in two regions met an experiment-wide significance threshold of P=0.0016 (Nyholt's SpD) and were permuted to correct for multiple testing. Region A overlaps with the Icelandic haplotype and shows nominal association with schizophrenia (P=0.00032), bipolar disorder (P=0.0011), and the combined case group (P=0.0017). This region includes the 5' exon of the NRG1 GGF2 isoform and overlaps the expressed sequence tag (EST) cluster Hs.97362. However, no haplotype in Region A remains significant after permutation analysis (P>0.05). Region B contains a haplotype associated with both schizophrenia (P=0.00014), and the combined case group (P=0.000062), although it does not meet Nyholt's threshold in bipolar disorder alone (P=0.0022). This haplotype remained significant after permutation analysis in both the schizophrenia and combined case groups (P=0.024 and P=0.016, respectively). It spans a approximately 136 kb region that includes the coding sequence of the sensory and motor neuron derived factor (SMDF) isoform and 3' exons of all other known NRG1 isoforms. Our study identifies a new of NRG1 region involved in schizophrenia and bipolar disorder in the Scottish population.  相似文献   

13.
Objectives:  To evaluate co-segregation and genetic associations between von Willebrand's disease (vWD) and psychotic disorders.
Methods:  The study was initiated following ascertainment of a nuclear family in which four members were diagnosed with vWD and psychotic/mood disorders. As co-segregation was uncertain in the extended pedigree, we also investigated population-based linkage and association using polymorphisms of vWF , the gene conferring susceptibility to vWD. Three common vWF polymorphisms were investigated among 194 patients with psychotic disorders (bipolar I disorder, BD I; schizoaffective disorder, SZA and schizophrenia, SZ) and their parents. The cases were also compared with unrelated population-based controls (n = 183).
Results:  The transmission disequilibrium test and related analyses suggested nominally significant transmission distortion of one allele and related haplotypes to the probands from their parents. The most significant results were obtained among patients with BD I, and similar trends were also evident in the SZ sample. Comparisons between the cases and population-based controls did not reveal associations, though marginally significant case–control differences were obtained in the BD I sample.
Conclusions:  These studies are consistent with association and linkage between vWF and BD I. However, given the relatively small sample, stochastic variation is an alternative explanation.  相似文献   

14.
The NR2B protein is a critical structural and functional subunit of the NMDA glutamate receptor. The glutamate neurotransmitter system has been implicated in psychosis and schizophrenia, and so we looked for genetic association and measured gene expression in human DNA and brain samples, respectively, of the GRIN2B gene that codes for the NR2B protein. We tested three genetic polymorphisms: G-200T (5'UTR), A5806C and T5988C (both 3'UTR) in 180 matched schizophrenia case-control pairs, 86 schizophrenia nuclear family trios, and 318 bipolar disorder trios (of which 158 probands had psychotic symptoms). We measured brain GRIN2B mRNA levels in schizophrenia, bipolar disorder and unaffected controls (n = 35 each). We detected genetic association between the G-200T marker and schizophrenia (p = 0.002), between T5988C and bipolar disorder (p = 0.02), and between A5806C and bipolar disorder with psychotic symptoms (p = 0.0038). The T-C-C haplotype was transmitted more frequently with bipolar disorder, but less often with schizophrenia, while the G-C-T haplotype was transmitted more often in schizophrenia. Significant differences were found in overall haplotype frequencies between schizophrenia cases and controls (p = 0.005). GRIN2B expression levels in schizophrenia, bipolar disorder and controls were not significantly different. The genetic findings suggest a role for GRIN2B in schizophrenia and bipolar disorder.  相似文献   

15.
The serotonin and dopamine neurotransmitter systems are candidate pathways in the development of schizophrenia because of the assumed causal relationship with the observed symptoms as well as effective targeting of the corresponding receptors by antipsychotic drugs. However, genetic association studies have systematically focused on a limited set of genes and single nucleotide polymorphisms (SNPs), including T102C at HTR2A and Ser9Gly at DRD3. Meta-analyses of the associations between these two markers and schizophrenia revealed a true increase in risk, the magnitude of the effect being very low. In the present study we analyzed 260 schizophrenic patients and 354 control subjects from a homogeneous population, the Galician population, using an extensive linkage disequilibrium (LD) mapping approach, genotyping a total of 47 SNPs to test for the existence of additional variants that confer higher risk. We detected nominal significant association with schizophrenia for several haplotype tag SNPs (htSNPs) at HTR2A, although the significance was lost after multiple test corrections. In addition, haplotype analyses involving a sliding window approach, with window size 2 to 4 SNPs, revealed significant differences in frequencies of the DRD3 haplotypes at the 3′ half of the gene region. This difference, which remains clearly significant after multiple test corrections (p = 0.002, 0.0001, and 0.0025, for window sizes 2, 3, and 4, respectively), was mainly due to over-representation of several rare haplotypes in patients, at the expense of a single common haplotype; this represents interesting evidence of rare haplotypes for susceptibility detected using common htSNPs due to their strong effect.  相似文献   

16.
Recently, Pimm et al. identified Epsin 4 on chromosome 5q33 as a susceptibility gene for schizophrenia in the British population, based on linkage and association evidence. In Pimm's case-control study, both the single polymorphisms and the individual haplotypes at the 5' end of the gene showed genetic association with schizophrenia. Here, we report the first study evaluating the relevance of Epsin 4 and schizophrenia outside the British population. Markers showing positive results in the original work as well as two additional polymorphisms were genotyped in 308 Han Chinese family trios. Transmission disequilibrium analysis was used to test for association of single-locus markers and multi-locus haplotypes with schizophrenia. Although no individual marker was significant at the P=0.05 level, the haplotypes detected in our samples, different from those previously reported, showed strong evidence of association (most significant global P=0.0021). Our results indicate the presence of a locus near the 5' end of Epsin 4 conferring susceptibility to the disease and provide further support for Epsin 4 as an important potential contributor to genetic risk in schizophrenia.  相似文献   

17.
OBJECTIVE: In the study of bipolar affective disorder and schizophrenia, there is some evidence suggesting a phenotypic and genetic overlap between the two disorders. A possible link between bipolar affective disorder and schizophrenia remains arguable, however. The authors hypothesized that dysbindin, which is a probable susceptibility gene for schizophrenia, was associated with bipolar affective disorder and tested this hypothesis using a case-control design study. METHOD: Participants included 213 patients with bipolar I disorder and 197 comparison subjects. In each subject, 10 polymorphisms in the dysbindin gene were genotyped and assessed. RESULTS: Two polymorphisms showed individual genotypic association with bipolar I disorder. Multiple marker haplotypes were more strongly associated, with the rarer of the two common haplotypes being overrepresented in the patients with bipolar affective disorder. A similar finding was reported in patients with schizophrenia in a previous study. CONCLUSIONS: Findings suggest that the human dysbindin gene may play a role in the susceptibility to bipolar affective disorder, which underscores a potentially important area of etiological overlap with schizophrenia. The existence of shared genetic risk factors will, in time, lead to changes in the current nosology of major psychoses.  相似文献   

18.
Mutation analysis of the NMDAR2B (GRIN2B) gene in schizophrenia   总被引:4,自引:0,他引:4  
NMDA receptor dysfunction may be involved in the pathophysiology of schizophrenia. Based on this hypothesis, we screened 48 Japanese patients with schizophrenia for mutations in the coding region of the NMDAR2B subunit gene (GRIN2B). An association study between the identified DNA sequence variants and schizophrenia was performed in 268 Japanese patients with schizophrenia and 337 Japanese control subjects. Eight single nucleotide polymorphisms were detected, all of which were synonymous. The association sample showed statistically significant excesses of homozygosity for the polymorphisms in the 3' region of the last exon in the patients with schizophrenia (P = 0.004) and higher frequency of the G allele of the 366C/G polymorphism (corrected P = 0.04) in the patients than in the controls. Although we did not detect NMDAR2B protein variants, our findings support the possibility that the GRIN2B gene or a locus in linkage disequilibrium with it may confer susceptibility to schizophrenia. Replication studies in independent samples are warranted.  相似文献   

19.
There is evidence for the involvement of glutamatergic transmission in the pathogenesis of major psychoses. The two most commonly used mood stabilizers (ie lithium and valproate) have been found to act via the N-methyl-D-aspartate receptor (NMDAR), suggesting a specific role of NMDAR in the pathogenesis of bipolar disorder (BP). The key subunit of the NMDAR, named NMDA-1 receptor, is coded by a gene located on chromosome 9q34.3 (GRIN1). We tested for the presence of linkage disequilibrium between the GRIN1 (1001-G/C, 1970-A/G, and 6608-G/C polymorphisms) and BP. A total of 288 DSM-IV Bipolar I, Bipolar II, or schizoaffective disorder, manic type, probands with their living parents were studied. In all, 73 triads had heterozygous parents for the 1001-G/C polymorphism, 174 for the 1970-A/G, and 48 for the 6608-G/C. These triads were suitable for the final analyses, that is, the transmission disequilibrium test (TDT) and the haplotype-TDT. For the 1001-G/C and the 6608-G/C polymorphisms, we found a preferential transmission of the G allele to the affected individuals (chi(2)=4.765, df=1, P=0.030 and chi(2)= 8.395, df=1, P=0.004, respectively). The 1001G-1970A-6608A and the 1001G-1970A-6608G haplotypes showed the strongest association with BP (global chi(2)=14.12, df=4, P=0.007). If these results are replicated there could be important implications for the involvement of the GRIN1 in the pathogenesis of BP. The role of the gene variants in predicting the response to mood stabilizers in BP should also be investigated.  相似文献   

20.
Norepinephrine is one of the neurotransmitters which has been implicated in the pathogenesis of mood disorders and schizophrenia. The norepinephrine transporter (NET) gene may be a candidate gene for the study of the genetics of these disorders. In this study, 198 patients with schizophrenia and 100 patients with bipolar disorder were analysed for a silent mutation 1287 A/G, located in the coding region (exon 9) of the NET gene, to determine the association between this polymorphism of the NET gene and bipolar disorder or schizophrenia. No association was found between the studied polymorphism of the NET gene and either bipolar disorder or schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号