首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES AND METHODS: Seven families were studied with an axonal form of Charcot-Marie-Tooth disease (CMT) associated with mutations in the peripheral myelin protein zero (MPZ) gene-Thr124Met or Asp75Val. RESULTS: Patients with these mutations commonly showed relatively late onset sensorimotor neuropathy predominantly involving the lower limbs. Sensory impairment typically was marked, and distal muscle atrophy and weakness were also present in the legs. Adie's pupil and deafness were often present, and serum creatine kinase concentrations were often raised irrespective of which MPZ mutation was present. Relatively well preserved motor and sensory nerve conduction velocities contrasted with reduced or absent compound muscle action potentials and sensory nerve action potentials. Axonal change with marked axonal sprouting was seen in sural nerve specimens. CONCLUSION: The similar associated clinical findings suggest that patients with axonal CMT with an MPZ gene mutation share distinctive clinical features.  相似文献   

2.
OBJECTIVE: We report on a Japanese family with Charcot Marie Tooth disease (CMT) with the Thr124Met mutation in the peripheral myelin protein zero (MPZ) gene. MATERIAL AND METHODS: Based on the clinical study, we investigated MPZ gene by direct sequence analysis and polymerase chain reaction restriction fragment length polymorphism analysis. RESULTS: Genotyping of four symptomatic family members showed that one family member with severe disease symptoms was homozygous, while the other three were heterozygous. The heterozygous cases were clinicopathologically determined to be the axonal type, which is characterized by late-onset and slow progression associated with Adie's pupil and deafness. The homozygous case was the demyelinating type, which showed earlier onset, rapid progression, sural nerve demyelination, and cranial nerve demyelination at autopsy. CONCLUSIONS: We suggest that axonal and demyelinating forms of CMT are not two distinct classes, but rather parts of a spectrum of genotypically related conditions, particularly with some MPZ mutations.  相似文献   

3.
BACKGROUND: The MPZ Thr124Met mutation is characterised by a late onset, pupillary abnormality, deafness, normal or moderate decreased motor nerve conduction velocity, and axonal damage in sural nerve biopsy. OBJECTIVE: To investigate the clinical manifestations of the axonal or demyelinating forms of the Japanese MPZ Thr124Met mutation originating in four different areas: Tottori, Nara, Aichi, and Ibaragi. RESULTS: Genotyping with DNA microsatellite markers linked to the MPZ gene on chromosome 1q22-q23 showed shared allelic characteristics between 12.65 cM and revealed a common haplotype in all Tottori families. Aichi and Ibaragi families shared parts of the haplotype around the MPZ gene. However, there was no consistency with a Nara family. CONCLUSIONS: The high frequency of this peculiar genotype in the Tottori CMT population is presumably due to a founder effect, but in Thr124 it might constitute a mutation hotspot in the MPZ gene.  相似文献   

4.
Mutations in the gene for the major protein component of peripheral nerve myelin, myelin protein zero (MPZ, PO), cause hereditary disorders of Schwann cell myelin such as Charcot-Marie-Tooth neuropathy type 1B (CMT1B), Dejerine-Sottas syndrome (DSS), and congenital hypomyelinating neuropathy (CHN). More recently, PO mutations were identified in the axonal type of CMT neuropathy, CMT2, which is different from the demyelinating variants with respect to electroneurography and nerve pathology. We screened 49 patients with a clinical and histopathological diagnosis of CMT2 for mutations in the PO gene. Three heterozygous single nucleotide changes were detected: two novel missense mutations, Asp61Gly and Tyr119Cys, and the known Thr124Met substitution, that has already been reported in several CMT patients from different European countries. Haplotype analysis for the PO locus proved that our patients with the 124Met allele were not related to a cohort of patients with the same mutation, all of Belgian descent and all found to share a common ancestor (7). Our data suggest that PO mutations account for a detectable proportion of CMT2 cases with virtually every patient harbouring a different mutation but recurrence of the Thr124Met amino acid substitution. The high frequency of this peculiar genotype in the European CMT population is presumably not only due to a founder effect but Thr124Met might constitute a mutation hotspot in the PO gene as well.  相似文献   

5.
OBJECTIVE: To report the clinical and electrophysiological characteristics of a family presenting Charcot-Marie-Tooth disease (CMT) associated with autonomic nervous system disturbances. METHODS: We studied nerve conduction values, postural adaptation, sympathetic skin reflex, the variation in heart rate by the Valsalva ratio and pupillometry in 7 members of a French family in which CMT due to a Thr124Met mutation in the myelin protein zero (MPZ) gene was diagnosed. RESULTS: Clinical and laboratory evidence of autonomic nervous system disturbances were found in the affected individuals. The clinical phenotype was characterized by sensorimotor peripheral neuropathy, defined as axonal type by electrophysiological studies, and was associated with severe pain, bladder dysfunction, sudorimotor disturbances and abolished pupillary reflex to light. Moreover, two patients had severe restrictive respiratory insufficiency requiring noninvasive mechanical ventilation. CONCLUSIONS: Our study demonstrates that autonomic disturbances may be one of the major clinical signs associated with CMT secondary to MPZ gene mutation in codon 124. Testing of pupillary reflex allows the discrimination of affected and unaffected subjects in our family. However, involvement of the autonomic nervous system in this type of neuropathy is unclear and further studies are required to elucidate the role of the MPZ gene in the autonomic nervous system.  相似文献   

6.
The purpose of the present study was to describe clinico-electrophysiological features and lower limb muscle MRI findings in a CMT2J pedigree due to MPZ Thr124Met mutation. We examined the proband, aged 56 years, and her affected daughter and son, aged 30 and 29 years. Disease severity in terms of ability to walk and run was established using a nine-point functional disability scale (FDS). We administered the CMT neuropathy score (CMTNS) based on patient’s symptoms, neurologic examination and neurophysiologic testing. All three patients had non-symptomatic Adie’s pupil. The proband and her son presented with late-onset lower limb sensorimotor neuropathy and pes cavus; the proband’s daughter had no signs of polyneuropathy. FDS score was 4 in the proband, 2 in her son, and 0 (normal) in her daughter. In both symptomatic patients, electrophysiological study showed a pattern of length-dependent axonal neuropathy mainly involving lower limb nerves; this was normal in the other patient. CMTNS was 18 in the proband, 12 in her son, and 0 (normal) in her daughter. MRI of foot and leg musculature was normal in the proband’s daughter, whereas the other two patients showed massive fatty atrophy of intrinsic foot musculature, extensive and diffuse fatty atrophy of leg muscles in the proband, and mild distally accentuated fatty infiltration of calf muscles in her son. Muscle edema, detected only in the proband’s son, was present in 7 out of 22 (33%) of visualized leg muscles, whereas contrast enhancement occurred in 6 of them. The reported mutation may manifest with either isolated Adie’s pupil or pupil abnormalities with late-onset sensorimotor length-dependent axonal polyneuropathy, though the presence of pes cavus might indicate an earlier onset. MRI examination helps to delineate an accurate extent of muscle involvement in the disease.  相似文献   

7.
Charcot-Marie-Tooth disease type 1B (CMT1B) is a demyelinating neuropathy inherited as an autosomal dominant trait. The majority of CMT1B cases are caused by mutations in the myelin protein zero (P0) gene (MPZ). Only a few mutations in MPZ gene have been reported to be associated with focally folded myelin sheaths. We have studied five patients from one family with five generations, affected by CMT1B disease. The morphological studies of sural nerve biopsy performed in the proband revealed fibers with focally folded myelin. DNA sequencing analysis showed the Asn131Lys mutation in the MPZ gene in three members of the affected family.  相似文献   

8.
Charcot-Marie-Tooth disease type 1B (CMT 1B) is caused by mutations in the gene coding for peripheral myelin protein zero (MPZ, P0) that plays a fundamental role in adhesion and compaction of peripheral myelin. Here we report a Costa Rican family with a hereditary peripheral neuropathy due to a novel Tyr145Ser MPZ mutation. Four family members were heterozygously affected; two siblings of two heterozygous carriers were homozygous for this mutation. On neurological examination the heterozygous parents and their homozygous children both showed distal sensory deficits. The mother and the siblings displayed impaired deep tendon reflexes and mild sensory ataxia. The homozygous individuals were more severely affected with an earlier age of onset, distal motor weakness, and pupillary abnormalities. Electrophysiological studies revealed both signs of demyelination and axonal nerve degeneration. The sural nerve biopsy of one sibling showed thinly myelinated nerve fibers, onion bulb formation, and clusters of regenerating fibers. On electron microscopy axonal degeneration and decompaction of inner myelin layers were found. This Costa Rican family shows phenotypic variability depending on the homozygous or heterozygous state of the Tyr145Ser mutation carriers.A. Leal and C. Berghoff contributed equally to this work.  相似文献   

9.
A French family had Charcot-Marie-Tooth disease type 2 (CMT2) which was characterised by late onset of peripheral neuropathy involvement, Argyll Robertson-like pupils, dysphagia, and deafness. Electrophysiological studies and nerve biopsy defined the neuropathy as axonal type. Genetic analysis of myelin protein zero (MPZ) found a mutation in codon 124 resulting in substitution of threonine by methionine. One of the patients, presently 30 years old, showed only Argyll Robertson-like pupils as an objective sign but no clinical or electrophysiological signs of peripheral neuropathy.  相似文献   

10.
We identify the prevalence and genetic features of Charcot-Marie-Tooth disease (CMT) in Yonago and Sakaiminato, western Japan. From information in registered records and questionnaires, definite or candidate CMT patients were examined. Eleven families with 19 patients (7 female and 12 male) were identified and the prevalence was 10.8 per 100,000 in April 2000. Eleven patients in 6 families showed a Thr124Met mutation of the MPZ gene, in 2 families duplication of the PMP22 gene was suggested and no abnormalities were found in 2 families. To identify the occurrence of mildly affected CMT, the exhaustive region-matched and family study was necessary.  相似文献   

11.
BACKGROUND: Three loci for autosomal dominant hereditary motor and sensory neuropathy type I (HMSN I) or Charcot-Marie-Tooth disease type 1 (CMT1) have been identified on chromosomes 17p11.2 (CMT1A), 1q21-q23 (CMT1B), and 10q21.1-q22.1 (designated here as CMT1D). The genes involved are peripheral myelin protein 22 (PMP22), myelin protein zero (MPZ), and the early growth response element 2 (EGR2), respectively. Probably a fourth locus (CMT1C) exists since some autosomal dominant HMSN I families have been excluded for linkage with the CMT1A and CMT1B loci. Four loci for autosomal dominant hereditary motor and sensory neuropathy type II (HMSN II) or Charcot-Marie-Tooth disease type 2 (CMT2) have been localized on chromosomes 1p35-p36 (CMT2A), 3q13-q22 (CMT2B), 7p14 (CMT2D), and 3p (HMSN-P). OBJECTIVE: To describe the clinical, electrophysiologic, and neuropathological features of a novel type of Charcot-Marie-Tooth disease. PATIENTS AND METHODS: We performed linkage studies with anonymous DNA markers flanking the known CMT1 and CMT2 loci. Patients and their relatives underwent clinical neurologic examination and electrophysiologic testing. In the proband, a sural nerve biopsy specimen was examined. RESULTS: Linkage studies excluded all known CMT1 and CMT2 loci. The clinical phenotype is mild and almost all affected individuals remain asymptomatic. Electrophysiologic and histopathological studies showed signs of a demyelinating neuropathy, but the phenotype is unusual for either autosomal dominant HMSN I or HMSN II. CONCLUSION: Our findings indicate that the HMSN in this family represents a novel clinical and genetic entity.  相似文献   

12.
Myelin protein zero (MPZ) is a major component of compact myelin in peripheral nerves where it plays an essential role in myelin formation and adhesion. MPZ gene mutations are usually responsible for demyelinating neuropathies, namely Charcot-Marie-Tooth (CMT) type 1B, Déjèrine-Sottas neuropathy and congenital hypomyelinating neuropathy. Less frequently, axonal CMT (CMT2) associated with MPZ mutations has been described. We report six patients (one sporadic case and five subjects from two apparently unrelated families) with a late onset, but rapidly progressive, axonal peripheral neuropathy. In all patients, molecular analysis demonstrated a novel heterozygous missense mutation (208C>T) in MPZ exon 2, causing the Pro70Ser substitution in the extracellular domain. The diagnosis of CMT2 associated with MPZ mutations should be considered in both sporadic and familial cases of late onset, progressive polyneuropathy. The mechanism whereby compact myelin protein mutations cause axonal neuropathy remains to be elucidated.  相似文献   

13.
We found the association of a heterozygous novel MPZ gene point mutation, Ile62Phe in exon 2, with autosomal dominant motor and sensory neuropathy with focally folded myelin sheaths. Family study revealed that de novo Ile62Phe mutation on the MPZ gene occurred in the proband and was inherited by her children with early onset slowly progressive neuropathy. Our study suggests that the characteristic pathologic findings of the sural nerve in these patients are closely related to the site and nature of amino acid substitutions of the MPZ gene.  相似文献   

14.
OBJECTIVE: To report a new mutation in the MPZ gene which encodes myelin protein zero (P0), associated with an axonal form of Charcot-Marie-Tooth disease (CMT). METHODS: Three patients from an Italian family with a mild, late onset axonal peripheral neuropathy are described clinically and electrophysiologically. To detect point mutation in MPZ gene the whole coding sequence was examined. The structure of the mutated protein was investigated using the three dimensional model of P0. RESULTS: All patients showed a relatively mild CMT phenotype characterised by late onset and heterogeneity of the clinical and electrophysiological features. Molecular analysis demonstrated a novel heterozygous T/A transversion in the exon 3 of MPZ gene that predicts an Asp109Glu amino acid substitution in the extracellular domain of the P0. Asp109 is found at the protein surface, on beta strand E, in the interior of the P0 tetramer. CONCLUSIONS: The identification of Asp109Glu mutation confirms the pivotal role of P0 in axonal neuropathies and stresses the phenotypic heterogeneity associated with MPZ mutations. This study suggests the value of screening for MPZ mutations in CMT family members with minor clinical and electrophysiological signs of peripheral neuropathy.  相似文献   

15.
Either dominantly inherited mutations in MFN2 encoding mitofusin 2 or GDAP1 encoding ganglioside-induced differentiation associated protein 1 may be associated with mild neuropathy. The proband, a 41-year-old woman, and her daughter present a severe axonal form of Charcot-Marie-Tooth (CMT) disease. Both are heterozygous for the well-described mild variant p.R120W in GDAP1, which was transmitted by the pauci symptomatic proband's mother. Given that they had an early onset in the first decade and delayed walking acquisition, the other genes implicated in axonal forms of CMT disease were analyzed. A second mutation truncating MFN2 (p.Val160fsX26) was found in the proband and her daughter. This mutation was transmitted by the proband's father who has normal neurological examination. The proband underwent two nerve biopsies which showed an axonal degeneration, myelin modifications, and intra-axonal mitochondria with distorted cristae. Such abnormal mitochondria have been reported in cases with autosomal dominant MFN2 mutations and in one patient with an autosomal recessive GDAP1 mutation. Our two cases show that heterozygous truncation of MFN2, which is silent at least until the sixth decade, when combined with the mild p.R120W GDAP1 variant, leads to a severe neuropathy. This supports the emerging hypothesis of cumulative effects of MFN2 and GDAP1 mutation.  相似文献   

16.
T Murakami  H Oomori  A Hara  E Uyama  S Mita  M Uchino 《Muscle & nerve》1999,22(11):1593-1596
Two sisters with a Charcot-Marie-Tooth disease type 1A (CMT1A) duplication, who had an unusual CMT1A clinical phenotype, are described. The 63-year-old proband presented with dysesthesia on the inner side of the right leg. Neurological examination revealed a localized sensory disturbance in the lower extremities and mild weakness in the feet and left hand. Her 61-year-old sister had experienced several episodes of acute paralysis, and neurological examination showed moderate, sensory-dominant polyneuropathy. A reduction of myelinated fibers with many onion-bulb formations were observed in the sural nerve of the proband, and electrophysiological studies showed reduced motor nerve conduction velocities in both sisters. To diagnose CMT1A, we developed a CMT1A duplication test based on detection of CMT1A-specific junction fragments using the long polymerase chain reaction (PCR) method. A 3.3-kb CMT1A-specific junction fragment was detected in both patients, and their neuropathy may therefore have been associated with CMT1A duplication.  相似文献   

17.
Charcot-Marie-Tooth type II disease (CMT2) is a typical peroneal muscular atrophy syndrome and is characterised by normal or slightly reduced nerve conduction velocities with signs of axonal degeneration. CMT2 is genetically heterogeneous: linkage to 1p35–p36 (CMT2A; KIF1B gene), 3q13–q22 (CMT2B), 7p14 (CMT2D) and 8p21 (CMT2E; NF-L gene) loci has been reported for the autosomal dominant disease; however, the majority of CMT2 families do not link to any of the reported loci. Mutations of the myelin protein zero (MPZ) gene were found associated with demyelinating forms of hereditary neuropathies such as CMT1B, Dejerine-Sottas syndrome and congenital hypomyelination. So far, few CMT2 cases (CMT2F) were found to be caused by point mutations in the MPZ (see CMT Mutation Database, http://molgen-www.uia.ac.be/CMTMutations/ ) in 1q22 region.
We report a family in which three members are affected with a late-onset peripheral neuropathy. The index patient is a 68-year-old male who presents with pronounced distal muscle weakness of inferior limbs, bilateral pes cavus and absence of deep tendon reflexes. Electrophysiological findings were suggestive of an axonal form of peripheral neuropathy, thus allowing the diagnosis of CMT type 2. At the clinical and electrophysiological examination, two other family members (first cousins of the proband) resulted to be affected. MPZ gene direct sequencing revealed a heterozygous T/A transversion in the exon 3 of the gene, predicting an Asp103Glu aminoacid substitution in the extracellular domain of the protein. This variant was not found in unaffected relatives and in 100 normal chromosomes. This finding confirms the role of protein zero in axonal neuropathies and the phenotypic heterogeneity associated with MPZ mutations.
(The laboratory is a member of the European CMT Consortium; partially granted by Ministero della Sanitá to PM, MURST to FA)  相似文献   

18.
Mutations in the gene for the peripheral myelin protein zero (P0, MPZ) cause type 1B of Charcot-Marie-Tooth sensorimotor neuropathy (CMT1B). Here we report a German family with a novel heterozygous P0 nonsense mutation (G206X) that supposedly removes four-fifths of the amino acid residues constituting the P0 intracellular domain. The 12-year-old propositus had childhood-onset CMT1B associated with bilateral pes cavus, moderate lower limb weakness, and mildly reduced sensory qualities in the distal legs. The electrophysiology was consistent with a demyelinating neuropathy. He inherited the mutation from his mother who had no complaints but slight pes cavus deformity and slow nerve conduction velocities (NCV). Conclusively, truncating mutations within the P0 intracellular domain do not necessarily cause a severe phenotype such as Dejerine-Sottas syndrome (DSS) or congenital hypomyelinating neuropathy (CHN), but can result in mild or moderate CMT1B with intrafamilial clinical variability.  相似文献   

19.
Objective: To report a family with X-linked Charcot-Marie-Tooth neuropathy (CMTX) with a novel mutation of connexin 32 (Cx32).
Background: Cx32, a gap-junction protein, is expressed in various neural and non-neural tissues. In the peripheral nervous system (PNS), Cx32 is expressed by the Schwann cell and it is believed to form reflexive gap-junctions at the Schmidt-Lantermann incisures and paranodes; in the central nervous system, Cx32 is expressed by neurons and oligodendrocytes. Mutations of Cx32 causes an apparently tissue-specific disorder of PNS: CMTX.
Methods: We examined, clinically and electrophysiologically, 2 brothers with CMT and their asymptomatic mother. We performed a sural nerve biopsy in the 29-year-old proband and analysed the Cx32 gene (GJB1) by direct nucleotide sequencing.
Results: We detected a novel GTA→GAA of GJB1 that is predicted to cause a Val23Glu substitution in the first transmembrane domain of Cx32. NCV studies disclosed features of a demyelinating neuropathy in the severely-affected hemizygous brother, and slowing of the sensory conduction velocity in the sural nerve in the mother who showed pes cavus and areflexia. In all three examined patients, BAEPs showed both delayed wave 1 and prolonged interpeak-latency-time (IPL I-V); central motor conduction time by MEPs was normal. The nerve biopsy in the proband was consistent with a primary axonal degeneration.
Conclusions: Cx32 mutations may lead also to a dysfunction of the CNS. Electrophysiological abnormalities of the CNS pathways may orientate the diagnosis of CMT towards Cx32.  相似文献   

20.
Mutations in the major peripheral nervous system (PNS) myelin protein, myelin protein zero (MPZ), cause Charcot-Marie-Tooth Disease type 1B (CMT1B), typically thought of as a demyelinating peripheral neuropathy. Certain MPZ mutations, however, cause adult onset neuropathy with minimal demyelination but pronounced axonal degeneration. Mechanism(s) for this phenotype are unknown. We performed an autopsy of a 73-year-old woman with a late-onset neuropathy caused by an H10P MPZ mutation whose nerve conduction studies suggested severe axonal loss but no demyelination. The autopsy demonstrated axonal loss and reorganization of the molecular architecture of the axolemma. Segmental demyelination was negligible. In addition, we identified focal nerve enlargements containing MPZ and ubiquitin either in the inner myelin intralaminar and/or periaxonal space that separates axons from myelinating Schwann cells. Taken together, these data confirmed that a mutation in MPZ can cause axonal neuropathy, in the absence of segmental demyelination, thus uncoupling the two pathological processes. More important, it also provided potential molecular mechanisms as to how the axonal degeneration occurred: either by disruption of glial-axon interaction by protein aggregates or by alterations in the molecular architecture of internodes and paranodes. This report represents the first study in which the molecular basis of axonal degeneration in the late-onset CMT1B has been explored in human tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号