首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Effects of hippocampal kindling on paired-pulse response in CA1 in vitro.   总被引:1,自引:0,他引:1  
D Zhao  L S Leung 《Brain research》1991,564(2):220-229
Kindled rats were given high-frequency stimulations delivered to hippocampal CA1 on one side to induce afterdischarges (ADs). Control rats received the same number of pulses of a similar intensity at 0.17 Hz (low-frequency stimulations (LFSs)). On 1-2 days or on 21-23 days after fifteen ADs/LFSs (delivered hourly, 5 times a day over 3 days), hippocampal slices were prepared and incubated in vitro, with the experimenter blind to the previous history of stimulation of the rat. Extracellular responses following single or paired-pulse stimulation of the Schaffer collaterals (stratum radiatum) were recorded at the CA1 cell layer in vitro, and analyzed as population excitatory postsynaptic potentials (EPSPs) and population spikes. At 1.5, 2 or 4 times the response threshold, and on either day 1 or day 23 after the last AD/LFS, the paired-pulse response at interpulse intervals of 30-200 ms was significantly larger for the kindled group of slices than for the control group (ANOVA, typically P less than 0.0001), for either the population spike or the population EPSP. Stimulus thresholds for the evoked response did not differ between kindled and control group of slices. The population EPSP and spike in response to a single pulse were enhanced (as compared to the control group) on day 1 but not on day 23 after kindling. The facilitation of paired-pulse response may be interpreted as caused by a decrease in postsynaptic (and possibly presynaptic) inhibition in the hippocampal CA1 region, which persisted to at least 3 weeks after hippocampal kindling.  相似文献   

2.
The objective of this project was to study the behavioral and physiological effects at 6–9 weeks after evoking 15 afterdischarges (ADs) in hippocampal CA1 (partial hippocampal kindling). Rats were trained on the open radial arm maze (RAM) with all eight arms baited, kindled, and then tested again on the RAM, followed by in vitro recordings at 8–9 weeks after kindling. Partial kindling was manifested by an increase in hippocampal AD duration. Enhancement of the commissural basal dendritic excitatory postsynaptic potential (EPSP) was observed for at least 1 day after the ADs kindled rats performed worse than control rats during the 1st but not during the 7th or 8th week after kindling. Rats that were slow in acquiring the RAM showed more RAM errors after kindling than those that showed fast acquisition. At 8–9 weeks after kindling, as shown by field potential recording in the hippocampal slice in vitro, kindled rats showed an increase in paired-pulse facilitation (PPF) of the EPSP in CA1 but a decreased PPF of the perforant path to dentate gyrus EPSP; no change in the PPF of the population spike was found in CA1 or DG. In a second group of rats that were not run on the RAM, at 6 weeks after kindling, PPF of the population EPSP and population spike were enhanced in the kindled rats compared to the control rats in CA1, but not in DG or CA3 in vitro (at 1.5, 2, or 4 times threshold intensity). In conclusion, partial hippocampal kindling induced persistent physiological effects for up to 8–9 weeks, and it is suggested that the normalization of the paired-pulse population spike response in CA1 and DG at more than 6 weeks after kindling may be accompanied by a recovery of RAM performance. © 1994 Wiley-Liss, Inc.  相似文献   

3.
L Guo  H Chai  X Liu  Y Xie 《Brain research》1992,572(1-2):269-272
The changes of population spike(PS)/population excitatory postsynaptic potential (EPSP) slope relationship and paired-pulse facilitation (PPF) were primarily investigated with extracellular recording in stratum pyramidale to stimulation of Schaffer collaterals in CA1 region of hippocampal slices from coriaria lactone (CL)-kindled and control rats. The results were as follows: (1) neither spontaneous nor evoked epileptiform bursts were found in all hippocampal slices from CL-kindled and control rats; (2) the synaptic efficacy, expressed by the ratio of PS/EPSP slope, at low stimulation intensity ranging from 10-30% of its maximum was significantly increased on CL-kindled rats (P less than 0.05); and (3) although PPF was found in all slices, the PPF strength only at stimulation intensity of 10 and 20% of maximum was augmented remarkably in CL-kindled rats (P less than 0.002 and 0.024, respectively). According to the results from our previous work, we suggested that the increment of PS/EPSP slope ratio and PPF strength at low stimulation intensity may result from the potentiation of excitatory synaptic activity or/and the change of intrinsic excitability of pyramidal neurons.  相似文献   

4.
Rats with chromically implanted electrodes in the hippocampal CA1 region were trained in the open radial 8-arm maze and then subjected to kindling (afterdischarges, ADs) or 0.17 Hz low-frequency stimulations (LFSs) as controls. Partial kindling (21 ADs) induced a general increase of AD threshold but no motor convulsions. The commissurally evoked average evoked potentials (AEPs) in CA1 were enhanced above the pre-AD baseline or the AEPs in LFS control rats at 1 day after the 1st, 6th, 11th and 16th AD and for at least 25 days after 21 ADs. Similarly, maze performance was significantly worse in kindled than LFS rats for about 4 weeks after 21 ADs/LFSs. The study confirms the long-lasting behavioral effect of partial kindling and suggests that synaptic enhancent may underlie the behavioral disruption.  相似文献   

5.
The early and long-lasting effects of pentylenetetrazol-kindling on hippocampal CA1 synaptic transmission were investigated. Experiments were carried out in the hippocampal slices from control and kindled rats at two post-kindling periods, i.e. 48–144 h (early phase) and 30–33 days (long-lasting phase). Field potentials, i.e. population excitatory postsynaptic potential (pEPSP) and population spike (PS) were recorded at the stratum pyramidale following stimulation of the stratum radiatum. Kindling-induced changes in synaptic transmission were assessed by stimulus-response functions and paired-pulse responses. The results showed that 48–144 h after kindling, the PS amplitude in the CA1 of kindled slices enhanced, and a second PS appeared compared to control slices. But at 30–33 days after kindling, the pEPSP slope in the CA1 of kindled slices enhanced without any change in the PS compared with those in the control slices. Evaluation of paired-pulse responses showed a significant reduction in paired-pulse inhibition for PS 48–144 h after kindling and a significant increase in paired-pulse inhibition for pEPSP 30–33 days after kindling. Our results suggest that pentylenetetrazol-kindling is accompanied by enhanced excitability and a reduction of paired-pulse inhibition in hippocampal CA1. The increased paired-pulse inhibition one month after kindling, may be interpreted as an adaptive process to cope with subsequent seizures.  相似文献   

6.
We investigated the effects of a surgical lesion of one vestibular inner ear (unilateral vestibular damage [UVD]) on the field potential responses of CA1 neurons in vitro. Hippocampal slices were removed from rats at 4-6 weeks or 5-6 months post-UVD, and the field responses of CA1 neurons to electrical stimulation of the Schaffer collateral commissural pathway were analyzed. Compared with slices from sham and naive control animals, slices from UVD animals at 5-6 months post-UVD exhibited decreases in the population spike amplitude, the somal field excitatory postsynaptic potential (sfEPSP) slope, and the field EPSP (fEPSP) slope. For the population spike amplitude and fEPSP slope, this effect was observed in both CA1 ipsilateral and contralateral to the UVD. On both the ipsilateral and contralateral sides, paired-pulse testing showed increases in paired-pulse inhibition at the shortest interstimulus intervals (ISIs), with increases in paired-pulse facilitation at longer ISIs. This study provides the first evidence that peripheral vestibular damage can produce long-term changes in hippocampal electrophysiological activity in vitro.  相似文献   

7.
Neonatal rats were exposed to lead from parturition to weaning via the milk of dams drinking 0.2% lead acetate solution. The alterations of long-term potentiation (LTP) and paired-pulse facilitation (PPF) of hippocampal dentate gyrus in adult rats (90–115 days) following developmental lead exposure were studied in vivo. Input/output (I/O) function, paired-pulse facilitation (PPF), excitatory postsynaptic potential (EPSP) and population spike (PS) amplitude were measured in the dentate gyrus (DG) in response to stimulation applied to the lateral perforant path. The results showed that LTP was induced in control rats with an average PS potentiation of 321.1±50.0% (n=18), which was significantly greater than the increase in PS potentiation (173.5±30.0%, n=17, p<0.001) in lead-exposed rats after tetanizing stimulation. The mean EPSP potentiation increased to 172.4±27.0% (n=18) in control and 138.8±21.4% (n=17) in lead-exposed rats after tetanizing stimulation. The lead-induced impairment of LTP of PS potentiation was more serious than that of EPSP potentiation. Following pairs stimulation of perforant fiber at 250 μA and an interpulse interval (IPI) of 10–1000 ms, the average peak facilitation of PS was 211.3±25.0% (n=13) in control and 187.7±23.0% (n=11) in lead-exposed rats. The average facilitation period duration of PS was 243.0±35.8 ms (n=13) in control and 138.0±24.4 ms (n=11) in lead-exposed rats. These results suggested that developmental lead exposure in neonatal rats caused impairments in LTP and PPF of hippocampal dentate gyrus.  相似文献   

8.
The granule cells of the dentate gyrus (DG) send a strong glutamatergic projection, the mossy fibre tract, toward the hippocampal CA3 field, where it excites pyramidal cells and neighbouring inhibitory interneurons. Despite their excitatory nature, granule cells contain small amounts of GAD (glutamate decarboxylase), the main synthetic enzyme for the inhibitory transmitter GABA. Chronic temporal lobe epilepsy results in transient upregulation of GAD and GABA in granule cells, giving rise to the speculation that following overexcitation, mossy fibres exert an inhibitory effect by release of GABA. We therefore stimulated the DG and recorded synaptic potentials from CA3 pyramidal cells in brain slices from kindled and control rats. In both preparations, DG stimulation caused excitatory postsynaptic potential (EPSP)/inhibitory postsynaptic potential (IPSP) sequences. These potentials could be completely blocked by glutamate receptor antagonists in control rats, while in the kindled rats, a bicuculline-sensitive fast IPSP remained, with an onset latency similar to that of the control EPSP. Interestingly, this IPSP disappeared 1 month after the last seizure. When synaptic responses were evoked by high-frequency stimulation, EPSPs in normal rats readily summate to evoke action potentials. In slices from kindled rats, a summation of IPSPs overrides that of the EPSPs and reduces the probability of evoking action potentials. Our data show for the first time that kindling induces functionally relevant activity-dependent expression of fast inhibition onto pyramidal cells, coming from the DG, that can limit CA3 excitation in a frequency-dependent manner.  相似文献   

9.
The mechanisms of paired-pulse potentiation of the CA1 pyramidal cell population were examined by determining input-output relations for control and potentiated responses originating from the activation of radiatum fibers in the hippocampal slice preparation. Two types of potentiation for synchronously discharging pyramidal cells (population spike) were observed. In the first type, the potentiation of the population spike was found to be a combination of synaptic and extrasynaptic factors. This form of potentiation was observed in 16 of 28 slices. In the second type, the potentiation of the population spike was attributed entirely to the potentiation of summated dendritic depolarizations (population EPSP). This synaptic process of potentiation was observed in 12 of 28 slices. The involvement of only extrasynaptic mechanisms in the paired-pulse potentiation of the population spike was not observed. For the potentiation originating from a combination of synaptic and extrasynaptic mechanisms, 60% of the potentiation of the population spike was a result of synaptic factors and 40% could be attributed to extrasynaptic factors. These results support the concept that alterations in the excitability of postsynaptic neurons serve as a component of the mechanisms of paired-pulse potentiation in the radiatum fiber-CA1 pyramidal cell system.  相似文献   

10.
Field potentials were evoked in hippocampal area CA3 of anaesthetised rats by commissural stimulation, in order to study the effect of the prototypic gamma-aminobutyric acid (GABA)A antagonists gabazine (SR-95531; GBZ) and bicuculline methiodide (BMI) on paired-pulse interaction. Prominent paired-pulse inhibition of the orthodromic population spike (PS2) was observed when the interpulse interval (IPI) was < or = 40 ms, while facilitation occurred at IPIs >100 ms. Paired-pulse facilitation was lost at 500 ms. The antidromic population spike (PS1) presented paired-pulse facilitation at low-IPI, which decayed exponentially at increasing IPI. When the recording micropipettes contained millimolar concentrations of either GBZ, or BMI, single stimuli evoked repetitive (epileptiform) orthodromic PS2, of higher amplitude, while the antidromic PS1 was only weakly influenced. BMI reduced, but GBZ enhanced the low-IPI paired-pulse inhibition of the orthodromic PS2. Furthermore, BMI blunted paired-pulse facilitation of the antidromic PS1 at low-IPI, while GBZ caused strong paired-pulse inhibition of PS1 at IPI < or = 60 ms. The differential effects of GBZ and BMI on paired-pulse interaction might reflect different mechanisms of action of these compounds.  相似文献   

11.
Extracellular recordings of field potentials in area CA1 of the rat hippocampal slice have been used to investigate paired-pulse facilitation. Field potentials were evoked by maximal stimulation of the Schaffer collateral/commissural fibres. The height of the population spike (PS) in stratum pyramidale (str. pyr.) and the area under the field excitatory postsynaptic potential (EPSP) following the PS in the stratum radiatum (str. rad.) were quantified. These values were used to describe the time course of paired-pulse facilitation. Facilitation of the PS was maximal 50 ms after the conditioning pulse and was present over a period of about 500 ms. However, facilitation of the late area (LA) of the field EPSP was maximal afer 125 ms and had an overall duration of 1-2 s. The N-methyl-D-aspartate (NMDA) receptor antagonist, 2-amino-5-phosphonovaleric acid (APV), had no effect on paired-pulse facilitation of either the LA or the PS. The gamma-aminobutyric acid-B (GABAB) agonist baclofen increased facilitation of the PS. This was mainly due to a reduction of the unconditioned response. Facilitation of the LA was reduced by both baclofen and the GABAB antagonist, 2-OH-saclofen. Baclofen increased the LA of the unconditioned response, while this was unaffected by 2-OH-saclofen. The LA of facilitated responses was decreased by 2-OH-saclofen while the effect of baclofen on these responses was more complex. Baclofen reduced the LA of maximally facilitated responses, while the LA of slightly facilitated responses was increased. The results show that different mechanisms are involved in the facilitation of the LA and the PS. Furthermore, activation of GABAB receptors makes a large contribution to paired-pulse facilitation of the field EPSP. It is also suggested that recording of extracellular fields in str. rad. in response to paired-pulse stimulation provides a simple electrophysiological model for testing the effect of agents which act at the GABAB receptor.  相似文献   

12.
The influence of melatonin on hippocampal evoked potentials initiated by low- and high-frequency electrical stimulations and by two pulses applied in rapid succession was investigated. In confirmation of our previous studies, melatonin attenuated the population spike triggered by low-frequency stimulation (0.03 Hz). High-frequency stimulation (HFS; 100 Hz for 1 sec, three times every 10 sec), which in control slices permanently facilitated neuronal excitability (347% +/- 32%), was also able to amplify the melatonin-depressed potential (467.8% +/- 59.6%). Because melatonin is a hydrophobic molecule, it was dissolved and applied in ethanol. Ethanol (0.4%) by itself reduced the magnitude of HFS-induced potentiation (233.5% +/- 16.8%). The slices stimulated with two pulses separated with a delay longer than 15 msec demonstrated a facilitation of the response to the second stimuli (paired-pulse facilitation; PPF). The influence of melatonin (100 microM) on PPF was biphasic: Shortly after addition of melatonin, PPF was briefly (5-10 min) reversed to paired-pulse inhibition (PPI), which gradually returned to a stable PPF. Ethanol (0.4%) applied without melatonin exerted only a marginal, facilitatory effect on PPF. The delay between two successively applied pulses, shorter than 13 msec, resulted in attenuation of the response to the second stimuli (PPI). Melatonin (100 microM) reversed the attenuation of the second potential within 15-20 min following its application. Ethanol applied by itself at the concentration of 0.4% temporarily (5-10 min), but significantly, depressed the second potential. These results demonstrate the ability of melatonin to modulate specific forms of plasticity in hippocampal pyramidal neurons.  相似文献   

13.
Extracellular recordings of field potentials in area CA1 of the rat hippocampal slice have been used to investigate paired-pulse facilitation. Field potentials were evoked by maximal stimulation of the Schaffer collateral/commissural fibres. The height of the population spike (PS) in stratum pyramidale (str. pyr.) and the area under the field excitatory postsynaptic potential (EPSP) following the PS in the stratum radiatum (str. rad.) were quantified. These values were used to describe the time course of paired-pulse facilitation. Facilitation of the PS was maximal 50 ms after the conditioning pulse and was present over a period of about 500 ms. However, facilitation of the late area (LA) of the field EPSP was maximal after 125 ms and had an overall duration of 1–2 s. TheN-methyl-d-aspartate (NMDA) receptor antagonist, 2-amino-5-phosphonovaleric acid (APV), had no effect on paired-pulse facilitation of either the LA or the PS. The γ-aminobutyric acid-B (GABAB) agonist baclofen increased facilitation of the PS. This was mainly due to a reduction of the unconditioned response. Facilitation of the LA was reduced by both baclofen and the GABAB antagonist, 2-OH-saclofen. Baclofen increased the LA of the unconditioned response, while this was unaffected by 2-OH-saclofen. The LA of facilitated responses was decreased by 2-OH-saclofen while the effect of baclofen on these responses was more complex. Baclofen reduced the LA of maximally facilitated responses, while the LA of slightly facilitated responses was increased. The results show that different mechanisms are involved in the facilitation of the LA and the PS. Furthermore, activation of GABAB receptors makes a large contribution to paired-pulse facilitation of the field EPSP. It is also suggested that recording of extracellular fields in str. rad. in response to paired-pulse stimulation provides a simple electrophysiological model for testing the effect of agents which act at the GABAB receptor.  相似文献   

14.
Evoked field potentials were recorded in the CA3, CA1 and dentate gyrus (DG) of hippocampal slices from amygdala kindled, non-stimulated amygdala electrode-implanted, and non-implanted age-matched rats to evaluate the consequences on hippocampal neuronal networks of kindling stimulation versus electrode implantation. No overt modification of field potentials was detected in either the CA1 or the DG areas. In contrast, a very significant increase in the occurrence of repetitive population spikes evoked by single stimuli was detected in the CA3 area in slices from both amygdala kindled and non-stimulated amygdala implanted rats. The epileptiform pattern of CA3 field potentials was at least as well expressed in implanted non-stimulated, as in kindled rats, suggesting that electrode implantation has a major contribution to this marker of epileptogenesis.  相似文献   

15.
Pyramidal neurons in area CA1 of the septal hippocampus degenerate 2-3 days after an episode of transient global cerebral ischemia. The purpose of this study was to investigate synaptic transmission and passive neuronal properties in the post-ischemic period prior to neuronal death. Electrophysiological recordings were made from area CA1 in hippocampal slices prepared from rats which had survived a period of 20 min of ischemia for up to 5 days. In septal slices, field responses were in area CA1 unaltered up to 24 h after the ischemic insult. Forty-eight hours after ischemia, the mean amplitude of the population spike, but not the field-EPSP, was significantly reduced. In septal slices prepared more than 48 h after ischemia field potentials were absent or strongly attenuated, whereas they were intact in slices prepared from the temporal pole. No spontaneous discharges were detected in slices prepared at any time from post-ischemic rats. Intracellular recordings were obtained from slices up to 48 h after the ischemic episode. There was no significant difference in the resting membrane potential or input resistance between these neurons and those from control slices. Action potentials followed by a fast afterhyperpolarization and spike accommodation were preserved in all post-ischemic neurons. In all neurons investigated, orthodromic stimulation evoked an EPSP followed by a fast- and then a slow-IPSP. One hour after ischemia, the slow-IPSP was reduced. Forty-eight hours after ischemia, the fast-IPSP was significantly increased. The EPSP was markedly attenuated by the non N-methyl-D-aspartate receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione (10 microM). The residual depolarizing component was amplified by perfusing with Mg(2+)-free medium and blocked by the N-methyl-D-aspartate receptor antagonist DL-2-amino-5-phosphonovaleric acid. Paired-pulse facilitation of the EPSP was also preserved. As in control slices, the slow-IPSP and paired-pulse depression of the fast-IPSP were blocked by 1 microM baclofen. The present experiments provide no evidence that overt alteration of excitatory synaptic transmission or neuronal properties favouring hyperexcitability precede the ischemically induced death of CA1 pyramidal cells.  相似文献   

16.
Effects of acidic fibroblast growth factor (aFGF) fragments such as aminoterminal aFGF (1–15) and carboxyl-terminal aFGF (114–140) on synaptic transmission were investigated in rat hippocampal slices. Stimulation was applied to Schaffer collateral/commissural afferents, and evoked population spikes were recorded in the CA1 pyramidal cell layer. Continuous perfusion of slices with aFGF (1–15) slightly decreased the basal amplitude of population spikes and significantly increased the paired-pulse facilitation. When brief tetanic stimulation (7 pulses at 100 Hz) was applied 30 min after the perfusion of aFGF (1–15), aFGF (1–15)-treated slices enhanced the magnitude of short-term potentiation after the tetanus and facilitated a generation of long-term potentiation. These effects of aFGF (1–15) were dose-dependent. Perfusion of slices with aFGF (114–140) had no effect on the basal spike amplitude, paired-pulse facilitation, and short-term potentiation. Both aFGF (1–15) and aFGF (114–140) had no effect on the DNA synthesis stimulating activity in BALB/c 3T3-L1 cells. The results suggest that aFGF (1–15), which is not involved in mitogenic activity, is implicated in a modulatory mechanism of synaptic plasticity.  相似文献   

17.
Synaptic plasticity may depend not only on the afferent fibers but also on the recipient structure. The medial perforant path (MPP) from the entorhinalcortex projects to both the dentate gyrus (DG) and CA3, resulting in excitatory postsynaptic potentials (EPSPs) in both areas. In this study, we showed that long-term depression (LTD) following low-frequency stimulation of MPP was found only in CA3a, a CA3 subfield, but not in DG. Field potentials were recorded and current source density (CSD) analyzed in CA3a and DG following stimulation of MPP in urethane-anesthetized rats. MPP evoked a short-latency population spike (PS) and EPSP in CA3a, <2.5 ms delayed from the respective events in DG. A small electrolytic lesion of CA3a abolished the locally recorded PS in CA3a but did not affect the responses in the DG. Low-frequency stimulation of the MPP for 600 pulses at 5 Hz, but not at 1 Hz, resulted in LTD of up to 2 h in CA3a but not in DG. High-frequency stimulation (400 Hz bursts) of the MPP resulted in long-term potentiation (LTP) in both CA3a and DG. LTD at CA3a was blocked by a prior intracerebroventricular administration of an N-methyl-D-aspartate receptor (NMDAR) antagonist DL-2-amino-5-phosphonovaleric acid or a nonselective group I/II metabotropic glutamate receptor (mGluR) antagonist (RS)-α-methyl-4-carboxyphenylglycine. We conclude that an NMDAR and mGluR sensitive LTD is induced in CA3 but not in the DG following low-frequency MPP stimulation in vivo, and the bi-directional synaptic plasticity in CA3 may be responsible for its behavioral functions.  相似文献   

18.
G Hess  U Kuhnt 《Neuroreport》1992,3(4):361-364
The fluorescent dye Calcium Green and optical recording techniques were used to record intracellular Ca2+ transients resulting from paired-pulse stimulation in stratum moleculare of area CA1 in guinea-pig hippocampal slices. Presumed presynaptic calcium transients were recorded while glutamatergic synaptic transmission was blocked by kynurenic acid. Peak responses to paired-pulses (10-160 ms interval) were higher than responses to single pulses of same stimulation strength (42-23% increase). The isolated response to the second pulse, however, was of smaller magnitude in comparison to the first one; the difference in magnitude depended on the interstimulus interval. Thus, the residual presynaptic free calcium concentration may be responsible for paired-pulse facilitation of synaptic transmission in hippocampus. At the same time, a use-dependent inactivation of presynaptic calcium channels may occur.  相似文献   

19.
Purpose :  The paired-pulse technique has been widely used as a convenient but indirect measure of "inhibition" in hippocampal circuits of normal and epileptic animals. Most investigators have used a single paired-pulse protocol, whereas others have utilized repetitive paired pulses. This study investigated which parameters influence results from paired-pulse tests, focusing on the repetitive paired-pulse technique; it aims to assess how this technique may be used in an unbiased and quantitative manner across animal preparations for comparisons of control and experimental epileptic animals.
Methods :  The perforant path was stimulated while field potentials were recorded from the granule cell layer under isoflurane anesthesia. Paired-pulse suppression was analyzed as a function of stimulation intensity and interpulse interval and frequency.
Results :  Paired-pulse suppression was greater with increased stimulus intensity and decreased interpulse interval (20–100 ms). During repetitive protocols, stimulation frequencies ≤1.0 Hz produced paired-pulse suppression similar to single paired-pulse responses, but caused more paired-pulse suppression between 1.0 and 4.0 Hz at all but the lowest intensities. The amplitude of the population spike produced by the conditioning pulse increased progressively during stimulation at higher frequencies (1.0–4.0 Hz).
Discussion :  The single paired-pulse technique is highly dependent on stimulation parameters, as is the repetitive paired-pulse protocol, which is more variable. To generate reliable, consistent, and unbiased data in comparisons of control and experimental epileptic groups, all parameters should be specified and controlled across experiments. Paired-pulse suppression is susceptible to alterations in many mechanisms, and, therefore, represents a circuit response rather than an assay of γ-aminobutyric acid (GABA)ergic inhibition in epilepsy research.  相似文献   

20.
Bartesaghi R 《Hippocampus》2004,14(4):482-498
We previously reported that neonatal isolation shapes neuron morphology remarkably in the dentate gyrus and hippocampus of the guinea pig, a precocial rodent whose brain is at an advanced stage of maturation at birth. The aim of the present work was to investigate the effects of early isolation on the physiology of the hippocampal trisynaptic circuit. Male and female guinea pigs were assigned at 6-7 days of age to either a social or an isolated environment. After 90-100 days, the animals were anesthetized and electrophysiological experiments were carried out. The monosynaptic response evoked by medial perforant path stimulation in the dentate gyrus (DG) and the following response trisynaptically evoked in field CA1 by the DG-CA3 system were evaluated with several stimulus protocols: (1) current source-density (CSD) analysis; (2) input/output function; (3) paired-pulse potentiation (PPP); and (4) long-term potentiation (LTP). Isolated animals exhibited a reduction in the magnitude of the current sinks in the middle molecular layer and granule cell layer of the DG and in the input/output function of the granule cell population excitatory postsynaptic potential (EPSP) and population spike (PS) over a wide range of stimuli. The latter effect was larger in males. The ratio between the PS and EPSP of the granule cells was reduced in isolated compared to control males, but the opposite occurred in females. Isolation affected PPP of the granule cell response in males only, causing a larger facilitation of the PS. No isolation-related effects were found in the magnitude of the LTP of the DG response in either sex. Isolated animals exhibited a reduction in the current sinks in stratum radiatum and stratum pyramidale of field CA1 and in the input/output function of the EPSP and PS of field CA1. These effects were larger in males. The results show that early isolation causes a reduction in the synaptic function of the DG-CA3-CA1 system, driven by perforant path volleys. The isolation-induced impairment in signal processing along the hippocampal network suggests that the outcome of early isolation may be an impairment in the memory functions in which the entorhinal-hippocampal system plays a key role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号