首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 391 毫秒
1.
Development of embryonic spinal cord transplants in the rat   总被引:1,自引:0,他引:1  
P J Reier  M J Perlow  L Guth 《Brain research》1983,312(2):201-219
Although fetal brain tissue, grafted into the CNS of neonatal and adult animals, has been shown to survive and differentiate, relatively little information has been obtained regarding the development of embryonic spinal cord transplants, especially in the injured host CNS. The survival and differentiation of fetal spinal cord transplants in either intracerebral cavities or the lateral ventricles of the adult rat brain were thus examined with light and electron microscopy. Approximately 90% of the spinal cord implants taken from 12-15-day fetuses persisted in either transplantation site with some surviving for as long as 8 months (latest interval studied). The survival rate was considerably lower (22%), however, with tissues obtained from older fetuses. Within 3 weeks, the transplants obtained from 12-15-day donors had become extensively myelinated and contained many neurons of different sizes, including some clusters of large neurons resembling ventral horn cells of the intact spinal cord. In addition, all of the mature grafts were characterized by multiple myelin-free regions of neuropil, containing many small neurons (20 micron in diameter). [3H]Thymidine labelling of the transplants and intact cords of the surviving littermates of the donor fetuses suggested that these myelin-free areas corresponded to the substantia gelatinosa of the adult spinal cord. In many cases, the transplants were confluent with the host CNS parenchyma without an intervening glial scar. Furthermore, multiple spinal cord transplants, placed into the same lesion site, were often fused, and injection of one of the transplants with horseradish peroxidase demonstrated many retrogradely labelled neurons in the adjacent implant. The results of this study suggest that some topographical features of the normal spinal cord may be represented in mature spinal cord transplants. In addition, these findings establish a basis for future investigations aimed at repair of the injured host spinal cord with homologous fetal tissue.  相似文献   

2.
A double-labeling immunofluorescence technique was employed to investigate the co-localization of the functionally antagonistic neuropeptides, substance P and enkephalins, within intraspinal neurons of the rat. Anti-Met-enkephalin-Arg6-Gly7-Leu8 (Enk-8) antiserum was used as a marker of the preproenkephalin A neuron system. The observations were focused on the lumbar spinal cord. Co-localization was most prominent within neurons in the substantia gelatinosa, in which more than 95% of substance P-like immunoreactivity neurons showed Enk-8-like immunoreactivity. These double-labeled cells corresponded to 45% of Enk-8-like immunoreactive neurons in the same area. This suggests that SP/Enk-8 interaction occurs at the axon terminals of the substantia gelatinosa neurons. In deeper layers of the dorsal horn (laminae III, IV), only 14% and 6% of SP-like immunoreactive and Enk-8-like immunoreactive neurons were double labeled, respectively. Co-localization was also observed in neurons located in the laminae I, V, VII and X, suggesting concomitant involvement of these peptides in a variety of spinal cord functions.  相似文献   

3.
Uncoupling protein 2 (UCP2) is a mitochondrial protonophore that regulates cellular energy homeostasis. In this study, we explored the expression of UCP2 in the spinal cord. UCP2 was expressed in the substantia gelatinosa and ventral horn of the rodent and primate spinal cord. In all of these areas, UCP2 expression was associated with axons and axon terminals and direct appositions between UCP2-immunoreactive fibers and NMDA glutamate receptors-containing perikarya were frequently detected. All of the UCP2-labeled processes were also immunoreactive for substance P. The expression of UCP2 in primary sensory afferents of the spinal cord suggests that this mitochondrial uncoupler is involved in the mechanism of pain and temperature sensation.  相似文献   

4.
In the normal central nervous system (CNS) the regional expression of the growth-associated protein GAP43 is complementary to the pattern of myelination. This has led us to suspect that myelin-associated neurite growth inhibitors might contribute to the suppression of GAP-43 expression by suppressing sprouting and plastic changes of synaptic terminals in myelinated CNS areas. In order to study the relationship between myelination and GAP-43 expression more directly, we experimentally prevented myelination of the lumbar spinal cord of rats through neonatal X-irradiation. The GAP-43 protein expression in myelin-free spinal cords was analysed by immunohistochemistry and immunoblotting and compared to age-matched normal spinal cords. We found that in the absence of myelination, GAP-43 expression is strongly increased in the spinal cord of 4-week-old rats. GAP-43 was most strongly expressed in descending fibre tracts, where expression in the normal spinal cord is very low. In grey matter the typical regional pattern of GAP-43 expression did not develop; instead GAP-43 expression was high in all regions of the spinal cord. The overall pattern of myelination and GAP-43 expression in the myelin-free cord resembled that of early postnatal stages. This indicates that the regional down-regulation of GAP-43 expression during normal postnatal development did not occur in the myelin-free areas. Our results support the hypothesis that neurite growth inhibitors from oligodendrocytes and CNS myelin suppress sprouting and plastic changes of synaptic terminals in the normal CNS and are thereby involved in regulating the stability of neural connections.  相似文献   

5.
Three neuroanatomical tracers have been employed to map the axonal projections formed between transplants of fetal spinal cord tissue and the surrounding host spinal cord in adult rats. Solid pieces of embryonic day 14 (E14) rat spinal cord were placed into hemisection aspiration cavities in the lumbar spinal cord. Injections of either (1) a mixture of horseradish peroxidase and wheat germ agglutinin- conjugated horseradish peroxidase, (2) Fluoro-Gold, or (3) Phaseolus vulgaris leucoagglutinin (PHA-L) were made into the transplants or the neighboring segments of the host spinal cord at 6 weeks to 14 months post-transplantation. Injections of anterograde and retrograde tracers into the transplants revealed extensive intrinsic projections that often spanned the length of the grafts. Axons arising from the transplants extended into the host spinal cord as far as 5 mm from the host-graft interface, as best revealed by retrograde labeling with Fluoro-Gold. Consistent with these observations, iontophoretic injections of PHA-L into the transplants also produced labeled axonal profiles at comparable distances in the host spinal cord, and in some instances elaborate terminals fields were observed surrounding host neurons. The majority of these efferent fibers labeled with PHA-L, however, were confined to the immediate vicinity of the host-graft boundary, and no fibers were seen traversing cellular partitions between host and transplant tissues. Host afferents to the transplants were also revealed by these tracing methods. For example, the injection of Fluoro-Gold into the grafts resulted in labeling of host neurons within the spinal cord and nearby dorsal root ganglia. In most cases, retrogradely labeled neurons in spinal gray matter were located within 0.5 mm of the graft site, although some were seen as far as 4-6 mm away. The distance and relative density of ingrowth exhibited by host axons into the grafts, however, appeared modest based upon the results of HRP and Fluoro-Gold retrograde labeling. This was further confirmed with the PHA-L anterograde method. Whereas some host fibers were seen extending into the transplants, the majority of PHA-L containing axons formed terminal-like profiles at or within 0.5 mm of the host-graft interface. The comprehensive view of intrinsic connectivity and host-graft projections obtained in these studies indicates that intraspinal grafts of fetal spinal cord tissue can establish a short-range intersegmental circuitry in the injured, adult spinal cord. These observations are consistent with the view that such grafts may contribute to the formation of a functional relay between separated segments of the spinal cord after injury.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
A double-labeling immunofluorescence technique was employed to investigate the co-localization of the functionally antagonistic neuropeptides, substance P and enkephalins, within intraspinal neurons of the rat. Anti-Met-enkephalin-Arg6-Gly7-Leu8 (Enk-8) antiserum was used as a marker of the preproenkephalin A neuron system. The observations were focused on the lumbar spinal cord. Co-localization was most prominent within neurons in the substantia gelatinosa, in which more than 95% of substance P-like immunoreactivity neurons showed Enk-8-like immunoreactivity. These double-labeled cells corresponded to 45% of Enk-8-like immunoreactive neurons in the same area. This suggests that SP/Enk-8 interaction occurs at the axon terminals of the substantia gelatinosa neurons. In deeper layers of the dorsal horn (laminae III, IV), only 14% and 6% of SP-like immunoreactive and Enk-8-like immunoreactive neurons were double labeled, respectively. Co-localization was also observed in neurons located in the laminae I, V, VII and X, suggesting concomittant involvement of these peptides in a variety of spinal cord functions.  相似文献   

7.
Summary This report concerns the immunohistochemical demonstration of two neuronal Ca2+-binding proteins, calcineurin and synaptophysin, in the spinal cord of normal controls and from patients with familial dysautonomia. In controls, calcineurin immunoreactivity was highly concentrated in small nerve cells and fibers of the substantia gelatinosa. Synaptophysin immunoreactivity was normally distributed throughout the spinal cord gray matter, being highly concentrated in the substantia gelatinosa, the dorsal nucleus of Clarke and the anterior horn. In patients with familial dysautonomia, no apparent changes in calcineurin immunoreactivity were found in the substantia gelatinosa. By contrast, there was a significant depletion of synaptophysin-positive axon terminals in the substantia gelatinosa and in the dorsal nucleus of Clarke of patients with familial dysautonomia.  相似文献   

8.
Glutamate has been shown to be a neurotransmitter in the central nervous system of vertebrates, and it has been hypothesized that glutamate is functional as a neurotransmitter in the spinal cord dorsal horn. A monoclonal antibody to fixative-modified glutamate was used in this study to examine the light microscopic and ultrastructural profiles of glutamate-like immunoreactivity in the superficial dorsal horn of the rat spinal cord. Glutamate-like immunoreactivity was observed in neurons, fibers, and terminals of both laminae I and II. Marginal zone immunoreactive neurons ranged from 10 to 30 micron in diameter and received many nonimmunoreactive somatic synapses. In substantia gelatinosa, immunoreactive neurons were observed in both inner and outer layers, ranged 5 to 10 micron in diameter, and received few nonimmunoreactive somatic synapses. Glutamate-like immunoreactive dendrites were observed in both laminae and were contacted primarily by nonimmunoreactive synaptic terminals that generally contained small clear vesicles. Both myelinated and unmyelinated immunoreactive axons were observed in Lissauer's tract. Immunoreactive terminals contained small (40 nm) clear vesicles and generally formed simple synaptic contacts with nonimmunoreactive dendrites in laminae I and II. The results of this study corroborate the importance of glutamate as a neurotransmitter in spinal sensory mechanisms.  相似文献   

9.
Summary Crush injury of the sciatic nerve, that results in Wallerian degeneration of axons in the peripheral stump, induces, within 10–14 days, transganglionic degenerative atrophy of central terminals of primary nociceptive neurons in the ipsilateral substantia gelatinosa Rolandi of the segmentally related region of the spinal cord. Transganglionic degenerative atrophy is characterized by disappearance of fluoride-resistant acid phosphatase (FRAP) from the Rolando substance, normally exerted by primary nociceptive terminals. From the 40th postoperative day on, FRAP reaction starts to reappear in the formerly depleted Rolando substance. Restoration of FRAP reactivity reflects regenerative sprouting of formerly atrophied primary nociceptive terminals. Growth cones of primary nociceptive axons establish synapses with dendritic growth cones of substantia gelatinosal cells. Synaptoneogenesis in the Rolando substance follows medio-lateral and caudo-rostral gradients.Supported by research grant No. 4-01-0303-01-1 from the Scientific Research Council, Ministry of Health, Hungary.  相似文献   

10.
The distribution of galanin-like immunoreactivity (GAL-LI) in the spinal cord of the cat was studied by use of indirect histochemistry and the peroxidase-antiperoxidase (PAP) technique. In the ventral horn GAL-immunoreactive (IR) axonal fibers and terminals were most frequent in the ventral part of the motor nucleus. The GAL-IR axons also contained 5-hydroxytryptamine (5-HT)-LI, and they disappeared after spinal cord transection. It was concluded that these GAL-IR fibers belong to the serotoninergic bublospinal pathway. In the medulla oblongata from normal cats, scattered GAL-IR cell bodies were encountered within the nucleus raphe obscurus and nucleus raphe pallidus. Electron microscopic observations revealed that the fine structure of the GAL-IR axonal boutons in the motor nucleus was similar to that of 5-HT-IR boutons with a varying number of immunoreactive large dense core vesicles. The postsynaptic element in all cases studied was a dendrite. A dense GAL-IR axonal plexus was found in the superficial laminae I-II of the dorsal horn. Coexistence was found between the GAL- and substance P-LI in fibers within the dorsal horn plexus. Spinal cord transection did not alter the pattern of GAL-LI in the dorsal horn, while the vast majority of GAL-IR axonal swellings disappeared following dorsal root sectioning. Electron microscopic observations in lamina II (substantia gelatinosa) revealed that the GAL-IR axonal terminals could be divided into two main groups. One with small to medium-sized axonal boutons formed synaptic contacts with both dendritic and axonal profiles. The other formed the central axon terminals of glomeruli, suggesting that GAL-LI may be present in C-type primary afferents. Numerous small GAL-IR cell bodies were encountered in laminae II and III. GAL-IR cell bodies were also observed in lamina X. The dorsal root ganglia contained a low but consistent number of small to medium-sized GAL-IR cell bodies, which all contained immunoreactive calcitonin gene-related peptide (CGRP). Following peripheral sciatic nerve transection, the number and the labeling intensity of GAL-IR cell bodies in the corresponding dorsal root ganglia showed a moderate increase. Radioimmunoassay revealed that the concentration of GAL-LI increased along the rostrocaudal axis of the normal spinal cord, and was about three times higher in the dorsal than in the ventral regions. The concentration in the dorsal root ganglia was intermediate to those seen in the corresponding dorsal and ventral cord regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Morphologic features and electrical membrane properties of neurons in the substantia gelatinosa (SG) of the caudal spinal trigeminal nucleus (the medullary dorsal horn; MDH) were examined in the rat. Intracellular recording and biocytin-injection combined with histochemical staining were performed in horizontal slices. Twenty-four SG (lamina II) neurons were recorded stably and stained successfully. Both projection neurons (PNs; n = 9) that sent axons to regions outside the MDH and intrinsic neurons (INs; n = 15) that sent axons only to the MDH were observed. The INs were divided into those with dense axonal arborization (INDAs; n = 7) and those with sparse axonal arborization (INSAs; n = 8). In the PNs, the dendrites with spines spread to all MDH layers (laminae I-III). The main axons sent collaterals within the SG and rostrally, caudally, or medially to laminae I and III of the MDH, interpolar spinal trigeminal nucleus, spinal tract of the trigeminal nerve, or upper cervical cord segments. In the INDAs, the dendrites arising from the rostral and caudal pole of the cell bodies mainly extended rostrally and caudally parallel to the rostrocaudal axis of the SG: the dendritic trees were elongated and oval in shape and were confined within the SG. The axonal field of each INDA, a dense mesh of axonal processes, was elongated and oval in shape and almost was confined within the SG. In the INSAs, a small, round cell body was located in the center of each dendritic field, which usually was limited within the SG. Axonal processes ran radially to spread to all layers of the MDH, constituting round or oval axonal fields. The three groups of SG neurons showed more or less different intracellular responses to current injections. In particular, adaptation of spike frequency, hyperpolarizing sag, and rebound excitation were observed in the PNs and INSAs but not in the INDAs. Slow ramp depolarization and slow afterdepolarization were recorded only in INDAs.  相似文献   

12.
Yang K  Li YQ 《Neuroreport》2001,12(1):39-42
The origins of spontaneous and noxious stimuli-evoked glutamatergic miniature excitatory postsynaptic currents (mEPSCs) in substantia gelatinosa (SG) neurons were investigated by using whole-cell voltage-clamp technique on adult rat spinal cord slice. The properties of mEPSCs of SG neurons from rats either neonatally capsaicin-treated or sciatic nerve ligated showed no difference from those of intact SG neurons, indicating independence of spontaneous mEPSCs on primary afferent fibers. In the presence of tetrodotoxin (TTX), capsaicin, which noxiously stimulated fine primary afferent fibers, caused increase of the mEPSCs frequency, but did not affect the amplitude profiles or mean amplitudes. TTX affected neither the spontaneous mEPSCs nor capsaicin-induced mEPSCs frequency increase. The results suggest that spontaneous mEPSCs in SG are mediated by presynaptic spontaneous glutamate release predominantly originating from interneuron terminals rather than from primary afferent terminals; under noxious stimulation, however, mEPSCs frequency increase is mediated by primary afferent excitation.  相似文献   

13.
The fine structure of primary sensory terminals within glomerular complexes of lamina II of Rexed (substantia gelatinosa Rolandi) in the spinal cord was investigated in normal adult rhesus monkeys and in monkeys subjected to thoracic or lumbosacral dorsal root transection. Three types “scalloped” primary sensory terminals were distinguished on the basis of their ultrastructural characteristics, size, and distribution of synaptic vesicle population: (1) dense sinusoid axon (DSA) terminals contain mediumsized (42–46 nm and 58–62 nm) and large (80 nm) clear synaptic vesicles; (2) large dense-core vesicles (LDCV) terminals are equipped with empty synaptic vesicles ranging from 30 to 106 nm, large, (80 nm) and very large, (100 nm) dense-core vesicles; and (3) regular synaptic vesicles (RSV) terminals contain a homogeneous population of 45–50 nm clear synaptic vesicles. Follwing transection of the dorsal roots, all three types of primary afferents degenerate and become engulfed and phagocytosed by glial cells. However, each type of terminal displays a different mode and tempo of degeneration as seen in monkeys sacrificed 36, 48, and 72 hours following rhizotomy. DSAs follow the osmiophilic degeneration pattern; LDCVs are characterized by a gradual increase in the number of “electron-dense bodies” and, less frequently, by a progressive osmiophilic process; RSVs exhibit signs of a filamentous degeneration, accompanied by clusters of synaptic vesicles. The three types of terminals are distributed in an overlapping but distinct pattern within posterior horn. Thus DSAs are present in highest numbers in lamina II where they constitute the most frequent terminal type. LDCVs also occur in lamina II in its outer half but are most concentrated in lamina I. RSVs predominate in the deepeer layers of the dorsal horn (lamina III) but are also found in the internal half of lamina II. On the basis of these ultrastructural data and a comparison with afferent profiles impregnated according to the Golgi method, it appears that DSAs and LDCVs correspond respectively to superficial and marginal collaterals of small, thin dorsal root fibers whereas RSVs represnt terminals of deep collaterals from large, thick dorsal root axons.  相似文献   

14.
Calcitonin gene-related peptide (CGRP) is a neuropeptide that is associated with a subset of primary afferent fibers and appears to have a role in nociception. The purpose of the present study was to perform a qualitative light, and especially electron microscopic (LM and EM), examination of CGRP-immunoreactivity (IR) within lamina II (substantia gelatinosa) of the feline pars caudalis/medullary dorsal horn (PC/MDH) of the spinal trigeminal nucleus. The LM investigation revealed massive CGRP-IR within lamina II outer, with fewer fibers that traversed lamina II inner. The EM preparations showed CGRP-IR in small, thinly myelinated and unmyelinated axons, preterminal axons, and in axon terminals that formed asymmetric synaptic contacts onto small dendritic profiles. The terminals with CGRP-IR were often the central element within glomeruli, where the terminal usually formed 2 or more asymmetric synaptic specializations onto 1 or more dendrites. Many of these postsynaptic dendrites contained synaptic vesicles. Other profiles were seen forming presynaptic contacts onto the terminal with CGRP-IR, and these profiles most likely represent presynaptic dendrites and/or other axon terminals of intrinsic origin. The synaptic association of terminals showing CGRP-IR with vesicle-containing dendrites, presynaptic dendrites, and/or other axon terminals suggests that terminals with CGRP-IR are especially susceptible to modulation. © 1993 Wiley-Liss, Inc.  相似文献   

15.
The antibody microprobe technique was used to study the effect of baclofen on the release of immunoreactive substance P and immunoreactive calcitonin gene-related peptide within the lower lumbar spinal cord of pentobarbitone-anaesthetized spinalized cats. Both peptides were released in the region of the substantia gelatinosa during ipsilateral noxious cutaneous stimulation or high-intensity electrical stimulation of a hind limb nerve. Intravenous administration of baclofen suppressed the excitation of lumbar dorsal horn neurons, but did not produce detectable alterations of the evoked release of immunoreactive substance P or immunoreactive calcitonin gene-related peptide in the superficial grey matter dorsal to these neurons. The results suggest that the antinociceptive action of baclofen does not involve a reduction of the intraspinal release of substance P or calcitonin gene-related peptide from the central terminals of nociceptive sensory fibres.  相似文献   

16.
Intraspinal transplants   总被引:13,自引:0,他引:13  
Transplants of embryonic central nervous system tissue have long been used to study axon growth during development and regeneration, and more recently to promote recovery in models of human diseases. Transplants of embryonic substantia nigra correct some of the deficits found in experimental Parkinson's disease, for example, by mechanisms that are thought to include release of neurotransmitter and reinnervation of host targets, as well as by stimulating growth of host axons. Similar mechanisms appear to allow intraspinal transplants of embryonic brainstem to reverse locomotor and autonomic deficits due to experimental spinal cord injuries. Embryonic spinal cord transplants offer an additional strategy for correcting the deficits of spinal cord injury because, by replacing damaged populations of neurons, they may mediate the restoration of connections between host neurons. We have found that spinal cord transplants permit regrowth of adult host axons resulting in reconstitution of synaptic complexes within the transplant that in many respects resemble normal synapses. Transplants of fetal spinal cord may also contribute to behavioral recovery by rescuing axotomized host neurons that otherwise would have died. Electrophysiological and behavioral investigations of functional recovery after intraspinal transplantation are preliminary, and the role of transplants in the treatment of human spinal cord injury is uncertain. Transplants are contributing to our understanding of the mechanisms of recovery, however, and are likely to play a role in the development of rational treatments.  相似文献   

17.
Fetal rat spinal cord tissue was obtained on gestational day 14 (E14) and transplanted into 2-4-mm-long intraspinal cavities produced by partial spinal cord lesions in adult and neonatal rats. At regular post-transplantation intervals, light and electron microscopy, autoradiographic demonstration of tritiated thymidine labelling, and immunocytochemical localization of glial fibrillary acidic protein (GFAP) were used to identify surviving donor tissues and to study their differentiation and extent of fusion with recipient spinal cords. In some experiments, wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) was also employed to examine whether neurons within the grafts projected axons into the host spinal cord and vice versa. Lastly, immunocytochemistry was used to determine whether any supraspinal serotoninergic (5-HT) axons from the host extended into the transplants. Over 80% of the grafts survived in lesions of both the neonatal and adult rat spinal cord for periods of 1-16 months (duration of experiment), and considerable maturation of donor tissue was evidenced, which even included the appearance of some topographical features of the normal spinal cord. Many of the transplants extended the entire length of the lesion, and were often closely apposed to the injured surfaces of the recipient spinal cords without an intervening dense glial scar. At post-transplantation intervals of 2-4 months, injection of WGA-HRP into the host spinal cord (5 mm from the transplant in adult animals or as much as 20 mm in neonatal recipients) demonstrated retrogradely labelled neurons and anterogradely labelled axons in the grafts. Likewise, injecting WGA-HRP into transplants in adult recipients resulted in labelling of neurons in adjacent segments of the host spinal cord; some labelled axons, derived from donor neurons, were also present in neighboring spinal gray matter. Finally, immunocytochemistry revealed 5-HT-like immunoreactive fibers in transplants that had been prelabelled with tritiated thymidine. These observations demonstrate the potential of embryonic spinal cord transplants to replace damaged intraspinal neuronal populations and to restore some degree of anatomical continuity between the isolated rostral and caudal stumps of the injured mammalian spinal cord.  相似文献   

18.
Previously injured dorsal roots were electrically stimulated to determine if regenerating sensory axons can form physiologically active synaptic contacts with neurons within fetal spinal cord tissue transplants. Dorsal rootlets, sectioned at their spinal cord entry zone, were apposed to intraspinal transplants of fetal spinal cord tissue grafted along each side of a nerve growth factor-treated nitrocellulose implant. Two to six months later, the rootlets were transected between the spinal cord and their respective ganglia and electrically stimulated. Evoked potentials were recorded from the dorsal surface of the transplant, but were absent from adjacent ipsilateral and contralateral spinal cord regions. A glass micropipette was advanced through the transplant and used to record intramedullary field potentials evoked by dorsal root stimulation. Maximal negative potentials occurred 400–700 μm below the dorsal surface of the transplant, shifting to positive potentials deeper into the transplant. Additionally, both spontaneous and electrically evoked single neuronal action potentials were observed along the microelectrode track. Evoked potentials were abolished following transection of the rootlets between the stimulation site and the transplant. Immunocytochemical evidence of the production of fos protein following electrical stimulation of the regenerated dorsal rootlets was demonstrated within transplant neurons and some ventrally located host neurons, providing an anatomical correlate to the electrophysiological recordings of synaptic activation. These results provide evidence of the structural and functional integration of regenerated sensory axons with both transplant and host neurons.  相似文献   

19.
Although it is one of the most distinctive and earliest recognized features in the spinal cord, the substantia gelatinosa (SG) remains among the most enigmatic of central nervous system regions. The present neuroanatomical studies employed transganglionic transport of horseradish peroxidase conjugates of choleragenoid (B-HRP) and the B4 isolectin of Bandeiraea simplicifolia (IB4-HRP) on opposite sides to compare the projection patterns of myelinated and unmyelinated cutaneous primary afferents, respectively, within the superficial dorsal horn of the spinal cord in postnatal mice, from shortly after birth to adulthood. Putative unmyelinated afferents labeled with IB4-HRP gave rise to a dense sheet of terminal-like labeling restricted to the outer half of the SG. In contrast, myelinated inputs labeled with B-HRP gave rise to a similarly dense sheet of terminal-like labeling that occupied the inner half of the SG. This adult organization, with two dense sheets of terminal labeling in the superficial dorsal horn, was clearly evident shortly after birth using these markers, prior to the emergence of the SG. Furthermore, the location of the SG proper varied considerably within the dorsoventral plane of the dorsal horn according to mediolateral and segmental locations, a finding that was also seen in comparative studies in rat and cat. These findings caution against equating the SG in particular, and the superficial dorsal horn in general, with nociceptive processing; at minimum, the SG subserves a clear duality of function, with only a thin portion of its outermost aspect devoted to pain.  相似文献   

20.
This study examines the projection of dorsal root fibers to the upper dorsal horn of the monkey lumbar spinal cord utilizing degeneration and autoradiographic methods. The animals survived dorsal rhizotomy for periods varying from 18 hours to 28 days. Electron microscopy reveals the earliest degeneration to be neurofilamentous alteration of large synaptic profiles in lamina III and the inner zone of the substantia gelatinosa (IIi). This degeneration begins 18 hours after rhizotomy, reaches a peak at three days postoperatively and disappears by the end of the first week. Degenerating myelinated axons in the spinal gray matter, dorsal column white matter and Lissauer's tract first appear three days postoperatively. The second tye of degeneration of synapses occurs in lamina I and outer gelatinosa (IIo) and consists of electron lucent alteration of moderate size synapses, especially those having large granular vesicles (LGVs) and some neurofilamentous and dense degeneration. This synaptic degeneration in lamina I begins two days following rhizotomy and reaches a peak between five to seven days, declines markedly by ten days and is absent at four weeks survival. The third type of degeneration occurs in the substantia gelatinosa (laminae IIo and IIi) initially as an enlargement of synaptic vesicles at two days and then progresses to large numbers of electron dense small synapses, the peak of degeneration occurring at seven days and persisting as long as four weeks postoperatively. Some of the dense synapses can be seen to arise from small, nonmyelinated axons. These axons are first seen to be degenerating in the gelatinosal and marginal layers at four days survival and the first definite degeneration of nonmyelinated axons in Lissauer's tract is at seven days postoperatively. It is concluded that the largest axons projecting to this region of the dorsal horn degenerate most rapidly and that these axons are distributed to laminae III and IIi. Axons of intermediate diameter degenerate next and are distributed principally to laminae I and IIo. Fine diameter axons, probably nonmyelinated, degenerate more slowly and terminate principally in the substantia gelatinosa (IIi and IIo). There is some overlap in these projection domains, in that the principal projection to lamina III extends into the lower part of the gelatinosa and the projection to the marginal layer overlaps the outer gelatinosa. The axon terminals in gelatinosa of C fibers are sometimes postsynaptic in axoaxonal synapses as are several of the axon terminals of larger A fibers in lamina III. Most of the synapses of primary afferent origin in lamina I are not involved in axoaxonal synapses. It is likely that the terminations of many primary afferent fibers in laminae II and III are subject to presynaptic inhibition and those in lamina I are not. Some of the primary afferents in all three laminae synapse upon presynaptic dendrites and thus may influence transmitter release from these profiles. The LGV profiles are distributed in a manner similar to the distribution of substance P and it is suggested that the degenerating LGV profiles may contain substance P. Most of the LGV profiles and many of the round vesicle profiles do not appear to be derived from dorsal root, but most of the central synaptic profiles are of primary afferent origin. In no case was there evidence that flat vesicle synapses were derived from primary afferents. Following dorsal root ganglia injections with H3 leucine, light microscopic autoradiography at short postoperative survival times demonstrated heavy grain distribution over marginal and gelatinosal layers with somewhat less numbers of grains over lamina III. There were also many grains over the dorsal column white matter and Lissauer's tract. Electron microscopic autoradiography revealed that the majority of labeled structures seen with fast axonal transport in the upper dorsal horn are not synapses but are myelinated and nonmyelinated axons. Labeled synapses were the same types as those undergoing degeneration following rhizotomy: round vesicle profiles, central synaptic profiles and LGV profiles. Each of the labeled types was distributed throughout the upper laminae, with the exception of LGV profiles which are uncommon in layers deep to the outer zone of the gelatinosa. It is concluded that fast axon transport autoradiography is not a selective label for synapses in the cord and light microscopic autoradiography does not provide direct estimates of synaptic densities in the dorsal horn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号